Generative Artificial Intelligence and Prompt Engineering: A Comprehensive Guide to Models, Methods, and Best Practices

Generative Artificial Intelligence and Prompt Engineering: A Comprehensive Guide to Models, Methods, and Best Practices

Volume 10, Issue 2, Page No 01-11, 2025

Author’s Name: Maikel Leon

View Affiliations

Department of Business Technology, Miami Herbert Business School, University of Miami, Miami, Florida, USA

a)whom correspondence should be addressed. E-mail: mleon@miami.edu

Adv. Sci. Technol. Eng. Syst. J. 10(2), 01-11 (2025); a  DOI: 10.25046/aj100201

Keywords: Generative AI, Large Language Models, Prompt Engineering

Share

85 Downloads

Export Citations

This article enhances discussions on Generative Artificial Intelligence (GenAI) and prompt engineering by exploring critical pitfalls and industry-specific advantages. It begins with a foundational overview of AI evolution, emphasizing how generative models such as GANs, VAEs, and Transformers have revolutionized language processing, image generation, and drug discovery. Prompt engineering is highlighted as a key methodology for directing model outputs with precision and ethical awareness, enabling applications in Natural Language Processing (NLP), content personalization, and decision support. The revised sections detail how prompt engineering can be misapplied, underscoring common errors like overly restrictive or ambiguous prompts that compromise GenAI’s accuracy, ethicality, and creative capacity. Equally, the paper showcases high-impact use cases in finance, education, healthcare, and beyond, illustrating how carefully formulated prompts can strengthen risk detection, enhance student learning, improve clinical decision-making, and foster product innovation. The expanded discussion of industry alignment illustrates the tangible value these techniques offer across diverse sectors, ultimately reinforcing the notion that prompt engineering is central to maximizing GenAI’s transformative potential. Future directions address emerging trends, from multimodal fusion and domain-specific fine-tuning to adaptive prompt designs that leverage real-time user feedback, further solidifying the role of responsible prompt engineering in shaping the next generation of intelligent and ethically aligned AI solutions.

Received: 06 January 2025 Revised: 12 February 2025 Accepted: 14 February 2025 Online: 07 March 2025

  1. M. Le´on, R. Bello, K. Vanhoof, “Cognitive Maps in Transport Behavior,” in 2009 Eighth Mexican International Conference on Artificial Intelligence, 179–184, IEEE, 2009, doi:10.1109/MICAI.2009.31.
  2. M. Leon, L. Mkrtchyan, B. Depaire, D. Ruan, K. Vanhoof, “Learning and clustering of fuzzy cognitive maps for travel behaviour analysis,” Knowledge and Information Systems, 39(2), 435–462, 2013, doi:10.1007/s10115-013-0616-z.
  3. M. Le´on, “Fuzzy Cognitive Maps as a Bridge Between Symbolic and Sub- Symbolic Artificial Intelligence,” International Journal on Cybernetics & Informatics, 13(4), 57–75, 2024, doi:10.5121/ijci.2024.13405.
  4. M. Leon, “Aggregating Procedure for Fuzzy Cognitive Maps,” The International FLAIRS Conference Proceedings, 36(1), 2023, doi:10.32473/flairs.36.133082.
  5. A. Ghimire, J. Prather, J. Edwards, “Generative AI in Education: A Study of Educators’ Awareness, Sentiments, and Influencing Factors,” 2024, doi:10.48550/ARXIV.2403.15586.
  6. M. Le´on, N. M. S´anchez, Z. Z. Garc´ıa, R. B. P´erez, “Concept Maps Combined with Case-Based Reasoning in Order to Elaborate Intelligent Teaching/ Learning Systems,” in Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007), 205–210, IEEE, 2007, doi:10.1109/ISDA.2007.11.
  7. M. Le´on, G. N´apoles, R. Bello, L. Mkrtchyan, B. Depaire, K. Vanhoof, “Tackling Travel Behaviour: An Approach Based on Fuzzy Cognitive Maps,” International Journal of Computational Intelligence Systems, 6(6), 1012–1039, 2013, doi:10.1080/18756891.2013.816025.
  8. M. Le´on, “Comparing LLMs Using a Unified Performance Ranking System,” 2024, doi:10.5121/ijcsit.2023.15103.
  9. M. Le´on, H. DeSimone, “Advancements in Explainable Artificial Intelligence for Enhanced Transparency and Interpretability across Business Applications,” Advances in Science, Technology and Engineering Systems Journal, 9(5), 9–20, 2024, doi:10.25046/aj090502.
  10. M. Le´on, “Toward the Application of the Problem-Based Learning Paradigm into the Instruction of Business Technology and Innovation,”
    International Journal of Learning and Teaching, 10(5), 571–575, 2024, doi:10.18178/ijlt.10.5.571-575.
  11. H. DeSimone, M. Le´on, “Leveraging Explainable AI in Business and Further,” in 3rd IEEE Opportunity Research Scholars Symposium, 2024,
    doi:10.1109/ORSS.2024.1234567.
  12. M. Le´on, “Harnessing Fuzzy Cognitive Maps for Advancing AI with Hybrid Interpretability and Learning Solutions,” Advanced Computing: An International Journal, 15(5), 1–23, 2024, doi:10.5121/acij.2024.150501.
  13. M. Le´on, “Generative AI as a New Paradigm for Personalized Tutoring in Modern Education,” International Journal on Integrating Technology in Education, 13(3), 49–63, 2024, doi:10.5121/ijite.2024.13304.
  14. M. Le´on, “Benchmarking Large Language Models with a Unified Performance Ranking Metric,” International Journal on Foundations of Computer Science & Technology, 14(4), 15–27, 2024, doi:10.5121/ijfcst.2024.14402.
  15. M. Le´on, “The Needed Bridge Connecting Symbolic and Sub-Symbolic AI,” International Journal of Computer Science, Engineering and Information Technology, 14(1), 1–19, 2024, doi:10.5121/ijcseit.2024.14101.
  16. M. Le´on, “Leveraging Generative AI for On-Demand Tutoring as a New Paradigm in Education,” International Journal on Cybernetics & Informatics, 13(5), 17–29, 2024, doi:10.5121/ijci.2024.13502.
  17. M. Le´on, G. N´apoles, C. Rodr´ıguez, M. M. Garc´ıa, R. Bello, K. Vanhoof, “A Fuzzy Cognitive Maps Modeling, Learning and Simulation Framework for Studying Complex System,” in New Challenges on Bioinspired Applications: 4th International Work-conference on the Interplay Between Natural and Artificial Computation (IWINAC 2011), 243–256, Springer Berlin Heidelberg, 2011, doi:10.1007/978-3-642-21326-7 27.
  18. G. Nopoles, M. L. Espinosa, I. Grau, K. Vanhoof, R. Bello, Fuzzy cognitive maps based models for pattern classification: Advances and challenges, volume 360, 83–98, Springer Verlag, 2018.
  19. M. Le´on, L. Mkrtchyan, B. Depaire, D. Ruan, R. Bello, K. Vanhoof, “Learning Method Inspired on Swarm Intelligence for Fuzzy Cognitive Maps: Travel Behaviour Modelling,” in Artificial Neural Networks and Machine Learning– ICANN 2012: 22nd International Conference on Artificial Neural Networks, Lausanne, Switzerland, September 11-14, 2012, Proceedings, Part I, 718–725, Springer Berlin Heidelberg, 2012, doi:10.1007/978-3-642-33269-2 90.
  20. G. N´apoles, Y. Salgueiro, I. Grau, M. Leon, “Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern Classification,” IEEE Transactions on Cybernetics, 53(10), 6083–6094, 2023, doi:10.1109/TCYB.2022.3142284.
  21. G. N´apoles, M. Leon, I. Grau, K. Vanhoof, “FCM Expert: Software Tool for Scenario Analysis and Pattern Classification Based on Fuzzy Cognitive Maps,” International Journal on Artificial Intelligence Tools, 27(07), 1860010, 2018,
    doi:10.1142/S0218213018600102.
  22. M. Le´on, B. Depaire, K. Vanhoof, “Fuzzy Cognitive Maps with Rough Concepts,” in Artificial Intelligence Applications and Innovations: 9th IFIP WG 12.5 International Conference, AIAI 2013, Paphos, Cyprus, September 30– October 2, 2013, Proceedings, 527–536, Springer Berlin Heidelberg, 2013, doi:10.1007/978-3-642-41142-7 53.
  23. F. Hoitsma, A. Knoben, M. Le´on, G. N´apoles, “Symbolic Explanation Module for Fuzzy Cognitive Map-Based Reasoning Models,” in Artificial Intelligence XXXVII: 40th SGAI International Conference on Artificial Intelligence, AI 2020, Cambridge, UK, December 15–17, 2020, Proceedings, 21–34, Springer International Publishing, 2020, doi:10.1007/978-3-030-63799-6 3.
  24. M. Le´on, G. N´apoles, M. M. Garc´ıa, R. Bello, K. Vanhoof, “A Revision and Experience Using Cognitive Mapping and Knowledge Engineering in Travel Behavior Sciences,” Polibits, (42), 43–50, 2010, doi:10.17562/PB-42-6.
  25. H. DeSimone, M. Leon, “Explainable AI: The Quest for Transparency in Business and Beyond,” in 2024 7th International Conference
    on Information and Computer Technologies (ICICT), IEEE, 2024, doi:10.1109/icict62343.2024.00093.
  26. M. Alier, F.-J. Garc´ıa-Pe˜nalvo, J. D. Camba, “Generative Artificial Intelligence in Education: From Deceptive to Disruptive,” International Journal of Interactive Multimedia and Artificial Intelligence, 8(5), 5, 2024, doi:10.9781/ijimai.2024.02.011.
  27. J. Su,W. Yang, “Unlocking the Power of ChatGPT: A Framework for Applying Generative AI in Education,” ECNU Review of Education, 6(3), 355–366, 2023, doi:10.1177/20965311231168423.
  28. M. Leon, “Business Technology and Innovation Through Problem-Based Learning,” in Canada International Conference on Education (CICE-2023) andWorld Congress on Education (WCE-2023), CICE-2023, Infonomics Society, 2023, doi:10.20533/cice.2023.0034.
  29. H. Wang, A. Tlili, R. Huang, Z. Cai, M. Li, Z. Cheng, D. Yang, M. Li, X. Zhu, C. Fei, “Examining the applications of intelligent tutoring systems in real educational contexts: A systematic literature review from the social experiment perspective,” Education and Information Technologies, 28(7), 9113–9148, 2023, doi:10.1007/s10639-022-11555-x.
  30. E. A. Alasadi, C. R. Baiz, “Generative AI in Education and Research: Opportunities, Concerns, and Solutions,” Journal of Chemical Education, 100(8), 2965–2971, 2023, doi:10.1021/acs.jchemed.3c00323.
  31. D. BA˙IDOO-ANU, L. OWUSU ANSAH, “Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of Chat- GPT in Promoting Teaching and Learning,” Journal of AI, 7(1), 52–62, 2023, doi:10.61969/jai.1337500.
  32. E. Struble, M. Leon, E. Skordilis, “Intelligent Prevention of DDoS Attacks using Reinforcement Learning and Smart Contracts,” The International FLAIRS Conference Proceedings, 37(1), 2024, doi:10.32473/flairs.37.1.135349.
  33. X. Zhai, X. Chu, C. S. Chai, M. S. Y. Jong, A. Istenic, M. Spector, J.-B. Liu, J. Yuan, Y. Li, “A Review of Artificial Intelligence (AI) in Education from 2010 to 2020,” Complexity, 2021, 1–18, 2021, doi:10.1155/2021/8812542.
  34. C.-C. Lin, A. Y. Q. Huang, O. H. T. Lu, “Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review,” Smart Learning Environments, 10(1), 2023, doi:10.1186/s40561-023-00260-y.
  35. W. Holmes, K. Porayska-Pomsta, K. Holstein, E. Sutherland, T. Baker, S. B. Shum, O. C. Santos, M. T. Rodrigo, M. Cukurova, I. I. Bittencourt, K. R. Koedinger, “Ethics of AI in Education: Towards a Community-Wide Framework,” International Journal of Artificial Intelligence in Education, 32(3), 504–526, 2021, doi:10.1007/s40593-021-00239-1.
  36. K. Zhang, A. B. Aslan, “AI technologies for education: Recent research & future directions,” Computers and Education: Artificial Intelligence, 2, 100025, 2021, doi:10.1016/j.caeai.2021.100025.
  37. L. Chen, P. Chen, Z. Lin, “Artificial Intelligence in Education: A Review,” IEEE Access, 8, 75264–75278, 2020, doi:10.1109/ACCESS.2020.2988510.
  38. G. N´apoles, I. Grau, R. Bello, M. Le´on, K. Vanhoof, E. Papageorgiou, “A Computational Tool for Simulation and Learning of Fuzzy Cognitive Maps,” in 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–8, IEEE, 2015, doi:10.1109/FUZZ-IEEE.2015.7338005.
  39. G. N´apoles, J. L. Salmeron, W. Froelich, R. Falcon, M. Leon, F. Vanhoenshoven, R. Bello, K. Vanhoof, Fuzzy Cognitive Modeling: Theoretical and Practical Considerations, 77–87, Springer Singapore, 2019, doi:10.1007/978- 981-13-8311-3 7.
  40. M. Le´on, “The Escalating AI’s Energy Demands and the Imperative Need for Sustainable Solutions,” WSEAS Transactions on Systems, 23, 444–457, 2024, doi:10.37394/23202.2024.23.46.
  41. G. N´apoles, F. Hoitsma, A. Knoben, A. Jastrzebska, M. Leon, “Prolog-based agnostic explanation module for structured pattern classification,” Information Sciences, 622, 1196–1227, 2023, doi:10.1016/j.ins.2022.12.012.

Citations by Dimensions

Citations by PlumX

Crossref Citations

This paper is currently not cited.

No. of Downloads Per Month

No. of Downloads Per Country


Special Issues

Special Issue on Innovation in Computing, Engineering Science & Technology
Guest Editors: Prof. Wang Xiu Ying
Deadline: 15 November 2025

Special Issue on Computing, Engineering and Multidisciplinary Sciences
Guest Editors: Prof. Wang Xiu Ying
Deadline: 30 April 2025