Advanced Fall Analysis for Elderly Monitoring Using Feature Fusion and CNN-LSTM: A Multi-Camera Approach
Volume 9, Issue 6, Page No 12-20, 2024
Author’s Name: Win Pa Pa San 1, Myo Khaing 2
View Affiliations
1 Image and Signal Processing Lab, University of Computer Studies, Mandalay, Mandalay, 05071, Myanmar
2 Faculty of Computer Science, University of Computer Studies, Mandalay, Mandalay, 05071, Myanmar
a)whom correspondence should be addressed. E-mail: winpapasan@ucsm.edu.mm
Adv. Sci. Technol. Eng. Syst. J. 9(6), 12-20 (2024); DOI: 10.25046/aj090602
Keywords: Feature Fusion, Human Silhouette Image (HSI), Silhouette History Images (SHI), Dense Optical Flow (DOF), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM)
Export Citations
The integration of machine learning techniques in industrial production has the potential to revolutionize traditional manufacturing processes. In this study, we examine the efficacy of gradient-boosting machine learning models, specifically focusing on feature engineering techniques, applied to a novel dataset with 3D product models pertaining to work moan-hours in metal sheet stamping projects, framed as a regression task. The results indicate that LightGBM and XGBoost surpass other models, and their effectiveness is further enhanced by employing feature selection and synthetic data generation methods. The optimized LightGBM model exhibited superior performance, achieving a MAPE score of 10.78%, which highlights the effectiveness of gradient boosting mechanisms in handling heterogeneous data sets typical in custom manufacturing. Additionally, we introduce a methodology that enables domain experts to observe and critique the results through explainable AI visualizations.
Received: 15 September 2024 Revised: 30 September 2024 Accepted: 15 October 2024 Online: 3o November 2024
- Q. Li, J.A. Stankovic, M.A. Hanson, A.T. Barth, J. Lach, G. Zhou, ‘Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information’, Proceedings – 2009 6th International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009, (June), 138–143, 2009, doi:10.1109/BSN.2009.46.
- Y. Li, K.C. Ho, M. Popescu, ‘A microphone array system for automatic fall detection’, IEEE Transactions on Biomedical Engineering, 59(5), 1291–1301, 2012, doi:10.1109/TBME.2012.2186449.
- Y. Li, Z. Zeng, M. Popescu, K.C. Ho, ‘Acoustic fall detection using a circular microphone array’, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10, 2242–2245, 2010, doi:10.1109/IEMBS.2010.5627368.
- H. Wang, D. Zhang, Y. Wang, J. Ma, Y. Wang, S. Li, ‘RT-Fall: A Real-Time and Contactless Fall Detection System with Commodity WiFi Devices’, IEEE Transactions on Mobile Computing, 16(2), 511–526, 2017, doi:10.1109/TMC.2016.2557795.
- F. Bianchi, S.J. Redmond, M.R. Narayanan, S. Cerutti, N.H. Lovell, ‘Barometric pressure and triaxial accelerometry-based falls event detection’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(6), 619–627, 2010, doi:10.1109/TNSRE.2010.2070807.
- R.K. Shen, C.Y. Yang, V.R.L. Shen, W.C. Chen, ‘A Novel Fall Prediction System on Smartphones’, IEEE Sensors Journal, 17(6), 1865–1871, 2017, doi:10.1109/JSEN.2016.2598524.
- B. Wójtowicz, A. Dobrowolski, K. Tomczykiewicz, ‘Fall detector using discrete wavelet decomposition and SVM classifier’, Metrology and Measurement Systems, 22(2), 303–314, 2015, doi:10.1515/mms-2015-0026.
- H.U. Openpose, ‘Fall Detection Based on Key Points of’, Symmetry, 2020.
- Espinosa, H. Ponce, S. Gutiérrez, L. Martínez-Villaseñor, J. Brieva, E. Moya-Albor, ‘A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset’, Computers in Biology and Medicine, 115, 2019, doi:10.1016/j.compbiomed.2019.103520.
- S. Sherin, P.M.T. Student, A.J. Assistant, ‘Human Fall Detection using Convolutional Neural Network’, International Journal of Engineering Research & Technology, 8(6), 1368–1372, 2019.
- A. Núñez-Marcos, G. Azkune, I. Arganda-Carreras, ‘Vision-based fall detection with convolutional neural networks’, Wireless Communications and Mobile Computing, 2017, 2017, doi:10.1155/2017/9474806.
- K. Wang, G. Cao, D. Meng, W. Chen, W. Cao, ‘Automatic fall detection of human in video using combination of features’, Proceedings – 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, 1228–1233, 2017, doi:10.1109/BIBM.2016.7822694.
- S. Maldonado-Bascón, C. Iglesias-Iglesias, P. Martín-Martín, S. Lafuente-Arroyo, ‘Fallen people detection capabilities using assistive robot’, Electronics (Switzerland), 8(9), 2019, doi:10.3390/electronics8090915.
- T. Hassner, C. Liu, ‘Dense image correspondences for computer vision’, Dense Image Correspondences for Computer Vision, 1–295, 2015, doi:10.1007/978-3-319-23048-1.
- L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-Albor, J. Núñez-Martínez, C. Peñafort-Asturiano, ‘Up-fall detection dataset: A multimodal approach’, Sensors (Switzerland), 19(9), 2019, doi:10.3390/s19091988.
- L. Martinez-Villasenor, H. Ponce, K. Perez-Daniel, ‘Deep learning for multimodal fall detection’, Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics, 2019-Octob, 3422–3429, 2019, doi:10.1109/SMC.2019.8914429.
- M. Sokolova, G. Lapalme, ‘A systematic analysis of performance measures for classification tasks’, Information Processing and Management, 45(4), 427–437, 2009, doi:10.1016/j.ipm.2009.03.002.
No. of Downloads Per Month
No. of Downloads Per Country