Utilizing 3D models for the Prediction of Work Man-Hour in Complex Industrial Products using Machine Learning
Volume 9, Issue 6, Page No 01-11, 2024
Author’s Name: Ahmet Emin Ünal 1,2, Halit Boyar 1, Burcu Kuleli Pak 1, Vehbi Çağrı Güngör 3
View Affiliations
1R&D Department, Adesso Turkey, Istanbul, 34398, Turkey
2Dept. of Comp. Engineering, Istanbul Technical University, Istanbul, 34485, Turkiye
3Dept. of Comp. Engineering, Abdullah Gül University, Kayseri, 38080, Turkiye
a)whom correspondence should be addressed. E-mail: ahmet.unal@adesso.com.tr
Adv. Sci. Technol. Eng. Syst. J. 9(6), 01-11 (2024); DOI: 10.25046/aj090601
Keywords: Complex Industrial Products, Metal Sheet Stamping, Work Man-hour Prediction, Machine Learning, Gradient Boosting
Export Citations
The integration of machine learning techniques in industrial production has the potential to revolutionize traditional manufacturing processes. In this study, we examine the efficacy of gradient-boosting machine learning models, specifically focusing on feature engineering techniques, applied to a novel dataset with 3D product models pertaining to work moan-hours in metal sheet stamping projects, framed as a regression task. The results indicate that LightGBM and XGBoost surpass other models, and their effectiveness is further enhanced by employing feature selection and synthetic data generation methods. The optimized LightGBM model exhibited superior performance, achieving a MAPE score of 10.78%, which highlights the effectiveness of gradient boosting mechanisms in handling heterogeneous data sets typical in custom manufacturing. Additionally, we introduce a methodology that enables domain experts to observe and critique the results through explainable AI visualizations.
Received: 20 September 2024 Revised: 04 November 2024 Accepted: 05 November 2024 Online: 18 November 2024
- A. E. U¨ nal, H. Boyar, B. Kuleli Pak, C. Yıldız, A. E. Erten, V. C. Gu¨ngo¨r, “Man- hour Prediction for Complex Industrial Products,” 4th International Informatics and Software Engineering Conference, 2023.
- T. Yeh, S. Deng, “Application of machine learning methods to cost estimation of product life cycle,” International Journal of Computer Integrated Manufac- turing, 25(4-5), 340–352, 2012, doi:10.1080/0951192x.2011.645381.
- H. Salleh, “Selecting a standard set of attributes for the development of ma- chine learning models of building project cost estimation,” Planning Malaysia, 21, 2023, doi:10.21837/pm.v21i29.1359.
- S. Yoo, N. Kang, “Explainable artificial intelligence for manufacturing cost estimation and machining feature visualization,” Expert Systems With Applica- tions, 183, 115430, 2021, doi:10.1016/j.eswa.2021.115430.
- F. Ning, Y. Shi, M. Cai, W. Xu, X. Zhang, “Manufacturing cost estimation based on a deep-learning method,” Journal of Manufacturing Systems, 54, 186–195, 2020, doi:10.1016/j.jmsy.2019.12.005.
- O. Kurasova, V. Marcinkevicˇius, V. Medvedev, B. Mikulskiene˙, “Early cost estimation in customized furniture manufacturing using machine learning,” International Journal of Machine Learning and Computing, 11(1), 28–33, 2021, doi:10.18178/ijmlc.2021.11.1.1010.
- L. Yang, J. Li, F. Chao, P. Hackney, M. Flanagan, “Job shop planning and scheduling for manufacturers with manual operations,” Expert Systems, 38(7), 2018, doi:10.1111/exsy.12315.
- F. Bodendorf, J. Franke, “Application of the technology acceptance model to an intelligent cost estimation system: an empirical study in the automotive industry,” 2022, doi:10.24251/hicss.2022.144.
- M. Atia, J. Khalil, M. Mokhtar, “A cost estimation model for machining opera- tions; an ann parametric approach,” Journal of Al-Azhar University Engineering Sector, 12(44), 878–885, 2017, doi:10.21608/auej.2017.19195.
- J. Loyer, E. Henriques, M. Fontul, S. Wiseall, “Comparison of machine learn- ing methods applied to the estimation of manufacturing cost of jet engine components,” International Journal of Production Economics, 178, 109–119, 2016, doi:10.1016/j.ijpe.2016.05.006.
- F. Silva, V. Sousa, A. Pinto, L. Ferreira, M. Pereira, “Build-up an economical tool for machining operations cost estimation,” Metals, 12(7), 1205, 2022, doi:10.3390/met12071205.
- K. Manjunath, S. Tewary, N. Khatri, K. Cheng, “Monitoring and predicting the surface generation and surface roughness in ultraprecision machining: a critical review,” Machines, 9(12), 369, 2021, doi:10.3390/machines9120369.
- H. Y. Gong, J. Y. Wang, Z. H. Zhao, “Study on the springback characteristics of cr340la steel during the typical auto part stamping process,” Advanced Materi- als Research, 322, 98–101, 2011, doi:10.4028/www.scientific.net/amr.322.98.
- R. Zeng, L. Huang, J. Li, “Fracture prediction in sheet metal stamping based on a modified ductile fracture criterion,” Key Engineering Materials, 639, 543–550, 2015, doi:10.4028/www.scientific.net/kem.639.543.
- S. Zvonov, Y. Klochkov, “Computer-aided modelling of a latch die cutting in deform – 2d software system,” Key Engineering Materials, 685, 811–815, 2016, doi:10.4028/www.scientific.net/kem.685.811.
- S. Kokare, “Toward cleaner space explorations: a comparative life cycle as- sessment of spacecraft propeller tank manufacturing technologies,” The Inter- national Journal of Advanced Manufacturing Technology, 133(1-2), 369–389, 2024, doi:10.1007/s00170-024-13745-y.
- M. Moghadam, C. Nielsen, N. Bay, “Analysis of the risk of galling in sheet metal stamping dies with drawbeads,” Proceedings of the Institution of Mechan- ical Engineers, Part B: Journal of Engineering Manufacture, 234(9), 1207–1214, 2020, doi:10.1177/0954405420911307.
- T. Chen, “Xgboost: a scalable tree boosting system,” 2016, doi:10.48550/arxiv.1603.02754.
- F. Wang, “Extended-window algorithms for model prediction ap- plied to hybrid power systems,” Technologies, 12(1), 6, 2024, doi:10.3390/technologies12010006.
- S. Guo, “Revolutionizing the used car market: predicting prices with xg- boost,” Applied and Computational Engineering, 48(1), 173–180, 2024, doi:10.54254/2755-2721/48/20241349.
- T. Duan, A. Avati, D. Ding, K. Thai, S. Basu, A. Ng, et al., “Ng- boost: natural gradient boosting for probabilistic prediction,” 2019, doi:10.48550/arxiv.1910.03225.
- D. Ruta, M. Liu, L. Cen, Q. Vu, “Diversified gradient boosting ensembles for prediction of the cost of forwarding contracts,” 2022, doi:10.15439/2022f291.
- S. Touzani, J. Granderson, S. Fernandes, “Gradient boosting machine for mod- eling the energy consumption of commercial buildings,” Energy and Buildings, 158, 1533–1543, 2018, doi:10.1016/j.enbuild.2017.11.039.
- P. Panjee, “A generalized linear model and machine learning approach for predicting the frequency and severity of cargo insurance in Thailand’s border trade context,” Risks, 12(2), 25, 2024, doi:10.3390/risks12020025.
- F. Bodendorf, J. Franke, “A machine learning approach to estimate product costs in the early product design phase: a use case from the automotive industry,” Procedia CIRP, 100, 643–648, 2021.
- L. Liu, E. Chen, Y. Ding, “Tr-net: a transformer-based neural network for point cloud processing,” Machines, 10(7), 517, 2022, doi:10.3390/machines10070517.
- Z. Yang, Y. Sun, S. Liu, X. Shen, J. Jia, “Std: sparse-to-dense 3d object detec- tor for point cloud,” in Proceedings of the IEEE International Conference on Computer Vision, 204, 2019, doi:10.1109/iccv.2019.00204.
- F. Ning, Y. Shi, M. Cai, W. Xu, X. Zhang, “Manufacturing cost estimation based on a deep-learning method,” Journal of Manufacturing Systems, 54, 186–195, 2020.
- X. Zhang, “Multiattention mechanism 3d object detection algorithm based on rgb and lidar fusion for intelligent driving,” Sensors, 23(21), 8732, 2023, doi:10.3390/s23218732.
- B. Huang, Y. Feng, T. Liang, “A voxel generator based on autoencoder,” Ap- plied Sciences, 12(21), 10757, 2022, doi:10.3390/app122110757.
- O. Kurasova, V. Marcinkevicˇius, V. Medvedev, B. Mikulskiene˙, “Early cost estimation in customized furniture manufacturing using machine learning,” International journal of machine learning and computing, 11(1), 28–33, 2021.
- V. Svetnik, A. Liaw, C. Tong, J. Culberson, R. Sheridan, B. Feuston, “Random forest: a classification and regression tool for compound classification and qsar modeling,” Journal of Chemical Information and Computer Sciences, 43(6), 1947–1958, 2003, doi:10.1021/ci034160g.
- H. Zermane, A. Drardja, “Development of an efficient cement production mon- itoring system based on the improved random forest algorithm,” The Interna- tional Journal of Advanced Manufacturing Technology, 120(3-4), 1853–1866, 2022, doi:10.1007/s00170-022-08884-z.
- G. Pan, “Xgboost and random forest algorithm for supply fraud forecasting,” 2022, doi:10.1117/12.2641948.
- C. Strobl, A. Boulesteix, T. Kneib, T. Augustin, A. Zeileis, “Conditional variable importance for random forests,” BMC Bioinformatics, 9(1), 2008, doi:10.1186/1471-2105-9-307.
- A. Ziegler, I. Ko¨ nig, “Mining data with random forests: current options for real-world applications,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(1), 55–63, 2013, doi:10.1002/widm.1114.
- B. O¨ zcan, A. Fıg˘ lalı, “Artificial neural networks for the cost estimation of stamping dies,” Neural computing and applications, 25, 717–726, 2014.
- Z. Leszczyn´ski, T. Jasin´ski, “An artificial neural networks approach to product cost estimation: the case study for electric motor,” Informatyka Ekonomiczna, 1(47), 72–84, 2018, doi:10.15611/ie.2018.1.06.
- B. Waziri, K. Bala, S. Bustani, “Artificial neural networks in construction engi- neering and management,” International Journal of Architecture Engineering and Construction, 6(1), 2017, doi:10.7492/ijaec.2017.006.
- M. Meharie, W. Mengesha, Z. Gariy, R. Mutuku, “Application of stacking ensemble machine learning algorithm in predicting the cost of highway con- struction projects,” Engineering Construction & Architectural Management, 29(7), 2836–2853, 2021, doi:10.1108/ecam-02-2020-0128.
- I. Pesˇko, V. Mucˇenski, M. Sˇesˇlija, N. Radovic´, A. Vujkov, D. Bibic´, et al., “Estimation of costs and durations of construction of urban roads using ann and svm,” Complexity, 1–13, 2017, doi:10.1155/2017/2450370.
- S. Magdum, A. Adamuthe, “Construction cost prediction using neural networks,” Ictact Journal on Soft Computing, 8(1), 1549–1556, 2017, doi:10.21917/ijsc.2017.0216.
- O. Dura´n, N. Rodr´ıguez, L. Consalter, “Neural networks for cost estimation of shell and tube heat exchangers,” Expert Systems With Applications, 36(4), 7435–7440, 2009, doi:10.1016/j.eswa.2008.09.014.
- M. Bouabaz, M. Hamami, “A cost estimation model for repair bridges based on artificial neural network,” American Journal of Applied Sciences, 5(4), 334–339, 2008, doi:10.3844/ajassp.2008.334.339.
- K. Kim, I. Han, “Application of a hybrid genetic algorithm and neural network approach in activity-based costing,” Expert Systems With Applications, 24(1), 73–77, 2003, doi:10.1016/s0957-4174(02)00084-2.
- M. Juszczyk, “Early fast cost estimates of sewerage projects construction costs based on ensembles of neural networks,” Applied Sciences, 13(23), 12744, 2023, doi:10.3390/app132312744.
- A. Zouidi, F. Fnaiech, K. Al-Haddad, “A multi-layer neural network and an adaptive linear combiner for on-line harmonic tracking,” 2007, doi:10.1109/wisp.2007.4447612.
- K. Is¸ık, S. E. Alptekin, “A benchmark comparison of Gaussian process regres- sion, support vector machines, and ANFIS for man-hour prediction in power transformers manufacturing,” Procedia Computer Science, 207, 2567–2577, 2022.
- M. Hur, S. K. Lee, B. Kim, S. Cho, D. Lee, D. Lee, “A study on the man-hour prediction system for shipbuilding,” Journal of Intelligent Manufacturing, 26, 1267–1279, 2015.
- C. H. Huang, S. H. Hsieh, “Predicting BIM labor cost with random forest and simple linear regression,” Automation in Construction, 118, 103280, 2020.
- T. Yu, H. Cai, “The prediction of the man-hour in aircraft assembly based on support vector machine particle swarm optimization,” Journal of Aerospace Technology and Management, 7, 19–30, 2015.
- S. Guo, T. Jiang, “Cost prediction of equipment system using LS-SVM with PSO,” in 2007 International Conference on Wireless Communications, Net- working and Mobile Computing, 5285–5288, IEEE, 2007.
- X. Hu, M. Lu, S. AbouRizk, “BIM-based data mining approach to estimating job man-hour requirements in structural steel fabrication,” in Proceedings of the Winter Simulation Conference 2014, 3399–3410, IEEE, 2014.
- N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” Journal of artificial intelligence research, 16, 321–357, 2002.
- R. M. Pereira, Y. M. Costa, C. N. Silla Jr., “MLTL: A multi-label approach for the Tomek Link undersampling algorithm,” Neurocomputing, 383, 95–105, 2020, doi:https://doi.org/10.1016/j.neucom.2019.11.076.
- T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, “Optuna: A next-generation hyperparameter optimization framework,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2623–2631, 2019.
- G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., “Lightgbm: A highly efficient gradient boosting decision tree,” Advances in neural informa- tion processing systems, 30, 2017.
- T. Chen, C. Guestrin, “Xgboost: A scalable tree boosting system,” in Pro- ceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 785–794, 2016.
- S. M. Lundberg, S. I. Lee, “A unified approach to interpreting model predic- tions,” Advances in neural information processing systems, 30, 2017.
No. of Downloads Per Month