True Random Number Generator Implemented in ReRAM Crossbar Based on Static Stochasticity of ReRAMs
Volume 9, Issue 5, Page No 00-00, 2024
Author’s Name: Tanay Patni, Abhijit Pethe
View Affiliations
Birla Institute of Technology and Science Pilani
a)whom correspondence should be addressed. E-mail: tanaypatni03@gmail.com
Adv. Sci. Technol. Eng. Syst. J. 9 (5), 00-00 (2024); DOI: 10.25046/aj090504
Keywords: TRNG, Memristors, ReRAM Crossbar, Static stochasticity
Export Citations
True Random Number Generators (TRNG) find applications in various fields, especially hardware security. We suggest a TRNG that exploits the intrinsic static stochasticity of Resistive Switching Random Access Memories (ReRAMs) to generate random bits. Other suggested designs use stochasticity in the switching mechanism, which requires high precision over input voltage and time. In the proposed design, the random bits are produced by comparing the resistance of two ReRAMs in their high resistance states. ReRAM crossbar architectures are being highly researched, and our design is completely compatible with a ReRAM crossbar. The design was verified by simulations and testing the output stream using the NIST randomness test suite. The effect of device-to-device variability was tested on the randomness of the generated output bit stream.
Received: 31 July 2024 Revised: 05 October 2024 Accepted: 06 October 2024 Online: 30 November 2024
- T. Patni, A. Pethe, “True Random Number Generator Implemented in ReRAM Crossbar Based on Static Stochasticity of ReRAMs,” 2023 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 7:55–59, 2023, DOI: 10.1109/APCCAS60141.2023.00024
- P. L’Ecuyer, “Random numbers for simulation,” Commun. ACM, 33, 10:85–97, 1990, DOI: 10.1145/84537.84555
- A. J. Menezes, S. A. Vanstone, P. C. Van Oorschot, Handbook of Applied Cryptography (1st. ed.), CRC Press, Inc., USA, 1996
- D. Eastlake, J. Schiller, S. Crocker, “RFC4086: Randomness Requirements for Security,” RFC, 2005, https://tools.ietf.org/html/rfc4086
- Z. Gutterman, B. Pinkas, T. Reinman, “Open to Attack: Vulnerabilities of the Linux Random Number Generator,” Black Hat, 2006, https://www.blackhat.com/presentations/bh-usa-06/BH-US-06- Gutterman.pdf
- J. Kelsey, B. Schneier, D. Wagner, C. Hall, “Cryptanalytic Attacks on Pseudorandom Number Generators,” Fast Software Encryption, FSE 1998, Lecture Notes in Computer Science, 1372:12, Springer, Berlin, Heidelberg, 1998, DOI: 10.1007/3-540-69710-1 12
- L. Gong, J. Zhang, H. Liu, L. Sang, Y. Wang, “True Random Number Generators Using Electrical Noise,” IEEE Access, 7:125796–125805, 2019, DOI: 10.1109/ACCESS.2019.2939027
- A. Vassilev, T. Hall, “The Importance of Entropy to Information Security” Computer, 47, 02:78–81, 2014, DOI: 10.1109/MC.2014.47
- Z. Liu, D. Peng, “True random number generator in RFID systems against traceability,” CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 620–624, 2006, DOI: 10.1109/CCNC.2006.1593098
- F. Pareschi, G. Setti, R. Rovatti, “Implementation and Testing of High-Speed CMOS True Random Number Generators Based on Chaotic Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, 57, 12:3124–3137, 2010, DOI: 10.1109/TCSI.2010.2052515
- M. Park, J. C. Rodgers, D. P. Lathrop, “True random number generation using CMOS Boolean chaotic oscillator,” Microelectronics Journal, 46, 12, Part A:1364–1370, 2015, DOI: 10.1016/j.mejo.2015.09.015
- N. Nguyen, G. Kaddoum, F. Pareschi, R. Rovatti, G. Setti, “A fully CMOS true random number generator based on hidden attractor hyperchaotic system,” Nonlinear Dyn, 102:2887–2904, 2020, DOI: 10.1007/s11071-020-06017-3
- F. Zahoor, T. Z. Azni Zulkifli, F. A. Khanday, “Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications,” Nanoscale Res Lett, 15:90, 2020, DOI: 10.1186/s11671-020-03299-9
- F. Zahoor, F. A. Hussin, U. B. Isyaku, S. Gupta, F. A. Khanday, A. Chattopadhyay, H. Abbas, “Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing,” Discover Nano, 18:36, 2023, DOI: 10.1186/s11671-023-03775-y
- H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, Q. Xia, “A novel true random number generator based on a stochastic diffusive memristor,” Nat Commun, 8:882, 2017, DOI: 10.1038/s41467-017-00869-x
- B. Yang, D. Arum´ı, S. Manich, A´ . Go´mez-Pau, R. Rodr´ıguez-Montan˜e´s, M. B. Gonz´alez, F. Campabadal, L. Fang, “RRAM Random Number Generator Based on Train of Pulses,” Electronics, 10:1831, 2021, DOI: 10.3390/electronics10151831
- J. Postel-Pellerin, H. Bazzi, H. Aziza, P. Canet, M. Moreau, V. D. Marca, A. Harb, “True random number generation exploiting SET voltage variability in resistive RAM memory arrays,” 2019 19th Non-Volatile Memory Technology Symposium (NVMTS), 1-5, 2019, doi: 10.1109/NVMTS47818.2019.9043369
- T. Zhang, M. Yin, C. Xu, X. Lu, X. Sun, Y. Yang, R. Huang, “High-speed true random number generation based on paired memristors for security electronics,” Nanotechnology, 28:455202, 2017, doi: 10.1088/1361-6528/aa8b3a
- L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks, N. A. Heckert, J. F. Dray, S. Vo, “SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,” Technical Report, National Institute of Standards & Technology, Gaithersburg, MD, USA, 2010
- L. O. Chua, S. M. Kang, “Memristive devices and systems,” Proceedings of the IEEE, 64, 2:209-223, 1976, doi: 10.1109/PROC.1976.10092
- T. Prodromakis, C. Toumazou, “A review on memristive devices and applications,” 2010 17th IEEE International Conference
on Electronics, Circuits and Systems, 934-937, 2010, doi: 10.1109/ICECS.2010.572466610.1109/ICECS.2010.5724666 - R. Degraeve, A. Fantini, N. Raghavan, L. Goux, S. Clima, B. Govoreanu, A. Belmonte, D. Linten, M. Jurczak, “Causes and consequences of the stochastic aspect of filamentary RRAM,” Microelectronic Engineering, 147:171-175, 2015, 10.1016/j.mee.2015.04.025
- G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett, R. S. Williams, “Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution,” Nanotechnology, 22, 9:095702, 2011, 10.1088/0957- 4484/22/9/095702
- Y. Wang, W. Wen, H. Li, M. Hu, “A Novel True Random Number Generator Design Leveraging Emerging Memristor Technology,” Proceedings of the 25th edition on Great Lakes Symposium on VLSI (GLSVLSI ’15), 271-276, 2015, 10.1145/2742060.2742088
- M. Hu, Y. Wang, Q. Qiu, Y. Chen, H. Li, “The stochastic modeling of TiO2 memristor and its usage in neuromorphic system design,” 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 831-836, 2014, 10.1109/ASPDAC.2014.6742993
- S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H. S. P. Wong, “Stochastic learning in oxide binary synaptic device for neuromorphic computing,” Frontiers in Neuroscience, 7, 2013, 10.3389/fnins.2013.00186
- H. Li, Z. Jiang, P. Huang, Y. Wu, H.-Y. Chen, B. Gao, X. Y. Liu, J. F. Kang, H.- S. P. Wong, “Variation-aware, reliability-emphasized design and optimization of RRAM using SPICE model,” 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1425-1430, 2015, 10.7873/DATE.2015.0362
No. of Downloads Per Month
No. of Downloads Per Country