True Random Number Generator Implemented in ReRAM Crossbar Based on Static Stochasticity of ReRAMs

True Random Number Generator Implemented in ReRAM Crossbar Based on Static Stochasticity of ReRAMs

Volume 9, Issue 5, Page No 00-00, 2024

Author’s Name:  Tanay Patni, Abhijit Pethe

View Affiliations

Birla Institute of Technology and Science Pilani

a)whom correspondence should be addressed. E-mail: tanaypatni03@gmail.com

Adv. Sci. Technol. Eng. Syst. J. 9 (5), 00-00 (2024); a  DOI: 10.25046/aj090504

Keywords: TRNG, Memristors, ReRAM Crossbar, Static stochasticity

Share

11 Downloads

Export Citations

True Random Number Generators (TRNG) find applications in various fields, especially hardware security. We suggest a TRNG that exploits the intrinsic static stochasticity of Resistive Switching Random Access Memories (ReRAMs) to generate random bits. Other suggested designs use stochasticity in the switching mechanism, which requires high precision over input voltage and time. In the proposed design, the random bits are produced by comparing the resistance of two ReRAMs in their high resistance states. ReRAM crossbar architectures are being highly researched, and our design is completely compatible with a ReRAM crossbar. The design was verified by simulations and testing the output stream using the NIST randomness test suite. The effect of device-to-device variability was tested on the randomness of the generated output bit stream.

Received: 31 July 2024  Revised: 05 October 2024  Accepted: 06 October 2024  Online: 30 November 2024

  1. T. Patni, A. Pethe, “True Random Number Generator Implemented in ReRAM Crossbar Based on Static Stochasticity of ReRAMs,” 2023 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 7:55–59, 2023, DOI: 10.1109/APCCAS60141.2023.00024
  2. P. L’Ecuyer, “Random numbers for simulation,” Commun. ACM, 33, 10:85–97, 1990, DOI: 10.1145/84537.84555
  3. A. J. Menezes, S. A. Vanstone, P. C. Van Oorschot, Handbook of Applied Cryptography (1st. ed.), CRC Press, Inc., USA, 1996
  4. D. Eastlake, J. Schiller, S. Crocker, “RFC4086: Randomness Requirements for Security,” RFC, 2005, https://tools.ietf.org/html/rfc4086
  5. Z. Gutterman, B. Pinkas, T. Reinman, “Open to Attack: Vulnerabilities of the Linux Random Number Generator,” Black Hat, 2006, https://www.blackhat.com/presentations/bh-usa-06/BH-US-06- Gutterman.pdf
  6. J. Kelsey, B. Schneier, D. Wagner, C. Hall, “Cryptanalytic Attacks on Pseudorandom Number Generators,” Fast Software Encryption, FSE 1998, Lecture Notes in Computer Science, 1372:12, Springer, Berlin, Heidelberg, 1998, DOI: 10.1007/3-540-69710-1 12
  7. L. Gong, J. Zhang, H. Liu, L. Sang, Y. Wang, “True Random Number Generators Using Electrical Noise,” IEEE Access, 7:125796–125805, 2019, DOI: 10.1109/ACCESS.2019.2939027
  8. A. Vassilev, T. Hall, “The Importance of Entropy to Information Security” Computer, 47, 02:78–81, 2014, DOI: 10.1109/MC.2014.47
  9. Z. Liu, D. Peng, “True random number generator in RFID systems against traceability,” CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 620–624, 2006, DOI: 10.1109/CCNC.2006.1593098
  10. F. Pareschi, G. Setti, R. Rovatti, “Implementation and Testing of High-Speed CMOS True Random Number Generators Based on Chaotic Systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, 57, 12:3124–3137, 2010, DOI: 10.1109/TCSI.2010.2052515
  11. M. Park, J. C. Rodgers, D. P. Lathrop, “True random number generation using CMOS Boolean chaotic oscillator,” Microelectronics Journal, 46, 12, Part A:1364–1370, 2015, DOI: 10.1016/j.mejo.2015.09.015
  12. N. Nguyen, G. Kaddoum, F. Pareschi, R. Rovatti, G. Setti, “A fully CMOS true random number generator based on hidden attractor hyperchaotic system,” Nonlinear Dyn, 102:2887–2904, 2020, DOI: 10.1007/s11071-020-06017-3
  13. F. Zahoor, T. Z. Azni Zulkifli, F. A. Khanday, “Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications,” Nanoscale Res Lett, 15:90, 2020, DOI: 10.1186/s11671-020-03299-9
  14. F. Zahoor, F. A. Hussin, U. B. Isyaku, S. Gupta, F. A. Khanday, A. Chattopadhyay, H. Abbas, “Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing,” Discover Nano, 18:36, 2023, DOI: 10.1186/s11671-023-03775-y
  15. H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, Q. Xia, “A novel true random number generator based on a stochastic diffusive memristor,” Nat Commun, 8:882, 2017, DOI: 10.1038/s41467-017-00869-x
  16. B. Yang, D. Arum´ı, S. Manich, A´ . Go´mez-Pau, R. Rodr´ıguez-Montan˜e´s, M. B. Gonz´alez, F. Campabadal, L. Fang, “RRAM Random Number Generator Based on Train of Pulses,” Electronics, 10:1831, 2021, DOI: 10.3390/electronics10151831
  17. J. Postel-Pellerin, H. Bazzi, H. Aziza, P. Canet, M. Moreau, V. D. Marca, A. Harb, “True random number generation exploiting SET voltage variability in resistive RAM memory arrays,” 2019 19th Non-Volatile Memory Technology Symposium (NVMTS), 1-5, 2019, doi: 10.1109/NVMTS47818.2019.9043369
  18. T. Zhang, M. Yin, C. Xu, X. Lu, X. Sun, Y. Yang, R. Huang, “High-speed true random number generation based on paired memristors for security electronics,” Nanotechnology, 28:455202, 2017, doi: 10.1088/1361-6528/aa8b3a
  19. L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks, N. A. Heckert, J. F. Dray, S. Vo, “SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,” Technical Report, National Institute of Standards & Technology, Gaithersburg, MD, USA, 2010
  20. L. O. Chua, S. M. Kang, “Memristive devices and systems,” Proceedings of the IEEE, 64, 2:209-223, 1976, doi: 10.1109/PROC.1976.10092
  21. T. Prodromakis, C. Toumazou, “A review on memristive devices and applications,” 2010 17th IEEE International Conference
    on Electronics, Circuits and Systems, 934-937, 2010, doi: 10.1109/ICECS.2010.572466610.1109/ICECS.2010.5724666
  22. R. Degraeve, A. Fantini, N. Raghavan, L. Goux, S. Clima, B. Govoreanu, A. Belmonte, D. Linten, M. Jurczak, “Causes and consequences of the stochastic aspect of filamentary RRAM,” Microelectronic Engineering, 147:171-175, 2015, 10.1016/j.mee.2015.04.025
  23. G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M. D. Pickett, R. S. Williams, “Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution,” Nanotechnology, 22, 9:095702, 2011, 10.1088/0957- 4484/22/9/095702
  24. Y. Wang, W. Wen, H. Li, M. Hu, “A Novel True Random Number Generator Design Leveraging Emerging Memristor Technology,” Proceedings of the 25th edition on Great Lakes Symposium on VLSI (GLSVLSI ’15), 271-276, 2015, 10.1145/2742060.2742088
  25. M. Hu, Y. Wang, Q. Qiu, Y. Chen, H. Li, “The stochastic modeling of TiO2 memristor and its usage in neuromorphic system design,” 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 831-836, 2014, 10.1109/ASPDAC.2014.6742993
  26. S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H. S. P. Wong, “Stochastic learning in oxide binary synaptic device for neuromorphic computing,” Frontiers in Neuroscience, 7, 2013, 10.3389/fnins.2013.00186
  27. H. Li, Z. Jiang, P. Huang, Y. Wu, H.-Y. Chen, B. Gao, X. Y. Liu, J. F. Kang, H.- S. P. Wong, “Variation-aware, reliability-emphasized design and optimization of RRAM using SPICE model,” 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), 1425-1430, 2015, 10.7873/DATE.2015.0362

Citations by Dimensions

Citations by PlumX

Crossref Citations

This paper is currently not cited.

No. of Downloads Per Month

ASTESJ_090504 L

No. of Downloads Per Country

Special Issues

Special Issue on Computing, Engineering and Multidisciplinary Sciences
Guest Editors: Prof. Wang Xiu Ying
Deadline: 30 April 2025

Special Issue on AI-empowered Smart Grid Technologies and EVs
Guest Editors: Dr. Aparna Kumari, Mr. Riaz Khan
Deadline: 30 November 2024

Special Issue on Innovation in Computing, Engineering Science & Technology
Guest Editors: Prof. Wang Xiu Ying
Deadline: 15 October 2024