Model Order Reduction and Distribution for Efficient State Estimation in Sensor and Actuator Networks

Model Order Reduction and Distribution for Efficient State Estimation in Sensor and Actuator Networks

Volume 7, Issue 5, Page No 146-156, 2022

Author’s Name: Ferdinand Friedricha), Christoph Ament

View Affiliations

University of Augsburg, Chair of Control Theory, Augsburg, 86159, Germany

a)whom correspondence should be addressed. E-mail: ferdinand.friedrich@uni-a.de

Adv. Sci. Technol. Eng. Syst. J. 7(5), 146-156 (2022); a  DOI: 10.25046/aj070516

Keywords:  Model Order Reduction, Sensor and Actuator Network, Distributed State Estimation

Share

196 Downloads

Export Citations

We present in this contribution the distribution of a global multi-input-multi-output system in a sensor and actuator network. Based on controllability and observability, the global system is decentralized and the system properties are preserved as a result. This results in multiple decentralized local single-input-single-output systems with the same system order as the global system. As these local systems are implemented on decentralized CPUs in the network, the computational effort of the nodes has to be minimized. This is achieved by approximating the input and output behavior and reducing the system order of the decentralized local systems. For this purpose, the two most common techniques, Balanced Truncation and Krylov subspace methods, are presented. Kalman filters are used for state reconstruction. To approximate the input/output behavior of the global system, information from all decentralized reduced local systems is necessary, thus a fully interconnected network is used for communication. By decentralized fusion algorithms in the network nodes, the Kalman filter algorithm is separated and distributed in the network.

Received: 31 August 2022, Accepted: 04 October 2022, Published Online: 25 October 2022

  1. F. Friedrich, J. Mayer, C. Ament, “Reduced and Distributed Estimation in Sensor and Actuator Networks – Automated Design Based on Controllabil- ity and Observability,” in 2021 IEEE Conference on Control Technology and Applications (CCTA), 666–672, IEEE, San Diego, CA, USA, 2021, doi: 10.1109/CCTA48906.2021.9659129.
  2. F. Friedrich, J. Mayer, C. Ament, “Model-Order Reduction and System Distri- bution Using Krylov Subspaces – An Approach for Efficient State Estimation in Sensor and Actuator Networks,” accepted for CCTA2022.
  3. R. D’Andrea, G. Dullerud, “Distributed control design for spatially interconnected systems,” IEEE Transactions on Automatic Control, 48(9), 1478–1495,
    2003, doi:10.1109/TAC.2003.816954.
  4. B. Bamieh, F. Paganini, M. Dahleh, “Distributed control of spatially invariant systems,” IEEE Transactions on Automatic Control, 47(7), 1091–1107, 2002, doi:10.1109/TAC.2002.800646.
  5. L. A. Montestruque, P. J. Antsaklis, “Model-Based Networked Control Systems- Stability,” 58.
  6. J. Lunze, Regelungstechnik 2, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, doi:10.1007/978-3-662-52676-7.
  7. U. A. Khan, J. M. F. Moura, “Model Distribution for Distributed Kalman Filters: A Graph Theoretic Approach,” in 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, 611–615, IEEE, Pacific Grove, CA, USA, 2007, doi:10.1109/ACSSC.2007.4487286, iSSN: 1058-6393.
  8. B. Noack, J. Sijs, U. D. Hanebeck, “Fusion Strategies for Unequal State Vectors in Distributed Kalman Filtering,” IFAC Proceedings Volumes, 47(3), 3262–3267, 2014, doi:10.3182/20140824-6-ZA-1003.02491.
  9. J. Lunze, Control Theory of Digitally Networked Dynamic Systems, Springer International Publishing, Heidelberg, 2014, doi:10.1007/978-3-319-01131-8.
  10. A. C. Antoulas, Approximation of large-scale dynamical systems, Advances in design and control, Society for Industrial and Applied Mathematics, Philadel- phia, 2005, doi:10.1137/978-0-89871-871-3.
  11. P. Benner, A. Schneider, “Balanced Truncation Model Order Reduction for LTI Systems with many Inputs or Outputs,” in Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010, 4, MTNS, Budapest, Hungary, 2010.
  12. E. F. Yetkin, H. Dag, “Parallel implementation of iterative rational Krylov methods for model order reduction,” in 2009 Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, 1–4, IEEE, Famagusta, 2009, doi: 10.1109/ICSCCW.2009.5379421.
  13. Z. Bai, “Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems,” Applied Numerical Mathematics, 43(1-2), 9–44, 2002, doi:10.1016/S0168-9274(02)00116-2.
  14. P. Feldmann, R. Freund, “Efficient linear circuit analysis by Pade approximation via the Lanczos process,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(5), 639–649, 1995, doi:10.1109/43.384428.
  15. K. Gallivan, E. Grimme, P. Van Dooren, “Asymptotic waveform evaluation via a Lanczos method,” Applied Mathematics Letters, 7(5), 75–80, 1994, doi:10.1016/0893-9659(94)90077-9.
  16. G. A. Baker, P. R. Graves-Morris, Pade´ approximants, number v. 59 in Encyclopedia of mathematics and its applications, Cambridge University Press, Cambridge [England] ; New York, 2nd edition, 1996.
  17. D. Rafiq, M. A. Bazaz, “Model Order Reduction via Moment-Matching: A State of the Art Review,” Archives of Computational Methods in Engineering, 29(3), 1463–1483, 2022, doi:10.1007/s11831-021-09618-2.
  18. L. Feng, “Review of model order reduction methods for numerical simula- tion of nonlinear circuits,” Applied Mathematics and Computation, 167(1), 576–591, 2005, doi:10.1016/j.amc.2003.10.066.
  19. H. K. F. Panzer, T. Wolf, B. Lohmann, “ 2 and ∞ error bounds for model order reduction of second order systems by Krylov subspace methods,” in 2013 European Control Conference (ECC), 4484–4489, IEEE, Zurich, 2013, doi:10.23919/ECC.2013.6669657.
  20. S. Gugercin, Projection Methods for Model Reduction of Large-Scale Dynamition, Rice University, Rice, 2003.
  21. B. Salimbahrami, B. Lohmann, T. Bechtold, “Two-Sided Arnoldi in Order Reduction of Large Scale MIMO Systems,” 9.
  22. B. Moore, “Principal component analysis in linear systems: Controllability, observability, and model reduction,” IEEE Transactions on Automatic Control, 26(1), 17–32, 1981, doi:10.1109/TAC.1981.1102568.
  23. S. Gugercin, A. C. Antoulas, “A Survey of Model Reduction by Balanced Truncation and Some New Results,” International Journal of Control, 77(8), 748–766, 2004, doi:10.1080/00207170410001713448.
  24. D. Hinrichsen, H.-W. Philippsen, “Modellreduktion mit Hilfe balancierter Realisierungen / Model reduction using balanced realizations,” at – Automa- tisierungstechnik, 38(1-12), 460–466, 1990, doi:10.1524/auto.1990.38.112.460, publisher: De Gruyter (O).
  25. S. L. Brunton, J. N. Kutz, Data-Driven Science and Engineering, Cambridge University Press, 1st edition, 2019.
  26. A. Laub, M. Heath, C. Paige, R. Ward, “Computation of system balancing transformations and other applications of simultaneous diagonalization al- gorithms,” IEEE Transactions on Automatic Control, 32(2), 115–122, 1987, doi:10.1109/TAC.1987.1104549, conference Name: IEEE Transactions on Automatic Control.
  27. I. Jaimoukha, “A general minimal residual Krylov subspace method for large- scale model reduction,” IEEE Transactions on Automatic Control, 42(10), 1422–1427, 1997, doi:10.1109/9.633831.
  28. B. Lohmann, B. Salimbahrami, “Introduction to Krylov subspace methods in model order reduction,” Methods Applications in Automation, 1–13, 2003.
  29. P. Falb, W. Wolovich, “Decoupling in the design and synthesis of multivariable control systems,” IEEE Transactions on Automatic Control, 12(6), 651–659, 1967, doi:10.1109/TAC.1967.1098737.
  30. D. Simon, Optimal state estimation: Kalman, H [infinity] and nonlinear ap- proaches, Wiley-Interscience, Hoboken, N.J, 2006, doi:10.1002/0470045345.
  31. A. G. Mutambara, Decentralized Estimation and Control for Multisensor Sys- tems, Routledge, 1st edition, 2019, doi:10.1201/9781315140803.
  32. P. Hilgers, C. Ament, “Distributed and decentralised estimation of non-linear systems,” in 2010 IEEE International Conference on Control Applications, 328–333, 2010, doi:10.1109/CCA.2010.5611300, iSSN: 1085-1992.
  33. B. S. Rao, H. F. Durrant-Whyte, “Fully decentralised algorithm for multisen- sor Kalman filtering,” IEE Proceedings D (Control Theory and Applications), 138(5), 413–420, 1991, doi:10.1049/ip-d.1991.0057, publisher: IET Digital Library.
  34. V. Shin, Y. Lee, T.-S. Choi, “Generalized Millman’s formula and its appli- cation for estimation problems,” Signal Processing, 86(2), 257–266, 2006, doi:10.1016/j.sigpro.2005.05.015.
  35. H. B. Mitchell, Multi-sensor data fusion: an introduction, Springer, Berlin ; New York, 2007, doi:0.1007/978-3-540-71559-7.
  36. J. Ajgl, “Millman’s Formula in Data Fusion,” in The 10th International PhD Workshop Young Generation Viewpoint, 6.
  37. B. Salimbahrami, R. Eid, B. Lohmann, “On the choice of an optimal inter- polation point in Krylov-based order reduction,” in 2008 47th IEEE Con- ference on Decision and Control, 4209–4214, IEEE, Cancun, 2008, doi: 10.1109/CDC.2008.4739219.
  38. F. Friedrich, J. Brandl, C. Ament, “Absolute Distance Measurement by a De- centralized and Distributed Multi-Lasertracker-System,” in 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 1249–1255, IEEE, Sapporo, Japan, 2022, doi:10.1109/AIM52237.2022.9863275.

Citations by Dimensions

Citations by PlumX

Google Scholar

Crossref Citations

No. of Downloads Per Month

ASTESJ_070516 L

No. of Downloads Per Country

Special Issues

Special Issue on Computing, Engineering and Multidisciplinary Sciences
Guest Editors: Prof. Wang Xiu Ying
Deadline: 30 April 2025

Special Issue on AI-empowered Smart Grid Technologies and EVs
Guest Editors: Dr. Aparna Kumari, Mr. Riaz Khan
Deadline: 30 November 2024

Special Issue on Innovation in Computing, Engineering Science & Technology
Guest Editors: Prof. Wang Xiu Ying
Deadline: 15 October 2024