Qualitative Properties of a Cell Proliferating Model with Multi-phase Transition and Age Structure

Qualitative Properties of a Cell Proliferating Model with Multi-phase Transition and Age Structure

Volume 5, Issue 6, Page No 01-08, 2020

Author’s Name: Youssef El Alaoui1,a), Larbi Alaoui2

View Affiliations

1Faculty of Sciences, University Mohammed V – Agdal, Rabat, 10010, Morocco
2International University of Rabat, Sala Al-Jadida, 11100, Morocco

a)Author to whom correspondence should be addressed. E-mail: is.youssefelalaoui@gmail.com

Adv. Sci. Technol. Eng. Syst. J. 5(6), 01-08 (2020); a  DOI: 10.25046/aj050601

Keywords: Semigroup, Dual semigroup, Asynchronous exponential, growth

Share

428 Downloads

Export Citations

In this paper we study a cell division cycle modeled by a system of partial differential equations with an age structure. This model translates the many regulatory mechanisms within the cell cycle where it introduces the notion of phases. The individual cell can be either in I phases where the transition between theses phases are ordered and unidirectional. The model is related to the suns and stars caluculus via the dual semigroups of operators that are considered as solution of an abstract integral equation equivalent to a Volterra type equation of the form w(t) = Φ(wt). We will determine the core operator Φ and prove that the semigroup solution of the model possesses the asynchronous exponential property. The model permits different types of controls where the provided framework allows better control on the model parameters and yields the characterization of the intrinsic rate of natural increase through properties of the core operator Φ. Finally, we demonstrate that the asymptotic behavior of the model is governed by the simple dominant eigenvalue and its associated eigenvector, that leads to the dispersion of the cell structure through the future generations.

Received: 30 August 2020, Accepted: 18 October 2020, Published Online: 08 November 2020

  1. Y. El Alaoui, L. Alaoui, ”Mathematical analysis of an age structured multi phases cell cycle model with checkpoints.” in 2019 IEEE International Con- ference of Computer Science and Renewable Energies (ICCSRE-IEEE), 2019, doi:10.1109/iccsre.2019.8807639 .
  2. H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H. Ploegh, P.T. Matsudaira, Molecular cell biology, W.H. Freeman, New York, 2007.
  3. S. M. Reppert, D. R. Weaver, Coordination of circadian timing in mammals, Nature, 418(6901):935-41,2002, doi: 10.1038/nature00965.
  4. G. Filipski, P.F. Innominato, M.W. Wu, X. M. Li, S. Iacobelli, L.J. Xian, F. Levi, Effect of light and food schedules on liver and tumour molecular clocks in mice, Journal of the National Cancer Institute, 97, 507–517, 2005, doi:10.1093/jnci/dji083.
  5. D. Morgan, The cell cycle: Principles of control, Primers in Biology series, Oxford University Press, 2006.
  6. E. Filipski, V.M. King, X.M. Li, T.G. Granda, M. Mormont, X.H. Lin, B. Claustrat, M.H. Hastings, F. Le´vi, Host circadian clock as a control point in tumor progression, Journal of the National Cancer Institute 94(9): 690-7, 2002, doi: 10.1093/jnci/94.9.690.
  7. E. Filipski, F. Delaunay, V.M. King, M. -W. Wu, B. Claustrat, A. Gre´chez- Cassiau, C. Guettier, M.H. Hastings, F. Le´vi, Effects of chronic jet lag on tumor progression in mice, Cancer Research 64, 7879-7885, 2004, doi:10.1158/0008- 5472.CAN-04-0674.
  8. E. Filipski, P.F. Innominato, M.W. Wu, X.M. Li, S. Iacobelli, L.J. Xian, F. Le´vi, Effects of light and food schedules on liver and tumor molecular clocks in mice, Journal of the National Cancer Institute 97 (7), 507–517, 2005, doi:10.1093/jnci/dji083.
  9. J. Clairambault, B. Laroche, S. Michler and B. Perthame, A mathematical model of the cell cycle and its control, Research Report, 4892, INRIA. 2003, URL :https://hal.inria.fr/inria-00071690.
  10. J. Clairambault, P. Michel, B. Perthame, Circadian rhythm and tumour growth, Comptes Rendus de l’Acade´mie des Sciences, Se´rie I, Mathe´matique, Elsevier, 342, 17–22, 2006, URL: https://hal.archives-ouvertes.fr/hal-00113511.
  11. J. Clairambault, P. Michel, B. Perthame, A mathematical model of the cell cycle and its circadian control, in: I.A. Deutsch, L. Brusch, H. Byrne, G. de Vries,
    H.P. Herzel, Mathematical Modeling of Biological Systems, I, Birkha¨user Boston, 247–259, 2007, doi:10.1007/978-0-8176-4558-8 21
  12. J. Clairambault, S. Gaubert, B. Perthame, An inequality for the Perron and Floquet eigenvalues of monotone differential systems and age structured equations, Comptes Rendus Mathematique, 345(10):549–554, 2007, doi: 10.1016/j.crma.2007.10.001.
  13. F. Bekkal Brikci, J. Clairambault, B. Perthame, Analysis of a molecular struc- tured population model with possible polynomial growth for the cell divi- sion cycle, Mathematical and Computer Modelling, 47(7–8):699–713, 2008, doi:10.1016/j.mcm.2007.06.008.
  14. F. Bekkal Brikci, J. Clairambault, B. Ribba, B. Perthame, An age-and-cyclin- structured cell population model for healthy and tumoral tissues,Journal of Mathematical Biology, 57(1):91–110, 2008, doi:10.1007/s00285-007-0147-x.
  15. M. Doumic, Analysis of a population model structured by the cells molecular content, Mathematical Modelling of Natural Phenomena,2(3):121–152,2007, doi:10.1051/mmnp:2007006.
  16. J. Clairambault, S. Gaubert and T. Lepoutre, Comparison of Perron and Floquet eigenvalues in age-structured cell division models, Mathematical Modelling of Natural Phenomena, 4:183-209,2009, doi: 10.1051/mmnp/20094308.
  17. J. Clairambault, S. Gaubert and T. Lepoutre, Circadian rhythm and cell pop- ulation growth, Mathematical and Computer Modelling, 53(7-8):1558-1567, 2011, doi:10.1016/j.mcm.2010.05.034.
  18. O. Diekmann, H.J.A.M. Heijmans, and H.R. Thieme, On the stability of the cell size, Journal of Mathematical Biology 19: 227-248, 1984, doi: 10.1007/BF00277748.
  19. O. Diekmann, S.A. Van Gils, S.M. Verduyn Lunel, AND H.-O. Walther, Delay Equations, Functional, Complex and Nonlinear Analysis, Springer-Verlag, New York, 1995.
  20. O. Diekmann , P. Getto and M. Gyllenberg, Stability and bifurcation analysis of volterra functional equations in the light of suns and stars, SIAM Journal on Mathematical Analysis, 39(4): 1023–1069, 2007, doi: 10.1137/060659211.
  21. O. Diekmann, M. Gyllenberg, Equations with infinite delay: blending the abstract and the concrete, Journal of Differential Equations, 252(2):819–851, 2012, doi: 10.1016/j.jde.2011.09.038.
  22. A. M. de Roos, O. Diekmann, P. Getto, M.A. Kirkilionis, Numerical equilib- rium analysis for structured consumer resource models, Bulletin of Mathemati- cal Biology 72(2):259–297, 2010, doi: 10.1007/s11538-009-9445-3.
  23. O. Diekmann, M. Gyllenberg, J.A.J. Metz, S. Nakaoka and A.M. de Roos, Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example, Journal of Math- ematical Biology, 61(2):277–318, 2010, doi: 10.1007/s00285-009-0299-y.
  24. Ph. Clement, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H. R. Thieme, Perturbation theory for dual semigroups. I. The sun-reflexive case, Mathematische Annalen, 277:709–725, 1987, doi:10.1007/BF01457866.
  25. Ph. Clement, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H. Thieme, Perturbation theory for dual semigroups. II. Time-dependent perturbations in the sun-reflexive case, Proceedings of the Royal Soci- ety of Edinburgh Section A: Mathematics, 109: 145–172, 1988, doi: 10.1017/S0308210500026731
  26. Ph. Clement, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H.R. Thieme, Perturbation theory for dual semigroups. III. Nonlinear Lipschitz
    continuous perturbations in the sun-reflexive case, In Proceedings of Volterra Integrodifferential Equations in Banach Spaces and Applications 1987, 67–89, 1989.
  27. Ph. Clement, O. Diekmann, M. Gyllenberg, H. J. A. M. Heijmans, and H. R. Thieme, Perturbation theory for dual semigroups. IV. The intertwining formula and the canonical pairing, in Trends in Semigroup Theory and Applications Trieste-Italy, 116:95–116, 1989.
  28. Y. El Alaoui and L. Alaoui, Asymptotic Behavior in a cell proliferation Model with Unequal division and Random Transition using translation semi- group,Indian Journal of Sciences and Technology, 10(28):1-8, 2017, doi: 10.17485/ijst/2017/v10i28/101042.
  29. L. Alaoui and Y. El Alaoui, AEG property of a cell cycle model with quiescence in the light of translation semigroups, International Journal of Mathematical Analysis, 9(51): 2513-2528, 2015, doi:10.12988/ijma.2015.59221.
  30. L. Alaoui, Nonlinear homogeneous retarded differential equations and popu- lation dynamics via translation semigroups, Semigroup Forum, 63:330–356, 2001, doi: 10.1007/s002330010083.
  31. L. Alaoui, Age-dependent population dynamics and translation semigroups, Semigroup Forum, 57: 186-207, 1998, doi: 10.1007/PL00005973.
  32. L. Alaoui, A cell cycle model and translation semigroups, Semigroup Forum, 54, 1997, doi: 10.1007/BF02676597.
  33. L. Alaoui, Generators of translation semigroups and asymptotic behavior of the Sharpe-Lotka model, Differential Integral Equations, 9:343-362, 1996.
  34. L. Alaoui, Population dynamics and translation semigroups, dissertation, Uni- versity of Tu¨bingen, 1995.
  35. L. Alaoui and O. Arino, Compactness and spectral properties for positive transnamics, Differential, 6, 459-480, 1993.

Citations by Dimensions

Citations by PlumX

Google Scholar

Scopus