Coastal Risk Modelling for Oil Spill in the Mediterranean Sea

Coastal Risk Modelling for Oil Spill in the Mediterranean Sea

Volume 5, Issue 4, Page No 273-286, 2020

Author’s Name: Abdellatif Soussi1,2,a), Chiara Bersani1, Roberto Sacile3, Dounia Bouchta2, Ahmed El Amarti2, Hamid Seghiouer4, Driss Nachite5, Jaouad Al Miys6

View Affiliations

1Italian Centre of Excellence on Logistics, Transport and Infrastructures (CIELI), University of Genova, Genova, 16126, Italy
2Laboratory of Materials and Interfacial Systems Faculty of Sciences, UAE Tétouan, 93000, Morocco
3Department on Informatics, Bioengineering, Robotics, and System Engineering. University of Genova, Genova 16145, Italy
4Laboratory MOSIL, National School of Applied Sciences, UAE Tétouan, 93000, Morocco
5Department of Geology, Faculty of Sciences, UAE Tétouan, 93000, Morocco
6Horizon Tangier Terminal SA- Tangier Med Port, Tangier, 90053, Morocco

a)Author to whom correspondence should be addressed. E-mail: abdellatifsoussi90@gmail.com

Adv. Sci. Technol. Eng. Syst. J. 5(4), 273-286 (2020); a  DOI: 10.25046/aj050434

Keywords: Maritime Risk, Oil spill model

Share
625 Downloads

Export Citations

The accident probability estimation and the consequence analysis are based on statistical data about oil spill accident occurrence in the Mediterranean area, on the probability of different release sizes, and on the joint probability of wind speed and directions.
The risk model and its evaluation have been assessed for the Mediterranean littoral considering the time required by the oil slick to hit the coast in specific sensible target points assuming that an oil release accident potentially occurred in an accident sites located along the ship routes.
This approach has been applied on the area of the Strait of Gibraltar, which supports a significant volume of maritime traffic because it represents the navigational connection channel between the Atlantic Ocean and the Mediterranean Sea.

Received: 06 May 2020, Accepted: 07 July 2020, Published Online: 28 July 2020

  1. S. Kristiansen, “MaritimeTransportation. SafetyManagement and RiskAnalysi” Elsevier Butterworth-Heinemann, 2005.
  2. J. F. Balmat, F. Lafont, R. Maifret, and N. Pessel, “A decision-making system to maritime risk assessment,” Ocean Eng., 38( 1) 171–176, 2011.
  3. K. X. Li, J. Yin, H. S. Bang, Z. Yang, and J. Wang, “Bayesian network with quantitative input for maritime risk analysis,” Transp. A Transp. Sci., 10( 2) 89–118, 2014.
  4. J. F. Balmat, F. Lafont, R. Maifret, and N. Pessel, “MAritime RISk Assessment (MARISA), a fuzzy approach to define an individual ship risk factor,” Ocean Eng., 36( 15–16) 1278–1286, 2009.
  5. J. R. W. Merrick, R. Van Dorp, and V. Dorp, “Speaking the Truth in Maritime Risk Assessment,” Risk Anal., 26( 1) 223–237, 2006.
  6. J. Montewka, S. Ehlers, F. Goerlandt, T. Hinz, and K. Tabri, “A framework for risk assessment for maritime transportation systems — A case study for open sea collisions involving RoPax vessels,” Reliab. Eng. Syst. Saf., 124, 142–157, 2014.
  7. C. G. Soares and A. P. Teixeira, “Risk assessment in maritime transportation,” Reliab. Eng. Syst. Saf., 74( 3) 299–309, 2001.
  8. F. Goerlandt and J. Montewka, “Maritime transportation risk analysis: Review and analysis in light of some foundational issues,” Reliab. Eng. Syst. Saf., 138, 115–134, 2015.
  9. IMO, ““Degree of risk evaluation. SN.1/Circ.296.,” 2010.
  10. W. Guo, “Development of a statistical oil spill model for risk assessment,” Environ. Pollut., 230, 945–953, 2017.
  11. A. Al Shami, G. Harik, I. Alameddine, D. Bruschi, D. A. Garcia, and M. El-Fadel, “Risk assessment of oil spills along the Mediterranean coast: A sensitivity analysis of the choice of hazard quantification,” Sci. Total Environ., 574, 234–245, 2017.
  12. J. Fernández-Macho, “Risk assessment for marine spills along European coastlines,” Mar. Pollut. Bull., 113(1–2), 200–210, 2016.
  13. R. S. Kankara, S. Arockiaraj, and K. Prabhu, “Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India,” Mar. Pollut. Bull., 106(1–2), 95–103, 2016.
  14. H. Landquist, L. Rosén, A. Lindhe, and I. M. Hassellöv, “VRAKA-A probabilistic risk assessment method for potentially polluting shipwrecks,” Front. Environ. Sci., 4(JUL) 1–14, 2016.
  15. P. F. Valdor, A. G. Gómez, V. Velarde, and A. Puente, “Can a GIS toolbox assess the environmental risk of oil spills? Implementation for oil facilities in harbors,” J. Environ. Manage., 170, 105–115, 2016.
  16. D. Depellegrin and P. Pereira, “Assessing oil spill sensitivity in unsheltered coastal environments: A case study for Lithuanian-Russian coasts, South-eastern Baltic Sea,” Mar. Pollut. Bull., 102(1) 44–57, 2016.
  17. T. M. Alves, E. Kokinou, G. Zodiatis, H. Radhakrishnan, and C. Panagiotakis, “Multidisciplinary oil spill modeling to protect coastal communities and the environment of the Eastern Mediterranean Sea,” Sci. Rep.( May) 1–9, 2016.
  18. R. Goldman, E. Biton, E. Brokovich, S. Kark, and N. Levin, “Oil spill contamination probability in the southeastern Levantine basin,” Mar. Pollut. Bull., 91(1) 347–356, 2015.
  19. X. Liu, R. Meng, Q. Xing, M. Lou, H. Chao, and L. Bing, “Assessing oil spill risk in the Chinese Bohai Sea: A case study for both ship and platform related oil spills,” Ocean Coast. Manag., 108, 140–146, 2015.
  20. S. Mokhtari et al., “Inferring spatial distribution of oil spill risks from proxies: Case study in the north of the Persian Gulf,” Ocean Coast. Manag., 116, 504–511, 2015.
  21. A. A. Sepp Neves et al., “Towards a common oil spill risk assessment framework – Adapting ISO 31000 and addressing uncertainties,” J. Environ. Manage., 159, 158–168, 2015.
  22. A. Jolma, A. Lehikoinen, I. Helle, and R. Venesjärvi, “A software system for assessing the spatially distributed ecological risk posed by oil shipping,” Environ. Model. Softw., 61, 1–11, 2014.
  23. T. M. Alves, E. Kokinou, and G. Zodiatis, “A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins,” Mar. Pollut. Bull., 86(1–2) 443–457, 2014.
  24. T. Aven and E. Zio, “Foundational Issues in Risk Assessment and Risk Management,” Risk Anal., 34(7) 1164–1172, 2014.
  25. N. Khakzad, F. Khan, and P. Amyotte, “Quantitative risk analysis of offshore drilling operations: A Bayesian approach,” Safety. Sciences., 57 108–117, 2013.
  26. A. Blokus-Roszkowska and L. Smolarek, “Collision risk estimation for motorways of the sea,” Reliab. Theory Appl., 2(25), 58–68, 2012.
  27. A. Talavera, R. Aguasca, and B. Galva, “Application of Dempster – Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data,” Reliab. Eng. Syst. Saf., 111, 95–105, 2013.
  28. M. B. Zaman, E. Kobayashi, N. Wakabayashi, S. Khanfir, T. Pitana, and A. Maimun, “Fuzzy FMEA model for risk evaluation of ship collisions in the Malacca Strait: Based on AIS data,” J. Simul., 8(1) 91–104, 2014.
  29. J. R. Van Dorp, J. R. W. Merrick, J. R. Harrald, T. A. Mazzuchi, and M. Grabowski, “A Risk Management Procedure for the Washington State Ferries,” Risk Anal., 21(1) 127–142, 2001.
  30. Ö. S. Ulusçu, B. Özbaş, T. Altiok, and Ii. Or, “Risk analysis of the vessel traffic in the strait of Istanbul,” Risk Anal., 29(10) 1454–1472, 2009.
  31. S. Hu, Q. Fang, H. Xia, and Y. Xi, “Formal safety assessment based on relative risks model in ship navigation,” Reliab. Eng. Syst. Saf., 92(3) 369–377, 2007.
  32. J. Akhtar and T. Bjørnskau, “Oil spill risk analysis of routeing heavy ship traffic in Norwegian waters,” WMU J. Marit. Aff., 11(2) 233–247, 2012.
  33. J. Ylitlo, “Modelling Marine Accident Frequency,” Otaniemi, Finl. Helsinki Univ. Technol. 2010. January, 2010.
  34. Janeiro, J., Fernandes , E.. Martins,. Fernandes, “Wind and freshwater influence over hydrocarbon dispersal on Patos Lagoon , Brazil,” Marine Pollution Bulletin., 56, 650–665, 2008.
  35. H. Havens, M. E. Luther, and S. D. Meyers, “A coastal prediction system as an event response tool: Particle tracking simulation of an anhydrous ammonia spill in Tampa Bay,” Mar. Pollut. Bull., 58( 8) 1202–1209, 2009.
  36. N. C. Delpeche-Ellmann and T. Soomere, “Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model,” Mar. Pollut. Bull., 67(1–2), 121–129, 2013.
  37. S. D. Wang, Y. M. Shen, Y. K. Guo, and J. Tang, “Three-dimensional numerical simulation for transport of oil spills in seas,” Ocean Eng., 35( 5–6), 503–510, 2008.
  38. M. Marta-Almeida et al., “Efficient tools for marine operational forecast and oil,” Mar. Pollut. Bull., 71, 139–151, 2013.
  39. M. El-Fadel, R. Abdallah, and G. Rachid, “A modeling approach toward oil spill management along the Eastern Mediterranean,” J. Environ. Manage., 113, 93–102, 2012.
  40. P. Annika, T. George, P. George, N. Konstantinos, D. Costas, and C. Koutitas, “The Poseidon operational tool for the prediction of floating pollutant transport,” Mar. Pollut. Bull., 43(7–12), 270–278, 2001.
  41. A. Elizaryev et al., “Numerical simulation of oil spills based on the GNOME and ADIOS,” Int. J. Eng. Technol., 7(2) 24–27, 2018.
  42. L. Perivoliotis, G. Krokos, K. Nittis, and G. Korres, “The Aegean sea marine security decision support system,” Ocean Sci., 7( 5) 671–683, 2011.
  43. K. Nittis, L. Perivoliotis, G. Korres, C. Tziavos, and I. Thanos, “Operational monitoring and forecasting for marine environmental applications in the Aegean Sea,” Environ. Model. Softw., 21( 2) 243–257, 2006.
  44. A. C. Toz, B. Koseoglu, and C. Sakar, “Numerical modelling of oil spill in New York Bay,” Arch. Environ. Prot., 42( 4) 22–31, 2016.
  45. J. Zhao, M. Temimi, M. Al Azhar, and H. Ghedira, “Satellite-based tracking of oil pollution in the Arabian Gulf and the Sea of Oman,” Can. J. Remote Sens., 41( 2) 113–125, 2015.
  46. Y. Li, H. Chen, and X. Lv, “Impact of error in ocean dynamical background, on the transport of underwater spilled oil,” Ocean Model., 132( August) 30–45, 2018.
  47. P. Amir-Heidari and M. Raie, “Probabilistic risk assessment of oil spill from offshore oil wells in Persian Gulf,” Mar. Pollut. Bull., 136( May) 291–299, 2018.
  48. W. Guo et al., “A modified probabilistic oil spill model and its application to the Dalian New Port accident,” Ocean Eng., 121, 291–300, 2016.
  49. Witchaya Rongsayamanont et al., “Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant,” J. Hazard. Mater., 334, 168–177, 2017.
  50. A. Al-Majed, A. Adebayo, and M. Hossain, “A sustainable approach to controlling oil spills,” J. Environ. Manage., 2012.
  51. F. A.Vega, Emma F.Covelo, M. J.Reigosa, and M. LuisaAndrade, “Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill,” J. Hazard. Mater., 166( 2–3), 1020–1029, 2009.
  52. N. P. Ventikos and George Triantafyllou, “A high-level synthesis of oil spill response equipment and countermeasures,” J. Hazard. Mater., 107( 1–2) 51–58, 2004.
  53. A. K. Mishra and G. S. Kumar, “Weathering of Oil Spill: Modeling and Analysis,” Aquat. Procedia, 4( Icwrcoe) 435–442, 2015.
  54. National Research Council, Oil in the sea III: inputs, fates, and effects. 2003.
  55. M. L. Spaulding, “State of the art review and future directions in oil spill modeling,” Mar. Pollut. Bull., 115( 1–2) 7–19, 2017.
  56. Z. Liu, J. Liu, Q. Zhu, and W. Wu, “The weathering of oil after the DeepwaterHorizon oil spill: Insights from the chemical composition of the oil from the sea surface, salt marshes and sediments,” Environ. Res. Lett., 7, 3, 2012.
  57. U. H. Yim et al., “Fingerprint and weathering characteristics of stranded oils after the Hebei Spirit oil spill,” J. Hazard. Mater., 197) 60–69, 2011.
  58. G. Zodiatis et al., “The Mediterranean Decision Support System for Marine Safety dedicated to oil slicks predictions,” Deep. Res. Part II Top. Stud. Oceanogr., 133, 4–20, 2016.
  59. Hosein Bidgoli, Y. Mortaza, and A. A. Khodadadi, “A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup_ Synthesis and characterization,” J. Hazard. Mater.366, 229–239, 2019.
  60. F. Cláudio, D. F. Barros, L. Constantino, and G. Vasconcellos, “Removal of Petroleum Spill in Water by Chitin and Chitosan,” Electron. J. Chem., 6(1), 2–6, 2014.
  61. M. Albakjaji, “La pollution de la mer méditerranée par les hydrocarbures liée au trafic maritime,”. Thèse de doctorat . Paris Est. 2011.
  62. Ş. N. E. Bozkurtoğlu, “Modeling oil spill trajectory in Bosphorus for contingency planning,” Mar. Pollut. Bull., 123( 1–2), 57–72, 2017.
  63. L. Karafyllidis, “A model for the prediction of oil slick movement and spreading using Cellular Automata,” Environ. Int., 23( 6), 839–850, 1997.
  64. C. Bolognesi, E. Perrone, P. Roggieri, and A. Sciutto, “Bioindicators in monitoring long term genotoxic impact of oil spill: Haven case study,” Mar. Environ. Res., 62( SUPPL. 1), 287–291, 2006.
  65. P Guidetti, M. Modena, Gl. Mesa, and M Vacchi, “Composition, Abundance and Stratification of Macrobenthos in the Marine Area Impacted by Tar Aggregates Derived from the Haven Oil Spill (Ligurian Sea, Italy),” Marin Pollution Bulletin, 40(12), 1161–1166, 2000.
  66. R. Periáñez, “Chemical and oil spill rapid response modelling in the Strait of Gibraltar-Alborán Sea,” Ecol. Modell., 207( 2–4), 210–222, 2007.
  67. R. Periáñez and A. Pascual-Granged, “Modelling surface radioactive, chemical and oil spills in the Strait of Gibraltar,” Comput. Geosci., 34( 2) 163–180, 2008.
  68. M. LAOTBOZZI, “Répression et prévention de la pollution des navires de commerce en méditerranée,” . Thèse de doctorat. Paris Est. 2009.
  69. REMPEC, “Historical Accidents in the Mediterranean Sea integrated in the Mediterranean Integrated Geographical Information System on marine Pollution Risk Assessment and Reponse (MEDGIS-MAR),” 2018. [Online]. Available: http://medgismar.rempec.org/. [Accessed: 20-Aug-2018].
  70. F. J. M. Llácer, “Open registers: Past, present and future,” Mar. Policy, 27( 6) 513–523, 2003.
  71. H.P. Ventikos et al.“Spill accident modeling: a critical survey of the event-decision network in the context of IMO’s formal safety assessment,” Journal of Hazardous Materials., 107( 1–2) 59–66, 2004.
  72. A. Abdulla, Maritime traffic effects on biodiversity in the Mediterranean Sea. Volume 1: review of impacts, priority areas and mitigation measures. IUCN, 2008.
  73. Ministère de l’Équipement, des Transports, du Logement, du Tourisme et de la Mer (France), “Étude du trafic maritime en Méditerranée occidentale,” 2004. https://www.viepublique.fr/sites/default/files/rapport/pdf/054000140.pdf.
  74. ITOPF, “Oil Tanker spill statistics 2013,” 2013.
  75. R. J. Bye and A. L. Aalberg, “Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports,” Reliab. Eng. Syst. Saf., 176( February) 174–186, 2018.
  76. T. Baalisampang, R. Abbassi, V. Garaniya, F. Khan, and M. Dadashzadeh, “Review and analysis of fire and explosion accidents in maritime transportation,” Ocean Eng., 158( September 2017) 350–366, 2018.
  77. G. Psarros, R. Skjong, and M. S. Eide, “Under-reporting of maritime accidents,” Accid. Anal. Prev., 42( 2) 619–625, 2010.
  78. J. R. Nelson and Tony H Grubesic, “Oil spill modeling: Risk , spatial vulnerability , and impact assessment,” progresss Phys. Geogr., 42, 112–127, 2018.
  79. Xin Liu, Kai W.Wirtz, “The economy of oil spills: Direct and indirect costs as a function of spill size,” J. Hazard. Mater., 171( 1–3) 471–477, 2009.
  80. P. Burgherr, “In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources,” J. Hazard. Mater., 140(1–2) 245–256, 2007.
  81. F. Goerlandt and J. Montewka, “A framework for risk analysis of maritime transportation systems: A case study for oil spill from tankers in a ship – ship collision,” Saf. Sci., 76, 42–66, 2015.
  82. CCPS, Guidelines for Chemical Transportation Safety, Security, and Risk Management. 2008.
  83. REMRO Network, “Spanish Network of Measurements,” 2018. .
  84. A. Hardeo, “Two-dimensional offshore oil spill model for Eastern/Northern Trinidad and Tobago,” J. Assoc. Prof. Eng. Trinidad Tobago, 40( 2) 66–72, 2011.
  85. P. Vethamony, K. Sudheesh, M. T. Babu, S. Jayakumar, and R. Manimurali, “Trajectory of an oil spill off Goa , eastern Arabian Sea: Field observations and simulations,” Environ. Pollut., 148, 438–444, 2007.
  86. Wang et al, “Two-dimensional numerical simulation for transport and fate of oil spills in seas,” Ocean Eng., 32, 1556–1571, 2005.
  87. C. J. Beegle-Krausel, “GENERAL NOAA OIL MODELING ENVIRONMENT ( GNOME ): A NEW SPILL TRAJECTORY MODEL,” Int. Oil Spill Conf. Proc, 2001(2) 865–871, 2001.
  88. X. Chao et al., “Two- and three-dimensional oil spill model for coastal waters,” Ocean Eng., 28, 1557–1573, 2001.
  89. C. Goeury, “Modélisation du transport des nappes d’hydrocarbures en zones continentales et estuariennes,” Université Paris-Est, 2012.
  90. M.L. Spaulding, “State of the art review and future directions in oil spill modeling,” Mar. Pollut. Bull., 115( 1–2), 7–19, 2017.
  91. P. Carracedo et al., “Improvement of pollutant drift forecast system applied to the Prestige oil spills in Galicia Coast (NW of Spain): Development of an operational system,” Mar. Pollut. Bull., 53( 5–7), 350–360, 2006.
  92. A. Hardeo and D. P. Chakrabarti, “Vector-Based Oil Spill Model,” Chem. Eng. Commun., 203( 12), 1656–1665, 2016.
  93. T. Nordam, R. Nepstad, E. Litzler, and J. Röhrs, “On the use of random walk schemes in oil spill modelling,” Mar. Pollut. Bull., 146( April) 631–638, 2019.
  94. R. S. Kankara, S. Arockiaraj, and K. Prabhu, “Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India,” Mar. Pollut. Bull., 106( 1–2) 95–103, 2016.
  95. N. C. Delpeche, T. Soomere, N. C. D. Ellmann, and T. Soomere, “Using Lagrangian models to assist in maritime management of Coastal and Marine Protected Areas Using Lagrangian models to assist in maritime management of Coastal and Marine Protected Areas,” J. Coast. Res., 65, 36–41, 2013.
  96. Q. Xu, X. Li, Y. Wei, Z. Tang, Y. Cheng, and W. G. Pichel, “Satellite observations and modeling of oil spill trajectories in the Bohai Sea,” Mar. Pollut. Bull., 71(1–2), 107–116, 2013.
  97. X. Hong-lei, J. Chen, S. Wang, and Y. Liu, “Oil spill forecast model based on uncertainty analysis: A case study of Dalian Oil Spill,” Ocean Eng., 54, 206–212, 2012.
  98. J. Fay, “Physical processes in the spread of oil on a water surface.,” Proceeding Jt. Conf. Prev. Control oil spills, 1971.
  99. A. Berry, “Development of OILTRANS Model code,” 2011.
  100. A. Berry, T. Dabrowski, and K. Lyons, “The oil spill model OILTRANS and its application to the Celtic Sea,” Mar. Pollut. Bull., 64( 11) 2489–2501, 2012.
  101. R. Periáñez and F. Caravaca, “A set of rapid-response models for pollutant dispersion assessments in southern Spain coastal waters,” Mar. Pollut. Bull., 60( 9) 1412–1422, 2010.
  102. W. J. Guo and Y. X. Wang, “A numerical oil spill model based on a hybrid method,” Mar. Pollut. Bull., 58( 5) 726–734, 2009.
  103. C. Ambjorn, “Seatrack web, forecasts of oil spills, a new version,” Environ. Res. Eng. Manag, 60–66, 2007.
  104. D. P. McCay-French, “Oil Spill Impact Modeling: Development & Validation,” Environ. Toxicol. Chem., 23( 10) 2441–2456, 2004.
  105. ASCE, “State-of-the-art review of modeling transport and fate of oil spills. Committee on Modeling Oil Spills.Water Resources Engineering Division.,” J. Hydraul. Eng., 122( 11) 594–609, 1996.
  106. A. H. Al-Rabeh, H. M. Cekirge, and N. Gunay, “A stochastic simulation model of oil spill fate and transport,” Appl. Math. Model., 13( 6) 322–329, 1989.
  107. A. Soussi et al., “An oil spill trajectory model: Validation in the Mediterranean Sea,” ISSE 2019 – 5th IEEE Int. Symp. Syst. Eng. Proc., 2019.
  108. N. Mareï, “Le détroit de Gibraltar dans la mondialisation des transports maritimes,” EchoGéo, 19, 0–15, 2012.
  109. M. N. Tsimplis and H. L. Bryden, “Estimation of the transports through the Strait of Gibraltar,” Deep. Res. Part I Oceanogr. Res. Pap., 47( 12), 2219–2242, 2000.
  110. H. Perkins, T. Kinder, and P. La Violette, “The Atlantic inflow in the Western Alboran Sea,” J. Phys. Oceanogr., 20, 242–263, 1990.
  111. H. BENALI, “Evolution diachronique multidates, sédimentologique, géomorphologique et occupation de l’espace du littoral marocain de Ksar Esghir et son arrière pays (Maroc),” Abdelmalek essaâdi, 2016.
  112. A. El Gharbaoui, “La terre et l’homme dans la péninsule tingitane: étude sur l’homme et le milieu naturel dans le Rif Occidental,” Institut scientifique, 1981.
  113. J. P. Thauvin, “Carte géotechnique de Tanger: Le climat à Tanger.,” Notes du Serv. géologique du Maroc., 222, 29–38, 1991.

Citations by Dimensions

Citations by PlumX

Google Scholar

Scopus