Buffering Supercapacitor Mechanism based on Bidirectional DC/DC Converter for Mini All-Terrain Vehicle Application

Buffering Supercapacitor Mechanism based on Bidirectional DC/DC Converter for Mini All-Terrain Vehicle Application

Volume 5, Issue 4, Page No 244-251, 2020

Author’s Name: Syifaul Fuada1,a), Braham Lawas Lawu2, Bommegowda Kabbala Basavarajappa3

View Affiliations

1Program Studi Sistem Telekomunikasi, Universitas Pendidikan Indonesia, Bandung, 40154, Indonesia
2PT. Perusahaan Listrik Negara (PLN) UPP Kitring, Muara Taweh, Barito Utara, Kalimantan Tengah, 73811, Indonesia
3Department of Electronics & Communication Engineering, N.M.A.M. Institute of Technology, Nitte, Udupi District, Karnataka, 574110, India

a)Author to whom correspondence should be addressed. E-mail: Syifaulfuada@upi.edu

Adv. Sci. Technol. Eng. Syst. J. 5(4), 244-251 (2020); a  DOI: 10.25046/aj050430

Keywords: Non-isolated Bidirectional DC/DC Converter, Boost Mode, Supercapacitor, Mini All-terrain Vehicle (ATV)

Share
323 Downloads

Export Citations

Fundamentally, the Bidirectional DC/DC converter consists of Buck and Boost modes, which working alternately. Hence, it has two output directions: Buck mode for decreasing the voltage and Boost mode for increasing the voltage at certain levels. In this work, we applied a non-isolated topology of the Bidirectional DC/DC converter for electric vehicle, that is mini all-terrain vehicle (ATV). We set a Buck mode to charge the Supercapacitor when the battery current and the Supercapacitor voltage are lower than considered level. Whereas the Boost mode was used to discharge as well as buffer the mini ATV when the battery current and the Supercapacitor voltage are higher than considered level. The discussion of Buck mode has been presented in previous work, so in this work, we focus on the Boost mode analysis only. This mode is set to increase the Supercapacitor’s voltage. The Supercapacitor with 25 VDC/8 Farad was used as the secondary main power inside the 22.2 VDC / 5000 mAh LiPo battery of the mini ATV motor. The mini ATV requires 36 VDC to work. Thus, it must be boosted first from 22.2 to 36 VDC using an external Boost converter. Moreover, it must be maintained at 36 VDC. Based on the requirement, we first design the bidirectional DC/DC converter involving the mathematical calculation and then simulate it into LTSpice®. The Printed-Circuit Board is then lay-outed and mounted. Later, we connected the designed system to mini ATV motor and tested the performance as well. According to the laboratory test, the Bidirectional DC/DC converter can increase (Boost) the voltage of the Supercapacitor from a certain level to 36 VDC. On the other hand, it can maintain 36 VDC. The central control in this system uses the STM32F4 Microcontroller, while the battery monitoring system employs the STMStudio.

Received: 12 June 2020, Accepted: 09 July 2020, Published Online: 28 July 2020

  1. I. Carlucho, R. de la Vega, M. Spina, and G. G. Acosta, ‘A Modular Battery Management System for Electric Vehicles’, in 2018 IEEE Biennial Congress of Argentina (ARGENCON), San Miguel de Tucumán, Argentina, 1–6, 2018. doi: 10.1109/ARGENCON.2018.8646227
  2. A. P. Talie, W. A. Pribyl, and G. Hofer, ‘Electric Vehicle Battery Management System Using Power Line Communication Technique’, in 2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, 225–228, 2018. doi: 10.1109/PRIME.2018.8430304.
  3. L. K. Amifia, S. A. Widayat, A. I. Cahyadi, and O. Wahyunggoro, ‘Fault detection design and simulation based on battery modelling’, presented at the PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON SYNCHROTRON RADIATION INSTRUMENTATION – SRI2015, New York, NY USA, p. 090008, 2016. doi: 10.1063/1.4958526
  4. D. A. Martinez, J. D. Poveda, and D. Montenegro, ‘Li-Ion battery management system based in fuzzy logic for improving electric vehicle autonomy’, in 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 1–6, 2017. doi: 10.1109/PEPQA.2017.7981677
  5. R. Xiong, Y. Zhang, J. Wang, H. He, S. Peng, and M. Pecht, ‘Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles’, IEEE Trans. Veh. Technol., 68, 5, 4110–4121, May 2019. doi: 10.1109/TVT.2018.2864688
  6. L. Buccolini, A. Ricci, C. Scavongelli, G. DeMaso-Gentile, S. Orcioni, and M. Conti, ‘Battery Management System (BMS) simulation environment for electric vehicles’, in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 1–6, 2016. doi: 10.1109/EEEIC.2016.7555475
  7. L. Kouchachvili, W. Yaïci, and E. Entchev, ‘Hybrid battery/supercapacitor energy storage system for the electric vehicles’, J. Power Sources, 374, 237–248, 2018. doi: 10.1016/j.jpowsour.2017.11.040
  8. A. Tahri et al., ‘Management of fuel cell power and supercapacitor state-of-charge for electric vehicles’, Electr. Power Syst. Res., 160, 89–98, Jul. 2018, doi: 10.1016/j.epsr.2018.02.003.
  9. B.-H. Nguyen, R. German, J. P. F. Trovao, and A. Bouscayrol, ‘Real-Time Energy Management of Battery/Supercapacitor Electric Vehicles Based on an Adaptation of Pontryagin’s Minimum Principle’, IEEE Trans. Veh. Technol., 68, 1, 203–212, Jan. 2019, doi: 10.1109/TVT.2018.2881057.
  10. Z. Song, J. Hou, H. Hofmann, J. Li, and M. Ouyang, ‘Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles’, Energy, 122, 601–612, 2017. doi: 10.1016/j.energy.2017.01.098.
  11. R. H. Ashique and Z. Salam, ‘A High-Gain, High-Efficiency Nonisolated Bidirectional DC–DC Converter With Sustained ZVS Operation’, IEEE Trans. Ind. Electron., 65, 10, 7829–7840, 2018. doi: 10.1109/TIE.2018.2802457.
  12. H. Bahrami, S. Farhangi, H. Iman-Eini, and E. Adib, ‘A New Interleaved Coupled-Inductor Nonisolated Soft-Switching Bidirectional DC–DC Converter With High Voltage Gain Ratio’, IEEE Trans. Ind. Electron., 65, 7, 5529–5538, 2018. doi: 10.1109/TIE.2017.2782221
  13. Y. Zhang, X.-F. Cheng, C. Yin, and S. Cheng, ‘A Soft-Switching Bidirectional DC–DC Converter for the Battery Super-Capacitor Hybrid Energy Storage System’, IEEE Trans. Ind. Electron., 65, 10, 7856–7865, 2018. doi: 10.1109/TIE.2018.2798608
  14. M. Veerachary and O. K. Singh, ‘Bidirectional non-isolated dc-dc converter for low-voltage DC-grid’, in 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 1–6, 2016. doi: 10.1109/PEDES.2016.7914408.
  15. H. Ardi, A. Ajami, F. Kardan, and S. Nikpour, ‘Analysis and Implementation of a Non-Isolated Bidirectional DC-DC Converter with High Voltage Gain’, IEEE Trans. Ind. Electron., 1(1), 2016. doi: 10.1109/TIE.2016.2552139.
  16. J. Zhang, ‘Bidirectional DC-DC Power Converter Design Optimization, Modeling and Control’, Diss. Va. Polytech. Inst. State Univ., 3–5, 2008.
  17. B. L. Lawu, S. Fuada, S. Ramadhan, A. F. Sabana, and A. Sasongko, ‘Charging supercapacitor mechanism based-on bidirectional DC-DC converter for electric ATV motor application’, in 2017 International Symposium on Electronics and Smart Devices (ISESD), Yogyakarta, 129–132, 2017. doi: 10.1109/ISESD.2017.8253318.
  18. T. Adiono, S. F. Anindya, S. Fuada, K. Afifah, and I. G. Purwanda, ‘Efficient Android Software Development Using MIT App Inventor 2 for Bluetooth-Based Smart Home’, Wirel. Pers. Commun., 105, 1, 233–256, 2019. doi: 10.1007/s11277-018-6110-x.
  19. A. T. Agung, S. Fuada, and T. Adiono, ‘IMPLEMENTASI ASSET MANAGEMENT DENGAN SNIPE-IT DI PUSAT MIKROELEKTRONIKA INSTITUT TEKNOLOGI BANDUNG’, Simetris J. Tek. Mesin Elektro Dan Ilmu Komput., 10, 1, 243–258, 2019. doi: 10.24176/simet.v10i1.2961.
  20. M. H. Rashid, Ed., Power Electronics Handbook. Amsterdam, The Netherlands: Elsevier, 2007.

Citations by Dimensions

Citations by PlumX

Google Scholar

Scopus