Volume 2, Issue 6, Special issue on Advancement in Engineering Technology (Published Papers)

Articles

Clean Energy Use for Cloud Computing Federation Workloads

Yahav Biran, Sudeep Pasricha, George Collins, Joel Dubow

Adv. Sci. Technol. Eng. Syst. J. 2(6), 1-12 (2017);

View Description

Cloud providers seek to maximize their market share. Traditionally, they deploy datacenters with sufficient capacity to accommodate their entire computing demand while maintaining geographical affinity to its customers. Achieving these goals by a single cloud provider is increasingly unrealistic from a cost of ownership perspective. Moreover, the carbon emissions from underutilized datacenters place an increasing demand on electricity and is a growing factor in the cost of cloud provider datacenters. Cloud-based systems may be classified into two categories: serving systems and analytical systems. We studied two primary workload types, on-demand video streaming as a serving system and MapReduce jobs as an analytical systems and suggested two unique energy mix usage for processing that workloads. The recognition that on-demand video streaming now constitutes the bulk portion of traffic to Internet consumers provides a path to mitigate rising energy demand. On-demand video is usually served through Content Delivery Networks (CDN), often scheduled in backend and edge datacenters. This publication describes a CDN deployment solution that utilizes green energy to supply on-demand streaming workload. A cross-cloud provider collaboration will allow cloud providers to both operate near their customers and reduce operational costs, primarily by lowering the datacenter deployments per provider ratio. Our approach optimizes cross-datacenters deployment. Specifically, we model an optimized CDN-edge instance allocation system that maximizes, under a set of realistic constraints, green energy utilization. The architecture of this cross-cloud coordinator service is based on Ubernetes, an open source container cluster manager that is a federation of Kubernetes clusters. It is shown how, under reasonable constraints, it can reduce the projected datacenter’s carbon emissions growth by 22% from the currently reported consumption. We also suggest operating datacenters using energy mix sources as a VoltDB-based fast data system to process offline workloads such as MapReduce jobs. We show how cross-cloud coordinator service can reduce the projected data- centers carbon emissions growth by 21% from the currently expected trajectory when processing offline MapReduce jobs.

Read more…

Design of Cognitive Radio Database using Terrain Maps and Validated Propagation Models

Anwar Mohamed Fanan, Nick Riley, Meftah Mehdawi

Adv. Sci. Technol. Eng. Syst. J. 2(6), 13-19 (2017);

View Description

Cognitive Radio (CR) encompasses a number of technologies which enable adaptive self-programing of systems at different levels to provide more effective use of the increasingly congested radio spectrum. CRs have potential to use spectrum allocated to TV services, which is not used by the primary user (TV), without causing disruptive interference to licensed users by using appropriate propagation modelling in TV White Spaces (TVWS). In this paper we address two related aspects of channel occupancy prediction for cognitive radio. Firstly, we continue to investigate the best propagation model among three propagation models (Extended-Hata, Davidson-Hata and Egli) for use in the TV band, whilst also finding the optimum terrain data resolution to use (1000, 100 or 30 m). We compare modelled results with measurements taken in randomly-selected locations around Hull UK, using the two comparison criteria of implementation time and accuracy, when used for predicting TVWS system performance. Secondly, we describe how such models can be integrated into a database-driven tool for CR channel selection within the TVWS environment by creating a flexible simulation system for creating a TVWS database.

Read more…

Smart Grid Operational functions and Control Challenges by Implementing SSSC Tailored to Optimize performance in between Qatar and KSA on the GCC Electrical-power grid

Tariq Masood, Muhammad Tajammal, Samer Karim Shah, Ghulam Hashmi, Suhail Aftab Qureshi, D. P Kothari

Adv. Sci. Technol. Eng. Syst. J. 2(6), 20-27 (2017);

View Description

This research work is novel technique to control and optimize SSSC (Subsynchronous Series Controller) functions with degree of precision in between Qatar and Kingdom of Saudi Arabia. The SSSC model developed and simulated in order to identify and determine its control and functioning parameters by introducing new tuning parameters based on that the SSSC can be adjusted stringently to witness desired results lead to address outstanding reactive power management issue. The proposed new parameters are contributing significantly to control SSSC functions in multiple directions in a power system network in between QATAR and Kingdom of Saudi Arabia at different time-based transmission contingencies on the GCC Electrical-power grid. Strategically, the SSSC capacity and capability can be utilized fully in between Qatar and Kingdom of Saudi Arabia by introducing and optimizing its control and tuning parameters more tangibly under both steady and dynamic states.

Read more…

A novel beamforming based model of coverage and transmission costing in IEEE 802.11 WLAN networks

Mehdi Guessous, Lahbib Zenkouar

Adv. Sci. Technol. Eng. Syst. J. 2(6), 28-39 (2017);

View Description

IEEE 802.11 WLAN indoor networks face major inherent and environmental issues such as interference, noise, and obstacles. At the same time, they must provide a maximal service performance in highly changing radio environments and conformance to various applications’ requirements. For this purpose, they require a solid design approach that considers both inputs from the radio interface and the upper-layer services at every design step. The modelization of radio area coverage is a key component in this process and must build on feasible work hypotheses. It should be able also to interpret highly varying characteristics of dense indoor environments, technology advances, service design best practices, end-to-end integration with other network parts: Local Area Network (LAN), Wide Area Network (WAN) or Data Center Network (DCN). This work focuses on Radio Resource Management (RRM) as a key tool to achieve a solid design in WLAN indoor environments by planning frequency channel assignment, transmit directions and corresponding power levels. Its scope is limited to tackle co-channel interference but can be easily extended to address cross-channel ones. In this paper, we consider beamforming and costing techniques to augment conventional RRM’s Transmit Power Control (TPC) procedures that market-leading vendors has implemented and related research has worked on. We present a novel approach of radio coverage modelization and prove its additions to the cited related-work’s models. Our solution model runs three algorithms to evaluate transmission opportunities of Wireless Devices (WD) under the coverage area. It builds on realistic hypotheses and a thorough system operation’s understanding to evaluate such an opportunity to transmit, overcomes limitations from compared related-work’s models, and integrates a hierarchical costing system to match Service Level Agreement (SLA) expectations. The term “opportunity” in this context relates also to the new transmission’s possibilities that related-work misses often or overestimates.

Read more…

A New profiling and pipelining approach for HEVC Decoder on ZedBoard Platform

Habib Smei, Kamel Smiri, Abderrazak Jemai

Adv. Sci. Technol. Eng. Syst. J. 2(6), 40-48 (2017);

View Description

New multimedia applications such as mobile video, high-quality Internet video or digital television requires high-performance encoding of video signals to meet technical constraints such as runtime, bandwidth or latency. Video coding standard h.265 HEVC (High Efficiency Video Coding) was developed by JCT-VC to replace the MPEG-2, MPEG-4 and h.264 codecs and to respond to these new functional constraints. Currently, there are several implementations of this standard. Some implementations are based on software acceleration techniques; Others, on techniques of purely hardware acceleration and some others combine the two techniques. In software implementations, several techniques are used in order to decrease the video coding and decoding time. We quote data parallelism, tasks parallelism and combined solutions. In the other hand, In order to fulfill the computational demands of the new standard, HEVC includes several coding tools that allow dividing each picture into several partitions that can be processed in parallel, without degrading neither the quality nor the bitrate.
In this paper, we adapt one of these approaches, the Tile coding tool to propose a pipeline execution approach of the HEVC / h265 decoder application in its version HM Test model. This approach is based on a fine profiling by using code injection techniques supported by standard profiling tools such as Gprof and Valgrind. Profiling allowed us to divide functions into four groups according to three criteria: the first criterion is based on the minimization of communication between the different functions groups in order to have minimal intergroup communication and maximum intragroup communication. The second criterion is the load balancing between processors. The third criterion is the parallelism between functions. Experiments carried out in this paper are based on the Zedboard platform, which integrates a chip Zynq xilinx with a dual core ARM A9. We start with a purely sequential version to reach a version that use the pipeline techniques applied to the functional blocks that can run in parallel on the two processors of the experimental Platform. Results show that a gain of 30% is achieved compared to the sequential implementation.

Read more…

Flexible Aperture Tuning Solution for Cellular Main Antenna in Metallic Back Cover Mobile Phone

Yew Choon Mark Tan, Guan Hong Ng, Yew Siow Roger Tay

Adv. Sci. Technol. Eng. Syst. J. 2(6), 49-55 (2017);

View Description

Metal housing has been used extensively on portable communication devices such as on mobile phones and tablets. The choice of metal housing ranges from metallic rim to metallic back cover.  This metal housing tends to improve the outlook appearance of the mobile devices, and add mechanical strength towards the mobile devices.  However, from the aspect of the communication antenna, the metal housing often posts great challenges towards the flexibility in antenna design and reduction in antenna performance.  This paper presents an approach to overcome the challenges by integrating the metal housing of the mobile phone as part of the antenna, along with the introduction of tunable antenna concept to provide different forms of Aperture Tuning to the Cellular Main Antenna, to satisfy its wide frequency band coverages for the 2nd, 3rd and 4th Generation (2G, 3G and 4G) mobile network.  

Read more…

A New Identification Approach of MIMO Hammerstein Model with Separate Nonlinearities

Chekib Ghorbel, Zeineb Rayouf, Naceur Benhadj Baraiek

Adv. Sci. Technol. Eng. Syst. J. 2(6), 56-62 (2017);

View Description

A new coupled structure identification of Multi-Input Multi-Output (MIMO) Hammerstein models with separate nonlinearities is proposed. It is based on the use of the Recursive Least Squares (RLS) algorithm. A comparative study between a decoupled and coupled structures identification of MIMO Hammerstein models is discussed. A quadruple-tank process is used to illustrate the effectiveness of the new structure.

Read more…

ARMA feeding techniques for isoflux coverage from a micro satellite

Ali Siblini ,Hussein Abou Taam, Bernard Jecko,  Mohamed Rammal, Eric Arnaud, Bellion Anthony

Adv. Sci. Technol. Eng. Syst. J. 2(6), 63-69 (2017);

View Description

This paper deals with the design of a new reconfigurable beam antenna used to improve the efficiency of spatial telemetry links on Nano-Satellite. This agile beam antenna is not built on the well-known array concept AESA (Agile Electronically Scanned Array) but using a new one called ARMA (Agile Matrix Radiating Antenna); MARPEM in French. In this paper there is the design of the circularly polarized matrix antenna, the generation of two beam forming modes, the design of the distribution circuit and the polarization circuits.

Read more…

Selective Electron Beam Melting Manufacturing of Electrically Small Antennas

Saad Mufti, Christopher Smith, Alan Tennant, Luke Seed

Adv. Sci. Technol. Eng. Syst. J. 2(6), 70-75 (2017);

View Description

Real estate pressures in modern electronics have resulted in the need for electrically small antennas, which have subsequently garnered interest amongst researchers and industry alike. These antennas are characterized by their largest dimensions translating to a fraction of the operating wavelength; such a diminutive size comes at the expense of reduced gain and efficiency, and a worse overall match to a corresponding power source. In order to compensate for this deterioration in performance, antenna designers must turn towards increasingly complex and voluminous geometries, well beyond the capabilities of traditional manufacturing techniques. We present voluminous metal antennas, based on a novel inverted-F design, and fabricated using the emergent selective electron beam melting manufacturing technique, a type of powder bed fusion process. As predicted by small antenna theory, simulation results presented show in increase in the antenna’s efficiency as it is voluminously expanded into the third dimension. Measurement results illustrate that key trends observed from simulations are upheld; however, further understanding of the electromagnetic properties of raw materials, in particular how these change during the printing process, is needed. Nevertheless, this type of additive manufacturing technique is suitable for rapid prototyping of novel and complex antenna geometries, and is a promising avenue for further research and maturation.

Read more…

Real-Time Flux-weakening Control for an IPMSM Drive System Using a Predictive Controller

Tian-Hua Liu, Shao-Kai Tseng, Yi Chen, Mao-Bin Lu

Adv. Sci. Technol. Eng. Syst. J. 2(6), 76-86 (2017);

View Description

This paper proposes extended-range high-speed control for an IPMSM drive system. A simple real-time tuning flux-weakening control algorithm is proposed and implemented to control an IPMSM drive system in a wide variable speed range, from 3 r/min up to 2700 r/min. This flux-weakening control algorithm does not require any motor parameters and only needs simple mathematical computations. The proposed drive system adjusts the angle between the d-axis and q-axis current to reach flux-weakening control. In addition, a multiple sampling predictive controller is implemented to enhance the dynamic responses of the proposed drive system, which yields improved overall transient responses, superior load responses, and good tracking responses. A detailed analysis of the proposed drive system’s stability is discussed as well. A 32-bit digital signal processor, TMS-320F-28335, is used to execute the predictive controller and the flux-weakening control algorithm for the IPMSM drive system. Experimental results can validate the theoretical analysis.

Read more…

View Description

The current advances in proteomic and transcriptomic technologies produced huge amounts of high-throughput data that spans multiple biological processes and characteristics in different organisms. One of the important directions in today’s bioinformatics research is to discover patterns of genes that have interesting properties. These groups of genes can be referred to as functional modules. Detecting functional modules can be accomplished by the deep analysis of protein-protein interaction (PPI) networks, gene expression profiles, or both. In this work the focus will be on Human protein-protein interaction network and genes expression data that represents genes behavior in a group of diseases. Two of the most well-established clustering methods that target the interaction networks and the expression data will be used in this analysis. In addition, and to have more insights, genes molecular functionality will be studied. Finally, I will introduce the relation of the extracted modules on biological pathways. This study mainly illustrates the importance of including protein interaction activities as part of any study that aims at discovering meaningful knowledge about the biological scene where many actors play different roles.

Read more…

Modelling and Analysis of Radial Flux Surface Mounted Direct-Driven PMSG in Small Scale Wind Turbine

Theint Zar Htet, Zhengming Zhao, Qing Gu, Jing Li

Adv. Sci. Technol. Eng. Syst. J. 2(6), 94-99 (2017);

View Description

This paper presents the modelling and analysis of permanent magnet synchronous generator (PMSG) which are used in direct driven small scale wind turbines. The 3 kW PM generator which is driven directly without gear system is analyzed by Ansoft Maxwell 2D RMxprt. The performance analysis of generator includes the cogging torque in two teeth, induced coil voltages under load, winding current under load, airgap flux density distribution and so on. The modelling analysis is based on the 2D finite element techniques. In an electrical machine, an accurate determination of the geometry parameters is a vital role. The proper performance results of 3kW PMSG in small scale wind turbine can be seen in this paper.

Read more…

A Switched-Capacitor Low-Pass Filter with Dynamic Switching Bias OP Amplifiers

Hiroo Wakaumi

Adv. Sci. Technol. Eng. Syst. J. 2(6), 100-106 (2017);

View Description

A switched capacitor low-pass filter employing folded-cascode CMOS OP Amps with a dynamic switching bias circuit capable of processing video signals, which enables low power consumption, and operation in wide bandwidths and low power supply voltages, is proposed. In this filter, charge transfer operations through two-phase clock pulses during the on-state period of the OP Amps and a non-charge transfer operation during their remaining off-state period are separated. Through simulations, it was shown that the low-pass filter with an OP Amp switching duty ratio of 50 % is able to operate at a 14.3 MHz high-speed dynamic switching rate, allowing processing video signals, and a dissipated power of 68 % of that observed in the static operation of the OP Amps and a full charge transfer operation without separation of a cycle period. The gain below -31 dB in the frequency response, which is suitable, was obtained at over 6 MHz within a stop-band. Especially high attenuation in 5 MHz was achieved under the optimized condition of load capacitances (4 pF) of OP Amps.

Read more…

Cognitive Cybernetics vs. Captology

Zdenko Balaž, Davor Predavec

Adv. Sci. Technol. Eng. Syst. J. 2(6), 107-118 (2017);

View Description

In acronym Captology – Computers as Persuasive Technology, a persuasive component (lat. persuasibilibus – enticing) refers to the persuasive stimulation by intelligent technologies. Latter being transitive and interactive as intelligent systems, they have imposed, by their persuasivity, a ‘cult of information’, after which information has become a type of goods that as a utilitarian resource must be exploited quickly and efficiently. Such a widely accepted fact resulted as hype, presenting a perspective that the approach to a large amount of information and faster ‘digestion’ of their content will enable users to quickly get desired knowledge.
Recent investigations about persuasion processes have shown its dependence on intelligent technology factors (design, interactive computer products, web, desktop and others). Such technologies are also used to influence people’s attitudes, beliefs, learning, and behaviour. Development strategies for global computer production and sales head in that direction and confirm latter statement with the promoted 3-P model: persuasive, permissive and pervasive components. Cognitive level of human integrated development is increasingly overshadowed by the contribution of artificial intelligence through its products, i.e. ‘smart’ creations, and by the array of shortcomings and problems that the same interactive technology brings. This paper presents a parallel between captological component of intelligent and interactive technologies on one side and illustrates examples of captological influences proved by confirmed trials within cognitive science through computer simulations of human thinking on the other side. Many studies have shown that the success of persuasion depends on the factors which have been exposed by cognitive cybernetics. Next to it, people’s behavior system is transforming through the very development of society. Therefore, the influence of latter can be either positive or negative, while its extremes are already escalating in direction of a new trans-singularity and post humanism theories based on the principles of extropy.

Read more…

Share