Group law and the Security of elliptic curves on  $ F_p[e_1,...,e_n] $

Group law and the Security of elliptic curves on F_p[e_1,...,e_n]

Volume 2, Issue 5, Page No 104-108, 2017

Author’s Name: Abdelalim Seddika), Chaichaa Abdelhak, Souhail Mohamed

View Affiliations

Laboratory of Topology, Algebra, Geometry and Discrete Mathematics, Department of Mathematical and computer sciences, Faculty of sciences Ain Chock Hassan II University of Casablanca.

a)Author to whom correspondence should be addressed. E-mail: seddikabs@hotmail.com

Adv. Sci. Technol. Eng. Syst. J. 2(5), 104-108 (2017); a  DOI: 10.25046/aj020517

Keywords: The Discrete Logarithm Problem, Group Low, The Localization of the Ring, The maximal ideal Complexity

Share

410 Downloads

Export Citations

In this paper, we study the elliptic curve E_{a,b}(A_P), with A_P the localization of the ring A=F _p[e_1,...,e_n] where e_ie_i=e_i and e_ie_j=0 if i\neq j, in the maximal ideal P=(e_1,...,e_n). Finally we show that Card(E_{a,b}(A_P))\geqslant (Card(E_{a,b}(F_p))-3)^n+Card(E_{a,b}(F_p)) and the execution time to solve the problem of discrete logarithm in E_{a,b}(A_P) is \Omega(N), such that the execution time to solve the problem of discrete logarithm in E_{a,b}(F_p) is O(\sqrt{N}). The motivation for this work came from search for new groups with intractable (DLP) discrete logarithm problem is there great importance.

Received: 12 April 2017, Accepted: 04 May 2017, Published Online: 28 December 2017

Introduction

The elliptic curves are a very fashionable subject in mathematics. They are the basis of the demonstration of Fermat’s great theorem by Andrew Wiles, it was proposed for cryptographic use independently by Neal Koblitz[1] and Victor Miller in 1985, claim that elliptic curve cryptography requires much smaller keys than those used in conventional public key cryptosystems, while maintaining an equal level of security. In 2008, Virat introduced the elliptic curves over local ring Fp[] = Fp[X]/(X2)[2], and a proposed a new public key cryptosystem which is a variant of the ElGamal cryptosystem on an elliptic curve, in 2013 Chillali generalized the Virat result for the ring Fp

Chillali and Abdelalim constructed a ring Fp[e1,e2,e3], defined an elliptic curve over Ea,b(Fp[e1,e2,e3]) and they showed that Card(Ea,b(Fp[e1,e2,e3])) ≥ (Card(Ea,b(Fp))− 3)n +Card(Ea,b(Fp)) [4].

In this work we will generalize the construction of Fp[e1,e2,e3] to Fp[e1,..,en], but not a local ring to define a group law in Fp[e1,..,en],we localized the ring Fp[e1,..,en] in a maximal ideal, and we give it a group law and show that Card(Ea,b(Fp[e1,..,en])) ≥ (Card(Ea,b(Fp)) − 3)n + Card(Ea,b(Fp)), then shows the discrete logarithmic complexity is Ω(N) Such that N = Ea,b(Fp) by using the attacks baby step/giant step and ρ−Pollard.

Let p be an odd prime number and n be an integer such that n ≥ 1. we consider the ring An = Fp[e1,…,en] = {a0+a1e1++anen/a0,a1,…,an Fp, eiei = ei and eiej = 0 if i , j}. Fp[e1,…,en,] is vector space over Fp with basis (1,e1,…,en). We have

X +Y = (x0 +y0)+(x1 +x1)e1 ++(xn +yn)en and X.Y = t0 +t1e1 ++tnen with:

( t0 = x0y0                                      if    i = 0

ti = xiy0 +x0yi +xiyi if           i , 0

Proposition 1. Let X = x0 +x1e1 ++xnen Fp[e1,…,en] then X is invertible if and only if x0 , 0 and xi , −x0 for all i ∈{1,…,n}.

Proof. Let X = x0+x1e1++xnen Fp[e1,…,en] a invertible element, there Y = y0 +y1e1 ++ynen ∈Fp[e1,…,en] such that X.Y = 1, this implies that

( x0y0 = 1                         if     i = 0

xiy0 +x0yi +xiyi = 0 if           i , 0

therefore, x0 , 0 and xi ,−x0 for all i ∈{1,…,n}. In this case:

( y0 = x0−1                                  if    i = 0

yi = −(x0 +xi)−1xix0−1 if         i , 0

The other since is evident.

Proposition 2. The ideal P = (e1,…,en) is a maximal

(prime) of a ring Fp[e1,…,en].

Proof. We have Fp[e1,…,en]/P ‘ Fp is a field, there P is maximal.

Proposition 3. Let S = Fp[e1,…,en]− P = {s0 + s1e1 + + snen/s0 ∈ Fp,s0 , 0}. Then the localized of Fp[e1,…,en] in P is:

AP = {xs00++xs11ee11++……++sxnneenn /x0,x1,…,xn,s0,s1,…,sn ∈Fp,s0 , 0}

= {x0 +x1e1 ++xnen /x0,x1,…,xn,s1,…,sn ∈Fp}

1+s1e1 ++snen

AP is a local ring its maximal ideal is

M = {1+x1se11e+1+……++xnsnenen /x1,…,xn,s1,…,sn ∈Fp} and the residual field is K Fp.

Proposition 4. The homomorphism :

π : AP                       −→ Fp

x1+0+sx11ee11++……++sxnneenn →  x0

is a surjective homomorphism of rings.

2     The Elliptic Curve over the ring AP

Let n N, A = Fp[e1,…,en], p a prime number p ≥ 5, P = (e1,…,en) and AP the localized of A in P .

Definition 1. An elliptic curve over ring AP is curve that is given by such Weierstrass equation:

Y2Z = X3 +aXZ2 +bZ3

with a,b AP and 4a3 + 27b2 is invertible on AP , and the reduction over Fp is

Y2Z = X3 +π(a)XZ2 +π(b)Z3

Ea,b(Fp) = {[X : Y : Z] P2(Fp)/Y2Z = X3 +aXZ2 +bZ3}

Ea,b(A) = {[X : Y : Z] P2(A)/Y2Z = X3 +aXZ2 +bZ3} Ea,b(AP ) = {[X : Y : Z] ∈P2(AP )/Y2Z = X3 +aXZ2 +bZ3}

Theorem 1. The mapping    
φ : Ea,b(A) [x : y : z]

−→

−→

Ea,b(AP ) [1x : y1 : 1z ]

is injective.

Proof. Let [x : y : z],[x0 : y0 : z0] ∈ Ea,b(A) Suppose that [x : y : z] = [x0 : y0 : z0]

⇒ ∃λ A such that (x0,y0,z0) = λ(x,y,z)

⇒ (x0,y0,z0) = (λx,λy,λz)

x0 = λx, y λy and z0 = λz

⇒  and

Then [

we deduce that φ([x : y : z]) = φ([x0 : y0 : z0])

Then φ is well defined.

f : A −→ AP is injective. Note that mapping x −→ 1x

We deduce φ is injective.

Theorem 2. Let a,b Fp, the mapping

ϕ : Ea,b(AP )     −→                  Ea,b(A)

[sx1 : sy2 : sz3] −→ [xs2s3 : ys1s3 : zs1s2] is surjective.

Proof. Let [sx1 : y                z             0         0         0                       (A )

Suppose that [s

Then ∃λ AP such that (sx1 s2 s3                           (s1, s2, sz3)

sx00 = λsx1; sy200 = λsy2; sz3sz3

1

s1s2s3 sx100 = λs2s3x; s1s2s3 sy200 = λs1s3y; s1s2s3 sz300 = λs1s2z

Then ϕ[sx00 : sy00 : sy00 ] = ϕ[s1s2s3 sx00 : s1s2s3 sy00 : s1s2s3 sz300 ]

Then ϕ is well defined.

Let [x : y : z] ∈ Ea,b(A), we have ϕ[1x : y1 : 1z ] = [x : y : z].

Finally the mapping ϕ is surjective.

Corollary 1. Let a,b Fp, then

Card(Ea,b(AP )) = Card(Ea,b(A))

Proposition 5. A Weierstrass equation is defined a elliptic curve over AP if and only if the reduction ever Fp is a elliptic curve.

Proposition 6. Let a,b AP such that 4a3+27b2 is invertible on AP .The set Ea,b(AP ) together with a special point O = [0 : 1 : 0], a commutative binary operation denoted by +. It is well known that the binary operation + endows the set Ea,b(AP ) with an abelian group with O as identity element.

Proof. The proof in M.Virat theses[2] page 56, based on [5] page 117 corollary 6.6 and [6] page 63.

Proposition 7. Let P = [x : y : z] and P 0 = [x0 : y0 : z0] in Ea,b(AP ), we have

  1. if πEa,b(AP )(P ) , πEa,b(AP )(P 0) then P + P 0 = [p1 : q1 : r1] with p1 = y2x0z0 − zxy02 − a(zx0 + xz0)(zx0 − xz0)+(2yy0 −

3bzz0)(zx0 xz0)

q1 = yy0(z0y zy0) − a(xyz02 − z2x0y0) + (−2azz0 − 3xx0)(x0y xy0)3bzz0(z0y zy0) r1 = (zy0 +z0y)(z0y zy0)+(3xx0 +azz0)(zx0 xz0)

  1. if πEa,b(R)(P ) = πEa,b(R)(P 0) then P + P 0 = [p2 : q2 : r2] with

p2 = (yy0 bzz0)(x0y + xy0) + (a2zz0 − 2axx0)(zy0 + z0y)−3b(xyz02 +z2x0y0)−a(yzx02 +x2y0z0)

q2 = y2y02 + 3ax2x02 + (−a3 − 9b2)z2z02 − a2(zx0 + xz0)2 2a2zxz0x0 +(9bxx0 3abzz0)(zx0 +xz0) r2 = (yy0 + 3bzz0)(zy0 + z0y) + (3xx0 + 2azz0)(x0y + xy0)+a(xyz02 +z2x0y0)

Proof. The proof in M.Virat theses[2] page 57 Proposition 2.1.2. based on formulas I, II and III in the article of H.Lange and W.Ruppert[7].

Corollary 2. The mapping

πE(AP ) : E(AP )           →   [π(x) :((Fyp) :) π(z)] is a [x : y : z] homomorphism of groups.

Theorem 3. Let a,b Fp. Then

Card(Ea,b(A)) > (Card(Ea,b(Fp))−3)n +Card(Ea,b(Fp))

Proof. The proof for n = 3 exist in article of A.Chilali, S.Abdelalim[4].

For n NWe consider the set:

T = {[x : y : z]/y2z = x3 +axz2 +bz3}

= {[x : 0 : z]/0 = x3 +axz2 +bz3} = {[x : 0 : 1]/0 = x3 +ax +b}

then Card(T ) is exactly the number of the solution of

the equation x3 +ax +b = 0 therefore Card(T ) ≤ 3.

Let

G = Ea,n(Fp)−T

= {[x : y : z] ∈P2(Fp)/y2z = x3 +axz2 +bz3 avec y , 0}

= {[x : 1 : z] ∈P2(Fp)/z = x3 +axz2 +bz3}

= {[x : 1 : z] P2(Fp)/[x : 1 : z] Ea,n(Fp)} therefore Card(G) ≥ Card(Ea,n(Fp))−3 We consider the mapping:

α : Gn                     −→                     Ea,b(A)

([xi : yi : zi])ii==1n −→ [Pni=0xiei : 1 : Pin=0ziei] We have:

n                               n

(Xxiei)3 = X(xiei)3

i=0              i=0 n              n

X              2 = X(ziei)2

(        ziei)

i=0             i=0 n n           n

                       X              X

a(        xiei)(             ziei)2 = aX(xiei)(ziei)2

i=0                   i=0                               i=1

Since [xi : 1 : zi] ∈ Ea,n(Fp) then zi = xi3 +axizi2 +bzi3. It is clear that : ziei = (xiei)2 +a(xiei)(ziei)2 +b(ziei)3, i ∈{1,..,n}

n                         n                                   n                                                  n

Xziei = X(xiei)3 +aX(xiei)(ziei)2 +bX(ziei)3

i=0                      i=0                                i=0                                               i=0

n                            n                                   n                       n                                   n

X X 3 +a(Xxiei)(Xziei)2 +b(Xziei)3 ziei = ( xiei)

i=0              i=0                  i=0                  i=0                  i=0 we deduce that:

n                                n

                             X                    X

[        xiei : 1 :           ziei] ∈ Ea,b(A)

i=0                            i=0

α is injective. Then

Ea,n(Fp) ⊆ Ea,b(A) α(Gn) ⊆ Ea,b(A)

and Ea,n(Fp)∩α(Gn) = {[0 : 1 : 0]}

We result that

Card(Ea,b(A)) ≥ Card(α(Gn))+Card(Ea,n(Fp))−1

Since α is injective, then

Card(Gn) = Card(G)n Card(Ea,n(Fp)3)n we deduce that:

Card(Ea,b(A)) Card(Ea,n(Fp)1)n +Card(Ea,n(Fp))

Corollary 3. Let a and b two elements of Fp. Then

Card(Ea,b(AP )) > (Card(Ea,b(Fp))−3)n +Card(Ea,b(Fp))

Proof. In Corollary 1 Card(Ea,b(AP )) = Card(Ea,b(A)), and in Theorem 3

Card(Ea,b(A)) > (Card(Ea,b(Fp))−3)n +Card(Ea,b(Fp)) we deduce that:

Card(Ea,b(AP )) > (Card(Ea,b(Fp))−3)n +Card(Ea,b(Fp))

3 The discrete logarithm problem: complexity and security

The discrete logarithm problem for G may be stated as: Given g G and h < g >, find an integer x such that h = gx and ord(g) = q a prime number.

Baby-Step/Giant-Step Method: The idea behind the Baby-Step/Giant-Step method is a standard divideand-conquer approach found in many areas of computer science. We write

x = x0 +x1dqc

Now, since 0 ≤ x q, we have that 0 ≤ x0,x1 ≤ dqc We first compute the Baby-Steps gi ←− gi,f or0 ≤ i ≤dqc

The pairs (gi,i) are stored in a table so that one can easily search for items indexed by the first entry in the pair. This can be accomplished by sorting the table on the first entry, or more efficiently by the use of hash tables. To compute and store the Baby-Steps clearly requires O(dqc) time and a similar amount of storage.

We now compute the Giant-Steps hj ←− h.gjdqc for 0 ≤ j ≤dqc , and try to find a match in the table of BabySteps, i.e. we try to find a value gi such that gi = hj. If such a match occurs we have x0 = i and x1 = j.

since, if gi = hj , we have gi = h.gjdqc

i.e gi+jdqc = h

Notice that the time to compute the Giant-Steps is atmost O( q).

Hence, the overall time and space complexity of theBaby-Step/Giant-Step method is O( q)[8].

Pollard-Type Methods: We define a partition G = S0 S1 S2 and the function

 (hy,a,a+b mod(q))        if

f (y,a,b) =  (y2,2a mod(q),2b mod(q)) if

(gy,a+1 mod(q),b)     if

y S0

y S1 y S2

Note that if y = gahb, Then, taking (z,k,l) = (y,a,b), z = gkhl.

Then, it is possible to iterate f until finding two identical results: (y,a,b) = (z,k,l) and

gahb = y = z = gkhl glk = hlb

As gx = h, we have

gak = gx(lb) ⇒ x(l b) = (ak) mod(q)

if l b Is invertible modulo q, We find the solution x = (ak)(l b)−1 mod(q)

The time and space complexity of the method is O(           q).

Let Card(Ea,b(AP )) = M and Card(Ea,b)(Fp) = N n ≥ 3, and N ≥ 7[8].

Theorem 4.√         The time for solving DLP in Ea,b(AP ) is Ω(N),

and O(         N) for solving DLP in Ea,b(Fp).

Proof.Its clear that for solving DLP in Ea,b(Fp) is

O(N). We have the time for solving DLP in Ea,b(AP ) is

O(         M). And: M ≥ (N −3)n +N

M≥ (N −3)3 +N N2 because n ≥ 3 and N ≥ 7

M N

⇒        M = Ω(N)

Then the time complexity for solving DLP in√          Ea,b(AP ) is

Ω(N) Instead of O(           N) for Ea,b(Fp).

Example:

Let n = 3, p = 5, a = 1 and b = 1.

E1,1(F5) = {[0 : 1 : 0],[0 : 1 : 1],[0 : 4 : 1],[2 : 1 : 1],[2 : 4 : 1],[3 : 1 : 1],[3 : 4 : 1],[4 : 2 : 1],[4 : 3 : 1]}

We have Card(E1,1(F5)) = 9. Then

Card(E1,1(AP )) ≥ (E1,1(F5) − 3)3 + Card(E1,1(F5)) = 225 The following table gives the difficulty of calculating in A = F5[e1,e2,e3], and in E1,1(A) as a function of the F5 addition and the multiplication.

Operations + in F5 × in F5
+ in F5[e1,e2,e3] 3 0
× in F5[e1,e2,e3] 6 10
+ in E1,1(F5[e1,e2,e3]) 582 870
+ in E1,1(F5) 6 4

Note        that       the        computational         difficulty        in

E1,1(F5[e1,e2,e3]) is much more difficult than in E1,1(F5).

4              The fundamental algorithms

4.1       Algorithms in A

Algorithm 1 sum_1(p)

Input:(X = (x0,x1,…,xn),Y = (y0,y1,…,yn));

Output:(Z = X +Y); for i = 0 to n do: zi = xi +yi;

end for; return Z = (z0,z1,…,zn); end;

Algorithm 2 prod_1(p)

Input:(X = (x0,x1,…,xn),Y = (y0,y1,…,yn)); Output:(Z = X.Y); z0 = x0.y0; for i = 1 to n do:

zi = x0yi +xiyi +xiy0;

en for; return Z = (z0,z1,…,zn); end;

Algorithm 3 if _invertible_1(p)

Input:(X = (x0,x1,…,xn)) Output:(true,false)

for i = 1 to n do if (x0 +xi == 0 mod(p) or x0 = 0) return false;

end if

end for; return true; end;

Algorithm 4 invertible_1(p)

Input:(X = (x0,x1,…,xn)); Output:(Z = X−1); if (if _invertible_1(X) == f alse);

print(“X is not invertible); return null;

end if;

;

for i = 1 to n do

zi ; end for; return Z = (z0,z1,…,zn); end;

Algorithm 5 projection_1(p)

Input:(X = (x0,x1,…,xn)); Output: x0; return x0; end;

 

4.2       Algorithms in AP

Algorithm 6 prod_2(p)

Input: (X = ((x0,x1,…,xn),(1,s1,…,sn)),

Y = ((y0,y1,…,yn),(1,t1,…,tn)));

Output: XY;

  • = pod_1((x0,x1,…,xn),(y0,y1,…,yn));
  • = pod_1((1,s1,…,sn),(1,t1,…,tn));

Z = (A,B); return Z; end;

Algorithm 7 sum_2(p)

Input: (X = ((x0,x1,…,xn),(1,s1,…,sn)),

Y = ((y0,y1,…,yn),(1,t1,…,tn)));

Output: X +Y;

  • = sum_1(prod_1((x0,x1,…,xn),(1,t1,…,tn)), prod_1((y0,y1,…,yn),(1,s1,…,sn)));
  • = pud_1((1,s1,…,sn),(1,t1,…,tn));

Z = (A,B); return Z; end;

Algorithm 8 projection_2(p)

Input:(X = ((x0,x1,…,xn),(1,s1,…,sn)));

Output: x0; return x0; end;

4.3        Algorithms in Ea,b(AP )

Algorithm 9 projection_3(p)

Input:(X,Y,Z); Output: (π(X)(Y)(Z)); return (projection_2(X),projection_2(Y), projection_2(Z)) ;

end;

In this algorithm the + and . in AP for simplicity

Algorithm 10 sum_3(p)

Input: (X = (x,y,z),Y = (x0,y0,z0)); Output: X +Y = (p,q,r);

if projection_3(X) = prejection_3(Y) then;

p = y2x0z0 − zxy02 − a(zx0 + xz0)(zx0 − xz0) + (2yy0 −

3bzz0)(zx0 xz0); q = yy0(z0yzy0)−a(xyz02−z2x0y0)+(−2azz0 −3xx0)(x0y

xy0)3bzz0(z0y zy0);

r = (zy0 +z0y)(z0y zy0)+(3xx0 +azz0)(zx0 xz0);

else

p = (yy0 bzz0)(x0y + xy0) + (a2zz0 2axx0)(zy0 + z0y) 3b(xyz02 +z2x0y0)a(yzx02 +x2y0z0) ; q = y2y02 + 3ax2x02 + (−a3 − 9b2)z2z02 − a2(zx0 + xz0)2 − 2a2zxz0x0 +(9bxx0 −3abzz0)(zx0 +xz0); r = (yy0 + 3bzz0)(zy0 + z0y) + (3xx0 + 2azz0)(x0y + xy0) +

a(xyz02 +z2x0y0); end if; return (p,q,r); fin ;

5        Conclusion

In this work we study the elliptic curves over a special ring, and we construct a new groups with intractable discrete logarithm problem is therefore of great importance, This allows to define more secure cryptographic cryptosystems.

  1. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, (48): 203-209, 1987.
  2. Virat. Courbe elliptique sur un anneau et applications cryptographiques. Thése Docteur en Sciences, Nice-Sophia Antipolis. (2009).
  3. Abdelhakim Chillali. Elliptic Curve Over Special Ideal Ring. Int. J. Open Problems Compt. Math., Vol. 6, No. 2, June 2013.
  4. Chilali, S.Abdelalim. The Eliptic Curves Ea;b(Fp[e1; e2; e3]) Gulf Journal of Mathematics Vol 3, Issue 2 (2015) 49-53.
  5. Mumford, J. Fogarty, and F. Kirwan.Geometric Invariant Theory , volume 34 of A Series of Modern Surveys in Mathematics . Springer-Verlag, 3e edition, 1994.
  6. M. Katz and B.Mazur. Arithmetic Moduli of Elliptic Curves. Number 108 in Annals of Mathematics Studies. Princeton University Press, 1985.
  7. Lange and W.Ruppert. Complete systems of addition laws on abelian varieties. Invent.Math. 79, 603-610(1985).
  8. Nigel P. Smart. Cryptography Made Simple. Springer International Publishing, 2016.
  9. Joseph H. Silverman. The Arithmetic of Elliptic Curves. Springer, 1986.
  10. Lawrence C.Washington. Elliptic Curves Number Theory and Cryptography. Chapman & HallCRC 2008.
  11. Andreas Enge. Elleptic Curves And Their Applications To Cryptography, An Introduction. Kluwers Academic Publishers, 1999.

Citations by Dimensions

Citations by PlumX

Google Scholar

Scopus