Treadmill and Vision System for Human Gait Acquisition and Analysis

Treadmill and Vision System for Human Gait Acquisition and Analysis

Volume 2, Issue 3, Page No 796-804, 2017

Author’s Name: Paulo A. Ferreira1, João P. Ferreira1,2, Manuel Crisóstomo1, a), A. Paulo Coimbra1

View Affiliations

1Institute of Systems and Robotics, Dept. of Electrical and Comp. Engineering, Univ. of Coimbra, 3030-290 Coimbra, Portugal

2Dept. of Electrical Engineering, Superior Institute of Engineering of Coimbra, 3030-199 Coimbra, Portugal

a)Author to whom correspondence should be addressed. E-mail:

Adv. Sci. Technol. Eng. Syst. J. 2(3), 796-804 (2017); a  DOI: 10.25046/aj0203100

Keywords: Human gait, Image processing, Human joint angles, Gait characterization



Problem Downloading File? Alternate Link

Export Citations

This paper presents a developed low cost system for human gait analysis. Two web cameras placed in opposite sides of a treadmill are used to acquire images of a person walking at different speeds on a treadmill, carrying a set of passive marks located at strategic places of its body. The treadmill also has passive marks with the color chosen to contrast with the ambient dominant color. The body joint angle trajectories and 3D crossed angles are obtained by image processing of the two opposite side videos. The maximum absolute error for the different joint angles acquired by the system was found to be between 0.4 to 3.5 degrees. With this low cost measurement system the analysis and reconstruction of the human gait can be done with relatively good accuracy, becoming a good alternative to more expensive systems to be used in human gait characterization.

Received: 05 April 2017, Accepted: 18 May 2017, Published Online: 16 June 2017

  1. Paulo A. Ferreira, João P. Ferreira, Manuel Crisóstomo, A. Paulo Coimbra, “Low Cost Vision System for Human Gait Acquisition and Characterization”, 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM2016), pp. 291-295, Bali, Indonésia, December 4-7, 2016.
  2. Michael W. Whittle, “Clinical gait analysis: A review”, USA Human Movement Science 15, 1996 Elsevier Science, 369-387.
  3. M. P. Murray, “Gait as a Total Pattern of Movement”, American Journal of Physical Medicine, 46(1), pp.290- 333, 1967.
  4. J. Perry, “Gait Analysis: Normal and Pathological Function”, Slack, 1992.
  5. Yuki Ishikawa, Qi An, Junki Nakagawa, Hiroyuki Oka, Tetsuro Yasui, Michio Tojima, Haruhi Inokuchi, Nobuhiko Haga, Hiroshi Yamakawa, Yusuke Tamura, Atsushi Yamashita & Hajime Asama “Gait analysis of patients with knee osteoarthritis by using elevation angle: confirmation of the planar law and analysis of angular difference in the approximate plane”, Advanced Robotics, 31:1-2, 68-79, 2017.
  6. G. Johansson, “Visual Perception of Biological Motion and a Model for Its Analysis”, Perception and Psychophysics, 14(2), pp.201-211, 1973.
  7. S. V. Stevenage, M. S. Nixon, and K. Vince, “Visual Analysis of Gait as a Cue to Identity”, Applied Cognitive Psychology, 13, pp.513-526, 1999.
  8. V. T. Inman, H. J. Ralston, and F. Todd, “Human Walking”, Williams & Wilkins, 1981.
  9. D. A. Winter, “The Biomechanics and Motor Control of Human Movement”, 4nd Eds., John Wiley & Sons, 2009.
  10. T. P. Andriacchi and D. E. Hurwitz, “Gait Biomechanics and the Evolution of Total Joint Replacement”, Gait and Posture, 5(3), pp.256-264, 1997.
  11. Ferreira, J. P., Crisóstomo, M., Coimbra, A. P., “Human Gait Acquisition and Characterization”, IEEE Transactions on Instrumentation and Measurement, Vol. 58, nº9, September 2009.
  12. A. Sona, R. Ricci and G. Giorgi, “A measurement approach based on micro-Doppler maps for human motion analysis and detection”, Proc. IEEE International Instrumentation and Measurement Technology Conference, pp. 354–359, May 2012.
  13. G. Panahandeh, N. Mohammadiha, A. Leijon, and P. Handel, “Continuous hidden Markov model for pedestrian activity classification and gait analysis”, IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 1073–1083, May 2013.
  14. A. Sona, R. Ricci, “Experimental validation of an ultrasound-based measurement system for human motion detection and analysis”, in Proc. IEEE International Conference on Instrumentation and Measurement Technology (I2MTC), May 2013
  15. A. Balbinot, Schuck, A.,Bruxel, Y., “Measurement of transmissibility on individuals”, in Proc. IEEE International Conference on Instrumentation and Measurement Technology (I2MTC), May 2013.
  16. Long Y., Du Z., Dong W., Wang W. “Human Gait Trajectory Learning Using Online Gaussian Process for Assistive Lower Limb Exoskeleton”. In: Yang C., Virk G., Yang H. (eds) Wearable Sensors and Robots. Lecture Notes in Electrical Engineering, vol 399. Springer, Singapore, 2017.
  17. Kateřina Sulovská, Eva Fišerová, Martina Chvosteková, Milan Adámek, “Appropriateness of gait analysis for biometrics: Initial study using FDA method”, Measurement (Elsevier), Volume 105, pp 1-10, July 2017.
  18. Mengyuan Liu, Hong Liu, Chen Chen, “Enhanced skeleton visualization for view invariant human action recognition”, Pattern Recognition (Elsevier), Volume 68, pp 346-362, August 2017.
  19. M. S. Nixon, et al., “Automatic Gait Recognition”, in BIOMETRICS – Personal Identification in Networked Society, A. K. Jain, et al. Eds., pp.231-249, Kluwer, 1999.
  20. J. K. Aggarwal, Q. Cai, W. Liao, and B. Sabata, “Nonrigid Motion Analysis: Articulated and Elastic Motion”, Computer Vision and Image Understanding, 70(2), pp.142-156, May 1998.
  21. Ferreira, J. P., Crisóstomo, M., Coimbra, A. P., Carnide, D., and Marto, A., “A Human Gait Analyzer”, 2007 IEEE International Symposium on Intelligent Signal Processing-WISP’2007, Madrid, Espanha, 3-5 Outubro, 2007.
  22. Bux A., Angelov P., Habib Z., “Vision Based Human Activity Recognition: A Review”. In: Angelov P., Gegov A., Jayne C., Shen Q. (eds) Advances in Computational Intelligence Systems. Advances in Intelligent Systems and Computing, vol 513, Springer, 2017.
  23. S. K. Natarajan, X. Wang, M. Spranger and A. Gräser, “Reha@Home – a vision based markerless gait analysis system for rehabilitation at home”, 2017 13th IASTED International Conference on Biomedical Engineering (BioMed), pp. 32-41, Innsbruck, Austria, 2017.
  24. Vicon: Bonita. Internet, May 8, 2017, available at:
    [25] NDI Measurement Sciences: Optotrak-Certus. Internet, May 8, 2017, available at:
  25. OpenCV: Camera calibration with OpenCV. Internet, May 8, 2017, available at:
  26. Miles H., Seungkyu L., Ouk C., Radu H., “Time of Flight Cameras: Principles, Methods and Applications“, Springer, 2013.
  27. Andrea F., Juergen G., Helmut G. Xiaofeng R., Kurt K., “Consumer Depth Cameras for Computer Vision: Research Topics and Applications “, Springer, 2013.
  28. Angelo Matsas, Nicholas Taylor, Helen McBurney, “Knee joint kinematics from familiarized treadmill walking can be generalized to over ground walking in young unimpaired subjects”, Elsevier, Gait and Posture 11 p46–53, 2000.
  29. J.J.H.López, A.L.Q.Olvera, J.L.L.Ramirez, F.J.R.Butanda, M.A.I. Manzano, D.Luz A.Ojeda, “Detecting objects using color and depth segmentation with Kinect sensor”, The 2012 Iberoamerican Conference on Electronics Engineering and Computer Science, 2012.
  30. Michael Van den Bergh, Luc Van Gool, “Combining RGB and ToF Cameras for Real-time 3D Hand Gesture Interaction”, IEEE Workshop on Applications of Computer Vision, 2011.
  31. Holden J.P, Chou G, Stanhope S.J, “Changes in Knee Joint Function Over a Wide Range of Walking Speeds”, Clinical Biomechanics Vol. 12(6): 375‐382, 1997.
  32. P.Howard, Brian J. Rogers, “Perceiving in Depth: Stereoscopic Vision“, Vol. 2. Oxford, 2012.
  33. A. A. Biewener, C. T. Farley, T. J. Roberts and Marco Temaner, “Muscle mechanical advantage of human walking and running: implications for energy cost”, J Appl Physiol 97:2266-2274, 2004.
  34. Margareta Nordin, Victor H. Frankel, “Basic Biomechanics of the Musculoskeletal System”, 4th Edition, Wolters Kluwer, 2012.