Articles
Novel CPW-fed UWB antenna for X-band applications
Qaddi Mohamed Hamza, Srifi Mohamed Nabil, Mharzi Hassan
Adv. Sci. Technol. Eng. Syst. J. 4(2), 78-82 (2019);
View Description
An ultra-wideband (UWB) printed antenna (PMA) powered by a compact coplanar waveguide (CPW) is featured. The propounded antenna is supposed to cover the UWB range from 7 GHz to 10 GHz, with return loss values below ?10 dB in the whole frequency range, for X-band applications, often used for dense satellite communications. The 30 x 35 x 1.6 mm3 antenna is mounted on a dielectric substrate named FR-4 with thickness h=1.6mm, relative permittivity ?r=4.3 and loss tangent of 0.025. All the conception and simulated results are realized using the 3D Electromagnetic Simulator software CST Microwave Studio. The results show wide bandwidth and good omnidirectional radiation patterns in the operating band, with a very reduced size. The global satisfying achievement with a very simple structure and small size makes the propounded antenna attractive for use in ultra-wide band (UWB) systems, especially for X-band applications.
Optimization of Statcom in a Nouakchott Power System
Ethmane Isselem Arbih Mahmoud, Mohamed Maaroufi, Abdel Kader Mahmoud, Ahmed Yahfdhou
Adv. Sci. Technol. Eng. Syst. J. 4(2), 333-339 (2019);
View Description
STATCOM a shunt connected Flexible Alternative Current Systems (FACTS) device using for fast control of voltage and reactive power control in the power grid. To optimize Nouakchott power system at 2030 year, we anticipate both generation and demand grow. A set of nonlinear equations are solved through Newton Raphson method and programmed in PSS/E and MATLAB. The results will be analyzed for two situations, without STATCOM and with STATCOM connected to the grid. The found results show the degree of performance and capacity of STATCOM to reduce the power mismatches, improve the voltage at buses and reduce the harmonics in Nouakchott power system. The impact of the renewable energies to improve transient stability of system will be considered. In the end, the power system is optimized at 2030 year by integration the STATCOM device. It will be generating or absorb reactive power to stabilize the system voltage at 1 pu. That means enhances transits active power thereby providing additional capacity to consumers.
Novel Design of Multiband Microstrip Patch Antenna for Wireless Communication
Youssef Rhazi, Outman El Bakkali, Youssef El merabet, Mustpaha Ait lafkih, Seddik Bri, Mohamed Nabil Srifi
Adv. Sci. Technol. Eng. Syst. J. 4(3), 63-58 (2019);
View Description
This paper presents a novel six band frequency reconfigurable antenna for 2.4 GHz (Lower Worldwide Interoperability for Microwave Access (WiMAX)), 5.3 GHz (Wireless Local Area Network (WLAN)) and 9.1-10.2 GHz (X-band) frequency bands. The proposed antenna has a compact size of 22mm_30mm at lower resonance of 4.2 GHz and is printed on FR4 material with height h =1.6 mm, loss tangent _= 0.02 and dielectric constant _r=4.4. Multiband phenomenon in the designed antenna is reached by inserting a circular hole inside a rectangular patch antenna and rectangular slots in the ground plane. During simulation, the designed antenna exhibits hexa band with S11<-10 dB bandwidth of about 4.76% (4.1- 4.3 GHz), 4.71% (5.21- 5.43 GHz), 16.27% (6.55-7.25 GHz), 1.83% (7.02-7.15 GHz), 0.87% (9.07-9.15 GHz) and 4.90% (10.02- 10.5 GHz) under simulation. We used HFSS (high frequency structured simulator) software for simulation of antennas and to find out the results. We keep changing the design of the antenna, as our objective is to achieve miniature antenna with better performance than traditional one.
Modeling of Grid-Connected Photovoltaic System Installation in Moroccan Ibn Tofail University
Maroua Bouksaim, Yassin Acci, Mohamed Nabil Srifi
Adv. Sci. Technol. Eng. Syst. J. 4(3), 150-155 (2019);
View Description
The main importance of solar photovoltaic energies research is to meet the many environmental demands of the energy challenge, to maximize power and to reduce the costs of photovoltaic (PV) systems to reply the energy needs of population. In the present research work, the first objective is to study the performance and the output energy can be produced by a photovoltaic panel installed in the parking of Ibn Tofail University at Kenitra – Morocco. These provide the basis for developing a simple and efficient model for the PV panel electrical behavior. As the output powers of photovoltaic system are influenced of the solar irradiances (G) and cell temperature (T); the effects of varying the two variable factors, series and shunt resistances, and partial shading on the output of the PV system are presented. Then, the PV system is connected to three phases grid using Boost converter controlled by the perturb and observe technique of Maximum Power Point Tracking and using the DC-AC inverter. The Matlab/Simulink software is used to model the system and to show the simulations result.
A Perceptually Optimized Embedded Image Coder and Quality Assessor Based Both on Visual Tools
Abderrahim. Bajit, Mohammed. Najid, Ahmed. Tamtaoui, Abdellah. Lassioui
Adv. Sci. Technol. Eng. Syst. J. 4(4), 230-238 (2019);
View Description
In this paper, we propose a new Perceptually Optimized Embedded Zero Tree Image Coder EVIC and its improved version MEVIC. The coder presents a new perceptual model to weight wavelet coefficients to enhance SPIHT embedded coding. The new visual coder aims to improve the visual quality obtained by the reference SPIHT coder for a given targeted bit rate. In addition, the paper presents three-evaluation approaches (Objective, Subjective and Quantitative) based all on a quality score PS given by the objective visual quality metric named MWVDP which is an optimized version of Daly Visible Difference Predictor VDP. It incorporates the human visual system HVS properties, correlates largely well with the mean opinion score known as MOS and provides an important feature in image coding quality assessment. The visual coders EVIC/MEVIC are fully dependent to the HVS properties, from which, they include various masking effects and visual models. Based on this model, the visual coders weight the original wavelet coefficients and reshape their spectrum to optimize the perceptual quality coding for a given observation distance and bit rate. The visual weighting model processes within all wavelet sub-bands: 1) the contrast sensitivity filter CSF to mask invisible frequencies, 2) the threshold elevation to correct the luminance and elevate the contrast, 3) the Just Detectable Distortions JND to quantize visually the wavelet coefficients according to their corresponding thresholds. The visual coder EVIC and its optimized version MEVIC have the same software complexity as their reference SPIHT. However, they perform qualitatively and quantitatively excellent results experimentation and features improvement either in image coding and quality assessing.
Intelligent Wireless System for PV Supervision Based on The Raspberry Pi
Youssef Bikrat, Khalid Salmi, Kamal Azghiou, Ahmad Benlghazi, Abdelhamid Benali, and Driss Moussaid
Adv. Sci. Technol. Eng. Syst. J. 4(6), 94-98 (2019);
View Description
Photovoltaic systems and monitoring go hand in hand. There is no better way to check the health of your photovoltaic system than to utilize a remote monitoring system. Monitoring and tracking of photovoltaic systems are crucial for reliable functioning and optimal yield of any solar electric system. This paper aims to introduce a remote electronic monitoring system. The said system will allow us to retrieve, process and transfer, in real-time, the photovoltaic station data remotely. The main objective of this work is to build a robust system that could be said as a reliable and low-price system, which will allow the transfer of the installation state to the remote operator in real-time or store it on an online database. Our intelligent wireless system is contained two parts, the first part including a hardware system designed around a microcontroller card (the Raspberry pi3 card) and a second part including the software part, which is the installation and configuration of open source applications on the Raspberry card. On the other hand, the configuration of an online database is presented. The database will offer us the possibility to store and process the station’s data remotely and in real-time. Moreover, we also developed an application that plays the role of an interface for our monitoring Raspberry Pi3 machine.
A Psychovisual Optimization of Wavelet Foveation-Based Image Coding and Quality Assessment Based on Human Quality Criterions
Abderrahim Bajit, Mohammed Nahid, Ahmed Tamtaoui, Mohammed Benbrahim
Adv. Sci. Technol. Eng. Syst. J. 5(2), 225-234 (2020);
View Description
In the present article, we introduce a foveation-based optimized embedded and its optimized version image coders thereafter called VOEFIC/MOEFIC and its related foveation wavelet visible difference predictor FWVDP coding quality metric. It advances a visually advanced foveal weighting mask that regulates the wavelet-based image spectrum before its encoding by the SPIHT encoder. It intends to arrive at a destined compression rate with a significant quality improvement for a disposed of binary budget, witnessing separation, and a foveal locale that locates the object in the zone of concern ROI. The coder embodies a couple of masking achieves build on the human psycho-visual quality criteria. Hence, the coder administers the foveal model to weigh the source wavelets samples, reshapes its spectrum content, adapts its shape, discards or somewhat shrinks the redundant excess and finally enhances the visual quality. The foveal weighting mask is computed indoors wavelet sub-bands as come after. First, it administers the foveal wavelet-based filter depending on the intention point so that it removes or at least reduces the imperceptible frequencies around the zone of concern. Next, it augments the picture contrast according to wavelet JND thresholds to manage brightening and nice the contrast above the distortion just notable. Once refined, the weighted wavelet spectrum will be embedded coded using the standard SPIHT to reach a desired binary bit budget. The manuscript also advances a foveation-based objective quality evaluator that embodies a psycho-visual quality criterion identified with the visual cortex framework. This investigator furnishes a foveal score FPS having the power of detecting probable errors and measuring objectively the compression quality. Keep in mind that the foveal coder VOEFIC and its visually upgraded variant MOEFIC, have similar complexity as their reference SPIHT. In contrast, their gathered data highlight the visual coding advancement and the boost ratio purchased in its quality gain.
Design, Implementation and Performance Analysis of a Dual Axis Solar Tracking System
Ba Thanh Nguyen, Hong-Xuyen Thi Ho
Adv. Sci. Technol. Eng. Syst. J. 5(3), 41-45 (2020);
View Description
This study presents the design and construction of the Dual Axis Solar Tracking System to ensure maximum energy gain. The solar tracking system will automatically follow the sun’s position to maximize the intensity of the light emitted from the sun. When the light intensity decreases, the system automatically changes its direction to get the maximum light intensity. Light Dependent Resistor (LDR) is used to track the coordinates of the sun. The two servo motors that receive signals from the central processing unit will turn the solar panel to the appropriate location for optimum performance. The energy results obtained by the dual-axis solar system are compared with single and fixed solar systems. This research provides optimal solar energy usage.