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The daily treats model reduction finite frequency (FFMR) design for Takagi Sugeno (T S)
systems. This work is to FFMR design in such a way whether augmented model is steady
get a reduced H, index in FF areas with noise is established as a prerequisite. To highlight
the importance of suggested process, a practical application has been made.

1 Introduction

Fuzzy models T-S [1] call for wide observation of various practi-
cal industrial applications, mainly as the recognized T-S samples
actually approximate nonlinear shapes. The essential characteristic
on the sample TS is its general estimation of a nonlinear function.
There are large number of results of literature that treat the globally
difficulties utilizing the TS fuzzy samples, see [2]-[7].

The our existing sources on model reduction problem and distur-
bances are based on the whole full frequency (EF) area, which will
give several types of model reduction design [8]-[13]. However,
most practical industrial applications work in a FF domain. So far,
a few applications have been made [14]-[19]. Thus, for this we will
present new approaches to solve these problems.

The primary goal of our work is to define a fuzzy model reduc-
tion of discrete Model over FF ranges such a way that the augmented
model is steady get a reduced H., index in FF areas with disturbance
is established as a prerequisite. we have also presented an example
of simulation in order to exemplify the efficiency of the suggested
method.

Notations :

e 7T” : Matrix transposition
9

e 7 x” : Matrix symmetry

e M > 0: matrix M is positive
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e sym[D]: D+ D*
o He[D]: 22

2 Problem statement

2.1 System formulation

Envisage the nonlinear model presented by :
Rule x: IF £ (u) is T!,... £,(w) is T, THEN

M.z(u) + Nid(u)
Jez(u)

Z,41 =

w(u) (1)
2
with z(u) is the input; w(u) is deliberate output; M., N, and J, are
system parametres; {;(u) ,..., £,(¢) the premise variables. d(u) is a
known disturbance signal located in a following FF areas

3)

We describe the nonlinear system (1) employ singleton fuzzifer,
center-average and inference product by the following relation :

0 = [0€Rl 61<6<t; 81,02 € [-m, +7l,

MDx(u) + N(d(u)
JDz()

2y =

w(u)

4)
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where
q q
M) = > LMg NO= ) LNg
x=1 x=1
q
m = L )
x=1

In this work, a fuzzy MR function is represented by :

Rule x: if £1(u) is T7... £,(w) is T, then
Zu+1) = M2+ Ndu)
W) = Jaw (6)

with Z(u) is state MR vector; W(w) is the output MR function,
M,, N, and J, are parameters should exist defined.

We get defuzzified for system (6) as following :

2u+1) = M®Dzw + Bddw)
W) = Jdak ©)
with
q q
M(i) = Z ixMx’ B(i) = Z ixNxa
x=1 x=1
A A q A A
i = i @®)

Consider V(u) = [

;&; ], g(u) = w(u) — W(u). Then, the error

system is as follows:

Vu+1) = MDDV + N, Dd()
g = JODHVQ )
where
b = M0 g | weo<[ 3
Joh = [Jo -3 | (10)

Definition 2.1 [20] Consider 8 > 0, if the following inequality is
verified:

D& we < B d" (wdw) (11)
n=0 1=0
(12)
From Parseval function [21], we get :
[ e osione < [ dnre (13)
(14
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We express the question of this work by : we design an appro-
priate fuzzy MR system (7) such that a error model is well-posed,
stable satises the FF index:

f g’ (0)g(0)do < B f d’ (0)d(0)do (15)
0€o 0€o

2.2  Preliminaries

Lemma 2.2 [22] Let ® € R™, L € R™" and S € R”*™. Then, The
following equations are the same:

e O'LO<OVO#0:8D=0

e STLSt <0

e 19eR: L-68"S<0

e ADeR™P : L+ DS+STDT <0

Lemma 2.3 Error system (10) is stable and FF in (15) is fulfilled,
on condition that there are B, 0 < C, satisfying

mah Neh || B8 B0

1 0 e IBC =B —2c05(34)C
M@l N@I Jabieh o
| D NGD [ TR By [0

(16)
with é3:@2‘£@1’ @4:@;@1 .

Proof 2.4 The substantiation of Lemma 2.3 is defined in appendix.

3 FF performance analysis

Theorem 3.1 Error model (10) is stable, FF index (15) is fulfilled,
on condition that there are X, B, C, & Z, T satisfying C > 0,
X > 0and

[T T ZNAD-TT 0
S T Jab |
* % s 0
| % * * -1
(17)
A Pr
with
o= 8-Z-Z0;
T o= ¢BC-&"+ ZAWD);
T o= —B-2cos@4)C +EMWUT) + M 1,HET;
T o= &N+ M a,hI @)
U5 o= —BI+TNGH+N @,
A = —X+EMUY +M A,DE.
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Proof 3.2 First, Condition (17) maybe written as 0, X = [ )il §§ > 0, M), N, JO), &, &, Z1, Zo, T, V,
L T
M1, N@,D 0 Jabh 0 satisfying
I 0 [
0 0 1 o _ _ r A
0 ! Ay A A -2 A+AEM(I)
A I 0 * Ay Ap M)
( 2 )( 0 J&,h 0 ) 0 1 = % Ay —Xo+M'(DZT <0
-p°1 0 0 1 0 0 N N N ~X;
B eoC I 00 | (25)
¢ —B - 2c0s(34)C 01 0 ) ) ) ) )
”) N(l i) [T Tz Tz e Ths 0
<0 (19 * T Ths s Ths 0
ok Tz T s JT(D <0
% ok Iy Tas —jT(i)
Denote x « " « s 0
& Vu+1) [ * * % % * -1
D= |z o= Vw |; 26)
T d(w)
S = [ -1 mabh N | (20) Wwith
With the help of Lemma 2.2, we have Ay = B1-8 -8 An=X,-EV-E;
7.1 T Az = AW -Z]; bn=X3-V -V,
DS+ sl +| 0 JED O x o T n~T.
0o 0 I Ay = EMD); Az =-Xi+ZMD+M DZ;;
[1 0 Ho N((A) o} é (1)
0 B 1||l0 0 I 0 0 T o= B1-&-E&; In=8-EV-E&;
3 B0 I 0 0 W= G -ZI+EAD; T =By -V =V
[ eIEC B -2c05(34)C H 010 ]< 0 @b Tu = 2Cy - Zh+ EMG):
= — Jo3 1(7)-
With the help of Lemma 2.2, given (16). ?24 = PG+ MEI)A’ ;
Consider the Lyapunov equation : ?15 = &IND+ E~N El) =71
Ts = ZoNO +M();
mah ' x o || #mad ) T = —Bi - 2005@)C1 + ZiMMD + M DT
-X T = =By - 2c05(B)C2 + M (DZ3;
Let Tis = ZIND+MT (DT
Ty = 0+ EMO);
0 Vu+1) | = X 0 | Ta = —B3—2c05(84)C3; Tus = ZoN(D);
Vw | TT0 =X ] Tss = B+ sym[TINO)]
_ gy owmah 1. _ T r 17
S = [ I Mah ]’ D [ & Z ] (23) The following parameters as
Using the conditions in 2.2, then .
X 0 & o MO = VM,
[ 0o -x|*| z ][ -1 M |+ ND = VN 27)
el ORI (()
| -1 mab | [ Z ] <0 (24)
Proof 4.2 Parameterise slack matrices &, Z, T in Theorem 3.1 as

which is nothing but (18).

& Z» 0
| 77 0| (28)

& EV]. o |z o]
o= |8 Vo2

4 FF performance Design .

Theorem 4.1 Error model (10) is stable, FF index (15) is fulfilled,

on condition that there are B = B 5 ,C = G G >  where E = [ .
* 83 * C3 0
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Moreover, the Theorem 4.3 is to solve the FEFMR problem in the FF
index (15).

Theorem 4.3 Error model (10) is stable, FF index (15) is fulfilled,

e[ e

.. B
on condition that there are B = !
* 83 CS

0.x=|% B0t N T & 6 21 20 T,
3
satisfying, with x, t € {1,2, ...,m}
[ Ay A A3 -ZF -Ul-E:?VIx
Ay Ay Ay
% Ay -Xo+AlZ) <0
% % % -X3
(29)
i jlz j13 ?14 fiIS 0
* T s e Ths 0
« % T T s JT
~ ~ <T <0
* * 0 Ty Tas =J,
% * * * :|55 0
* * * * * -1
(30
with
Ay = B -8 -8]; Ap=X,-EV-8&L;
Az = &M, -Z;
Ry = X3-V-V0
Rys = &My Az =-X\+ZiM,+ M Z];
T o= B -8 - =8,-EV-E&;
T3 = ¢CI-ZI+EM; T =By -V -V
T4 = eCy - ZF + EM,;
ﬁ24 = ejé3C3 +Mx;
s = &N +EN,-T]; Tos = ZoN, + M
T = —B1-2c05(84)C1 + ZiM, + M Z;
T = =By —2c05(04)C2 + M| Z5;
s = ZIN+MIT]; Tas =70, + E;M;
a4 = B3 —2c05(84)C3; Tas = ZoNy;
Tss = B+ symTiN,].
The following reduced-order parameters as :
1\A/[t = (V_IMX
N, = VN
o= I 31)
Proof 4.4 We propose the following equations :
g m
> A,
x=1 =1
g m
Dk (32)
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Therefore, us find Theorem 4.1.

Remark 4.5 If us pick C = 0, we mastery employ theorem 4.3 to
settle the H., MR nonlinear systems over EF range.

S Numerical Example

Consider a fuzzy system in discrete time, represents in [12] :

J = [1.4419 0.6720 0.1387 —0.8595]
J, = [1.3329 0.6720 0.1387 —0.8478];

0.1612  0.0574 —0.0144 0.1846
M, - 0.0434 —0.3638 0.5258 —0.0357 |
7 | —0.0747 -03146 -0.0487 —-0.1043 |’

—0.1664 0.4031 0.0347  0.2864

0.1312  0.0474 -0.0044 0.1546
M. - 0.0234 —0.3018 0.4258 —0.0357
27 | —0.0554 —0.2421 -0.0367 —0.0843 |

| —0.1551 0.3031  0.0247  0.1864

0.2023 0.0123

-0.2313 ~0.1313
Ne= b o7 P M= Zoiss |

0.1279 0.1179
E = [1 0 ]

(33)
The normalized membership function :
1 —sin(z
Tim(w) = #
Ty(zi(w) = 1-Ti(z1(w) (34)

Via using Theorem 4, the obtained matrix parameters of FF H,,
reduced order systems are the following :

e EFarea: (—mr <9 <m)

P ~0.7415 -0.7001 | —0.1925
[% ! } _ 07145  0.1925 04512 |
i |- Z0.8874 —1.2145 _
N ~0.8840 0.7415 0.1325
[4 2} = -0.6245 0.2415 -0.4125
bl - 12021 —1.1325 —
(35)
e FFarea: (5 <9<7)
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MR ~04415 02145 | —0.1125
[f } = | 01745 01325 | 01954 |
Ji| - —0.2314  0.7458 _

| & ~0.6614 02845 | —0.1354
[4 2] = -0.3325 0.1325 0.2157

J2 | - ~0.3458  0.5842 -

©(36)

The comparison result with the technique proposed in Theo-
rem 4.3 illustrate in Table 1, that indicate the little conservation of
the method suggest in the paper.

The initial cases are proposed null. Figure 1 illustrate the errors
e(k) from various approaches. It illustrate the FF method have the
best performance in comparison with the EF approach.

Table 1: Ho performance apply from various approaches

Frequency Methods Bmin Max error
-n<o<nm [12] 0.9715 0.0915
-n<o<m Th 4.3 (Q=0) 0.5514 0.0423
T<o0<% Th43 0.1305 0.0088
0.1 T
+ —FFTh38
onel: ———EF Th38 (0=0) ||
o <oe-EF[10]

Error efu)

Figure 1: Error response of g,.

The ratio W(y) is presented as :

W = D g wew/ Y dwdw (7
n=0 u=0

Figures 2 indicate the the ratio in (37), we could notice whether the
error model is stable, knowing that the initial Condition are null,
that indicate the little conservation of the method suggest in the

paper.
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0.25 T T T T T
Radio d (W)
—y=0.2105
0z2r q
01ar q
e
=
0.1 q
0.05 q
D 1 1 1 1 1
] 100 200 300 400 500 500
W

Figure 2: Value of W(u).

6 Conclusion

This work, we dealt with problematic for the FF model reduction
design of nonlinear systems over FF ranges. We have suggested
a model reduction process in order to minimize the conservatism
design using the frequency information of the disturbances and we
have assumed that the disturbances are known in a recognized FF
domain. Also, systematic techniques have been suggested for the
generation of a model reduction which ensures asymptotic stabil-
ity and FF H,, index, at the basis of a more general linearization
procedure.
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7 Appendix

Multiply

equation (16) of [

to the left, we get

Vi)
d(w)

()" dw) + tr(C(g@ V(wVu + 1T
e BV (u + DV () - 2co5@1)V)V)"))
Viu+ DBV +1) - V@BV + g" (wegw) <0

By taking the sum of yu =
lim,_, ;; V(u) = 0 we get

+ TrC Z(e‘i(@3V(;1)V(;1 + )T + eV + DV ()
p=0

] for right and by its transposition

(38)

0 in m,seeing that V(0) = 0 and

e wew - dw dw)
=0 1=0

2cos(@) V() V()"

)N<0

From Parseval function [21], we get :

Then :

1 7T
B f d’ (©)d(@)do
T J-n
- TSI [ A Giem@d

1 T
- 5 f g (©)g(0)ds 2 0
T J-n

cos(0 — @3) —cos(@4) = 0

(39)

(40)

(41)

have toward all gifted 9; < g < 9,. From C > 0 and (41), it attends

that

Tr[

0s(0 — 0c) — cos(d4)

T

f M @CM@)da] > 0

(42)

seeing that, (40) and the FF of signal input §; < 8 < 92, thus (15) is

fulfilled.
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