

www.astesj.com 176

Multi-Robot System Architecture Design in SysML and BPMN

Ahmed R. Sadik*, Christian Goerick

Honda Research Institute Europe, 63073, Germany

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 30 November, 2020
Accepted: 08 July, 2021
Online: 20 July, 2021

 Multi-Robot System (MRS) is a complex system that contains many different software and
hardware components. This main problem addressed in this article is the MRS design
complexity. The proposed solution provides a modular modeling and simulation technique
that is based on formal system engineering method, therefore the MRS design complexity is
decomposed and reduced. Modeling the MRS has been achieved via two formal
Architecture Description Languages (ADLs), which are Systems Modeling Language
(SysML) and Business Process Model and Notation (BPMN), to design the system
blueprints. By using those abstract design ADLs, the implementation of the project becomes
technology agnostic. This allows to transfer the design concept from on programming
language to another. During the simulation phase, a multi-agent environment is used to
simulate the MRS blueprints. The simulation has been implemented in Java Agent
Development (JADE) middleware. Therefore, its results can be used to analysis and verify
the proposed MRS model in form of performance evaluation matrix.

Keywords:
Multi-robot System Model
Model-based System Engineering
Multi-agent Simulation
Systems Modeling Language
Process Model and Notation
Java Agent Development

1. Introduction

This paper extends the work presented at the 2019 International
Conference on Mechatronics, Robotics, and System Engineering
(MoRSE) [1]. Related work can be also seen in [2].

Multi-Robot System (MRS) is a cyber-physical system that
contains more than one robot, each of them owns a unique set of
capabilities. The idea of an MRS is to solve a complex problem by
collectively using the current capabilities of existing robots [3].
Therefore, the MRS must match the given problem with the
existing robots’ capabilities, to plan the solution steps. Many MRS
applications can be seen in swarm robotics, cooperative automated
transportation, unmanned aerial vehicles, and cooperative
manufacturing [4]. The advantages of an MRS is increasing the
performance by saving the time and the effort to solve the problem.
Moreover, distributing the solution among different robots
provides more computational processing power, this means faster
and higher capacity to solve many problems simultaneously [5].

Implementing an MRS without a proper system architecture
design is a crucial mistake that is often done by the system
developers. Because the system requirements and functionalities
are lost in a non-human readable machine code. Therefore, in this
article we purpose a model driven development approach that uses
the system model as the main software artifacts [6]. The proposed

design approach in this article is based on the V-Model, which is a
de facto solution for complex systems such as MRS.

Figure 1: The V-Model simplified version – adapted from [6]

The V-Model shown in Figure 1 describes the required stages to
build an MRS. In the first stage of the V-Model, the system is
decomposed. In this stage, the system components and architecture
are designed based on the system requirements. In the second
stage, the implementation of the MRS is carried out. The
implementation of an MRS often involves the coding the
individual components. In the final stage, the MRS individual
components are tested through unit tests, then integration tests are
carried out over sub-systems and eventually the overall integrated
system. This article focusses on the first stage of the V-Model to
build an MRS. As the design stage is the most curtail stage of an

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Ahmed Rabee Sadik, ahmed.sadik@honda-ri.de

Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj060421

http://www.astesj.com/
mailto:ahmed.sadik@honda-ri.de
http://www.astesj.com/
https://dx.doi.org/10.25046/aj060421

A.R. Sadik et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com 177

MRS system building, because all the following stages are
depending on this design.

Section 2 of the article describes the problem and the use case
of concern. Section 3 introduces the background that that is needed
to model and simulate the use case. Section 4 discusses the system
requirements that are used to build and evaluate the system
performance Modeling the use case is explained in detail in section
5, while its simulation is shown in section 6. Therefore, the
performance analysis is explained in section 7. Ultimately, the last
section concludes the work and the future research.

2. Problem and use case

The main article objective is to design an MRS architecture
model that can be simulated and evaluated due to a predefined
evaluation criterion. An MRS architecture is an overall system
description that abstracts its functionalities, logic, and constrains
[7]. Accordingly, it provides an analysis tool to grasp and improve
system characteristics, and a conceptual model that can be used as
the system blueprints [8]. In this work, SysML block definition
diagram is used to describe the proposed MRS architecture and
components as shown in Figure 2 and Figure 3. SysML diagrams
will be explained in the next section as many of them are used in
constructing the proposed MRS design.

Figure 2: SysML block definition diagram for the proposed architecture

Figure 3: SysML internal block diagram for the proposed MRS architecture

Figure 2 is the proposed MRS block definition diagram. The
block definition diagram defines the main components of the
architecture, which are the Requests Manager (RqM), the planner
(PLN), and the Robots Manager (RbM). Figure 3 shows the
proposed MRS internal block diagram that describes the
connections among the components as illustrated in Figure 2.
When the RqM receives a request (Rq), it checks if there is a plan-
blueprint (Pb) in the Knowledge Base (KB) to fulfill this Rq. A Pb
is a sequence of tasks (T), i.e., Pbi = {T1,...,Tn}, where n is the
number of tasks and could be different from one blueprint to
another. A task is a function of the capabilities (C) of the robot (R),
i.e., Ti = f (Cx, Cy, …), where each robot owns different capabilities
set. If the RqM finds a match between Pb to and a Rq, it forwards
the Pb to the PLN. The PLN checks the robots’ availability, and
their capabilities to achieve the tasks in the Pb. If more than a robot
owns the capabilities to fulfill the task, the PLN compares the

number of tasks that have been achieved by these robots in the past.
Based on this comparison, the PLN selects a robot to assign for the
task. If the PLN complete the matching of all the tasks with the
robots, it sends a verified plan (Pv) to the RbM. The RbM sends
the tasks to the robots and waits their response.

Figure 4: UML/SysML use case diagram for the proposed architecture

The use case diagram in Figure 4 shows three variation types
that are considered during the simulation. First is the Pbs variation,
by adding, editing, or omitting a Pb. Second is variation in the
number of the available robots. The maximum number of robots
that can exist is constrained to three. The robots are constrained to
register or deregister through the RbM. Third is the variation in the
robots’ capabilities, by updating or editing the capabilities of a
robot. the robot is constrained to deregister to be able to update its
capabilities, then register again through the RbM, which
automatically updates the robot new capabilities in the KB.

3. Solution preliminaries

3.1. Systems Modeling Language

SysML is a general-purpose modeling language that is derived
from Unified Modeling Language (UML) [9]. SysML and UML
belong are both developed by Object Management Group (OMG).
UML is is a visual modeling language that is particularly used to
construct, design, and document the software systems in fields
such as web-development, telecommunication, banking, and
enterprise services [10]. While SysML is extending and modifying
UML diagrams to fit complex industrial systems that involve
variety of hardware, software, information, and processes (e.g.,
Aviation, Space, Automotive) [11].

SysML
Diagrams

Behavior
Diagrams

Activity
Diagram

Sequence
Diagram

State
Machine
Diagram

Use
Case

 Diagram

Requirement
Diagram

Structure
Diagrams

Block
Definition
 Diagram

Internal
Block

 Diagram

Parametric
 Diagram

Package
 Diagram

New diagram type

Modified diagram type

Same as UML

Figure 5: SysML Taxonomy and comparison to UML

11

«block»
Multi-Robot System

«block»
Requestor

«block»
Requests
Manager

«block»
Planner

«block»
Robots

Manager

«block»
Robot

11…* 1…*

Request
feedback

Request
Requestor

[1…*]
Requests
Manager Planner

Plan validity feedback

Robots
Manager

Robots
tasks

Plan execution feedback

Plan
blueprint

Knowledge Base (KB)

Pl
an

bl

ue
pr

in
t

Robot
[1…*]

R
ob

ot
s

ca
pa

bi
lit

ie
s

R
ob

ot
s

av
ai

la
bi

lit
y

R
ob

ot
s

ta
sk

s
hi

st
or

y

R
ob

ot
s

st
at

us
R

ob
ot

s
ta

sk
s

hi
st

or
y

R
ob

ot
s

ca
pa

bi
lit

ie
s

Task
assignment

Task status
feedback

Registration/
deristeration

System User
(Requestor)

Cooperative entity
(Robot)

Receive
Request

Send request/
plan execution

feedback

Multi-Robot System

Find the associated
plan blueprint in the

KB

Build a plan based on
the current status of the

robots

Execute a
plan

Register/deregister
to/from the system

Discover the robot
capabilities

Change the current status
of the robots in the KB

Add/modify/remove the
plan blueprints in the KB

System
Operator

(Designer)

«include»

«include»

«include»

«include»

Send Plan validity
feedback «include»

«include»

http://www.astesj.com/

A.R. Sadik et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com 178

Figure 5 shows the relation between SysML and UML graphs
[12]. Requirement and parametric diagram are two new diagrams
that distinguish SysML [13]. Section 4 of this article used the
requirement diagram to define the system performance criteria
requirements and their relations. Block definition diagram and
internal block diagram are used to describe the main components
of the system architecture and the connection among the
components as illustrated in section 2, while the use case diagrams
describe the interaction of the system as a black box with the
external world or actors. The activity diagram is used in section 5
to represent the MRS components logic. The more detailed logic
is represented in the activity model, the easier to automatically
generate a low-level code from this activity model. For this reason,
BPMN is used to build the MRS logic, as it extends the notations,
semantics, and syntax of SysML and UML activity diagram. The
state machine diagram is used in section 4 to model the internal
states of the robot. While the sequence diagram is used in section
6 to represent the interaction and communication among the
components during a simulation scenario.

3.2. Business Process Model and Notation

Since UML activity diagram provides an abstract high-level
process description, BPMN extends the UML activity diagram to
fulfill the following two drawbacks. First, UML activity diagram
lakes the syntax and the logical execution among the actions.
Second, the poverty in UML notations and semantics in
comparison with BPMN [14].

Table 1: BPMN control gateways

Flow control gateways is the best example to demonstrate how

BPMN is improving UML activity diagram. Flow control
gateways are all equivalent to only one notation in UML, which is
the decision notation. Table 1 shows the notations, semantics, and
syntax of the basic gateways of BPMN. Three different notations
are demonstrated in Table 1, which are exclusive-OR, inclusive-
OR, and parallel-AND. The three mentioned gates operate either
as spilt or merge context. In spilt context, exclusive-OR splits one
input to only one output based on the conditions on the output
branches. Inclusive-OR splits one input to more than one output
simultaneously based on the conditions on the output branches.
Parallel-AND splits one input to all the output simultaneously
when the input branch is triggered. In merge context, exclusive-
OR merges any of the input branches to only one output, when any
of the input branches is triggered. Inclusive-OR merges more than
one input branches to only one output, when these inputs are
simultaneously triggered. Parallel-AND merges all the input
branches to only one output, when all the inputs are simultaneously
triggered [15].

3.3. Java Agent Development

JADE is a Multi-Agent System (MAS) middleware [16] that
has been used in this research to deploy the proposed solution as

shown in Figure 6-a. Each entity in the proposed SysML internal
block diagram is implemented as a JADE agent. JADE Agent
Management System (AMS) address each agent with a unique
Identifier (AID) to facilitate the communication among the agents.
While JADE directory Facilitator (DF) announces the services that
every agent afford. JADE applies the Foundation for Intelligent
Physical Agent (FIPA) specifications, to enable agent
communication through FIPA-Agent Communication Language
(FIPA-ACL) [17].

Figure 6 (a) JADE framework – (b) JADE sequence diagram example

Each JADE agent has a complex individual behaviour that can
be seen as a composite of two simple behaviours. First is one-shot
behaviour that is executed only once when it is triggered. Second
is a cyclic behaviour that continuously executed when it is
triggered. An example of JADE agent communication and
decision making based on their behaviours can be seen in Figure
6-b. JADE is a suitable tool to build an agent simulation based on
the MRS SysML/BPMN model. As the MRS logic and
architecture can be easily translated to JADE implementation
concepts [18].

4. Performance requirements

To evaluate the MRS design, it is necessary to measure the
system performance during the simulation. Qualitative criteria
such as reusability, scalability, extensibility, and interoperability
have been proposed in [19]. However, these criteria are often
relatively vague without quantitative performance measurements.
Therefore, this research defines the quantitative indicators that are
shown in Figure 7. The research assumes that the MRS is a black
box that receives different Rq, that can either success or fail during
the execution. The following measurements can be used to express
the system performance:

• Throughput: the number of requests that are processed.

• Latency: the time needed from the request arrival till the
request execution.

http://www.astesj.com/

A.R. Sadik et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com 179

• Success rate: the number of request that success to be executed
per the overall received requests number.

• Failure rate: the number of request that fail to be executed per
the overall received requests number.

• Efficiency: the ration between the success rate and the failure
rate.

Multi-Robot System Performance Evaluation

A group of quantitative criteria that can be measured during
the MRS run time to evaluate its overall performance.

Control System Performance
A group of quantitative criteria that
focuses on evaluating the control system
performance with out the external actors
(i.e., requestors, and robots).

Robot Entity Performance
A group of quantitative criteria
that focuses on evaluating the
robots performance.

the success
rate
divided by
the failure
rate.

Efficiency

Latency
the time taken from the
arrival of a request to
the start of executing
this request (shorter
latency means better
performance).

Success rate
the number of
successful requests
divided by the
number of received
requests per time unit.

Failure rate
the number of failed
requests divided by
the number of
received requests
per time unit.

Effectiveness
the robot
controlled time
(Tc) with
respect to its
uncontrolled
time (Tunc).

Throughput
the number of
processed
(successful and
fail) requests
per time unit.

the robot
registered time
(Tr) with respect
to its overall
time (Tov).

Availability

Utilization
the robot controlled time
(Tc) with respect to its
overall time (Tov).

Figure 7: Requirement diagram of the MRS performance evaluation criteria

Figure 8: State machine diagram of the robot entity

The robot performance is also considered in this research as
another measurement of the MRS performance [20]. The robot
performance is fundamentally derived from its state machine
diagram that is shown in Figure 8. The the robot state machine is
built upon measuring the following times:

• Controlled time (Tc): the time that the robot needs to perform
an assigned task.

• Uncontrolled time (Tunc): the robot waiting time to be assigned
to a task after registration.

• Registered time (Tr): the sum of the controlled and the
uncontrolled time of the robot.

• Unregistered time (Tunr): the accumulation of the robot
unregistered time.

• Overall time (Tov): the sum of the registered and the
unregistered time of the robot.

Accordingly, the robot performance criteria are calculated as
follows:

• Availability: the ration between the robot registered time (Tr)
and the overall time (Tov).

• Utilization: the ratio between the robot controlled time (Tc)
and the overall time (Tov).

• Effectiveness: the ration between the robot controlled time
(Tc) and the uncontrolled time (Tunc).

5. System model

5.1. Requests manager

The RqM receives requests from various requestors, then it
looks for an associated Pb within the KB. If the RqM finds the
associated Pb, it forwards it to the PLN. The RqM decision making
model is shown in Figure 9 via the BPMN activity diagram.

send a success request
execution feedback to the

requestor

receive a plan
execution
feedback

Negative
Feedback

receive a new
request from
the reguestor

place the
request at the
bottom of the

request list
check if the request

 manager is waiting for
a plan execution feedback

False

keep waiting the
plan execution

feedback

True

select the request
at the top of the
request list to be

executed

modify an
existing plan

blueprint

delete an
existing plan

blueprint

add a new
plan

blueprint

update the plan
blueprints list

check if there is
a plan blueprint that
matches this request

send the
matched plan

blueprint to the
planner

True

False

send a fail request
execution feedback to

the requestor

wait the plan
execution
feedback

check if the plan
execution feedback
is received within

a time limit (30 sec)

False

True

30 sec

Figure 9: Requests-manager BPMN activity diagram

The RqM uses First Come First Serve (FCFS) technique to
schedule the received requests. The RqM checks in the associated
Pb for every received request. If there is no associated Pb with the
request, the RqM directly sends a negative feedback to the
requestor. If the RqM finds an associated Pb to the request, it
forwards this Pb to the PLN, and waits for the feedback. If this
feedback exceeds predefined limits, the RqM considers this
request as a failure one. If not, it waits the execution feedback to
forward it to the requestor.

5.2. Planner

The PLN receives the Pb and makes sure that it is visible to
build a Pv instance according to the current system status. The PLN
decision making model is shown in Figure 10 via the BPMN
activity diagram.

http://www.astesj.com/

A.R. Sadik et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com 180

less than two robots
are registered

receive a plan
blueprint from

the request
manager

retrieve the current
robots availability,

capabilities, and
tasks history from

the KB

select the first
task in the

plan blueprint

two or more robots
are registered check if any of the registered

robots matches the needed
capabilities for this task

No match

send a fail plan
execution to the
request manager

plan this task
for this robot

One robot
matches

more than one
robot matches

plan this task
for this robot

plan this task
randomly for

one of the
robots

flag that this
robot has

planned for this
task randomly

select the next
task in the plan

blueprint

one robot
has lower
task value

two or more robots
have lower task value

check if there
are unplanned tasks
in the plan blueprint

there are unplanned
 tasks in the plan blueprint

send a
 verified plan
to the robot

manage

no more unplanned
tasks in the plan

blueprint

Figure 10: Planner BPMN activity diagram

To construct a Pv instance from a Pb, The PLN checks the
available registered robots, the robots’ capabilities, and the robots’
tasks history. In case that there is only one available robot, the PLN
directly considers a plan failure, as it is known in advance that a
plan requires at least two robots to get executed. If at least two
robots are available, the PLN compares the tasks in the Pb to the
available robots’ capabilities. If the robots’ capabilities do not
match the required tasks in the Pb, the PLN considers a plan
failure. If there are two robots or more that can perform the same
task, the PLN checks their tasks history, and assign the task to the
robot that performed less tasks. This is to balance the task
assignment among the available robots within the MRS. If all the
tasks in the Pb could be assigned to robots, the PLN creates a Pv
instance and sends it is the RbM to be executed.

5.3. Robots Manager

register a new
robot

unregister an
existing robot

update the
robots list

receive a verified
plan from the

planner

send a
 verified plan to

the robot
manage

send the
next task to

the associated
robot

wait a task
execution
feedback

check if the task
execution feedback is received

within a time limit (30 sec)

send a plan
execution fail

feedback to the
request manager

feedback
unreceived

check the
feedback type

negative
feedback

send a plan
execution success

feedback to the
request manager

check if there is a unassigned
tasks in the verified plan

there are not
unassigned tasks

positive
feedback

there are
unassigned tasks

30 sec

Figure 11: Robots-manager BPMN activity diagram

The RbM receives the Pv, then it assigns the tasks in this Pv to
the available robot. Additionally, the RbM is also responsible for
registering/unregister the robots from the MRS. this way it
monitors the robots’ availability. The RbM decision making model
is shown in Figure 11 via the BPMN activity diagram.

When the RbM assigns a task to a robot, it waits the robot
feedback within a time limit. If the robot feedback did not arrive

within the predefined limits, the RbM sends a negative feedback
to the RqM. This feedback means that the whole plan is failed to
be executed. If the RbM received a positive feedback from the
robot within the predefined time limits, it assigns the next task due
to the Pv. If all the tasks in the Pv are executed, the RqM sends a
positive feedback to the RqM, otherwise it sends a negative
feedback.

6. Simulation

The activity diagrams that have been illustrated in the previous
section are used as the MRS blueprints. JADE has been used in
this research to deploy these blueprints, and hence enables the
MRS simulation during the design phase. The Graphical User
Interface (GUI) shown in Figure 12 has been created to achieve
interact with every entity in the proposed architecture. The RqM
GUI in Figure 12-a can be used to add/edit/remove the Pb. The
PLN GUI in Figure 12-b is used to monitor the Pv execution, the
robots’ availability, the robots’ status, the robots’ capabilities, and
the robots’ tasks history. The RbM GUI in Figure 12-b is used to
show the assigned tasks status.

Figure 12: (a) Requests Manager GUI – (b) Planner GUI – (c) Robots Manager

GUI

To illustrate the simulation scenario, an interaction example
among the MRS entities is show in Figure 13. In this example, The
RqM receives Rq2. Therefore, the RqM sends the Pb in a form of
the ACL-message shown in Figure 14-a to the PLN. Accordingly,
the PLN constructs a Pv by matching the available robots’
capabilities and tasks history with the received Pb. In this case, R1
and R3 were registered into the MRS as shown in Figure 14-b. As

http://www.astesj.com/

A.R. Sadik et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com 181

T1 needs (C1, C3, C4) to be executed, T1 was assigned to R1, because
(C1, C3, C4) are unique capabilities of R1. Similarly, T3 was
assigned to R3, as T3 needs (C2, C5) which is unique capability of
R3. However, in case of T2, both R1 and R3 own the capability C2
which is needed to execute this task. Therefore, the PLN checks
both robots’ task history to be able to assign T2. The PLN finds out
that R1 task history is 9 while R3 task history is 11. Accordingly,
the PLN assigns T2 to R1, to balance the robots’ tasks distribution.

Execution
success

new
request

Requests
Manager

match
with the

plans
blueprints

Planner

Construct
a verified

plan

Robots
Manager

Execute a
verified

plan

Robot 1

Timer-1

Robot 2

Timer-2

Timer-3
Feedback

to the
requestor

Receive a
feedback

Rq2

Pb2<T1(C1,C2,
C3,C4),
T2(C2),

T3(C2,C5)>
P2<{T1(C1,C2,

C3,C4),R1},
{T2(C2),R1}

,{T3(C2,C5),R3}>

T1(C1,C3,C4)

Task done

Task done

T2(C2)

T3(C2,C5)

Task done

Task done

Requestor

Figure 13: Simulation scenario plan execution sequence diagram – an example

Ultimately, the PLN sends the Pv in form of the ACL-message
shown in Figure 14-b to the RbM. The RbM assigns the tasks to
the associated robots according to the Pv. The task assignment is
sent as an ACL-message as shown in Figure 14-c. The RbM waits
the robots’ feedback within a timeframe window. If all the RbM
received success feedbacks for all the assigned tasks, it sends a
plan success feedback to the RqM.

Figure 14: (a) Plan blueprint message – (b) Verified Plan message – (c) Assigned

task message

7. Simulation results analysis
As it has been demonstrated in the previous section, the robots’

availability, the robot’s capabilities, and the the plan blueprints are
the variables that can be used to build different simulation
scenarios. Accordingly, to measure the system performance, the
robots’ availability was randomly altered during the run time.
Thus, analyzing the simulation results has been done by running
JADE MAS for 30 minutes as shown in Figure 15, then measuring
the system performance indicators that are concluded in section 4.
Each one minute, a new request is generated, one robot randomly

unregister from JADE MAS, and one random robot register to
JADE MAS. the robot’s capabilities and the the plan blueprints do
not change during the simulation scenario.

Figure 15: Simulation graphs (a) Processed requests – (b) Unprocessed request –

(c) Successful requests – (d) Failed requests – (e) Latency – (d) Efficiency

http://www.astesj.com/

A.R. Sadik et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com 182

One of the RqM responsibilities is to monitor the requests
status. The number of processed requests by the RqM is shown in
the graph in Figure 15-a. Accordingly, the MRS throughput can be
directly calculated from this chart. On the one hand, MRS
throughput expresses how fast the system, therefore it is a relative
value. Thus, to understand the MRS throughput, Figure 15-c and
Figure 15-d should be considered as well. For instance, the number
of requests at minute 4 is two requests as can be seen in Figure 15-
a. But, if we look closely into Figure 15-c and Figure 15-d, we will
find out that one request is success and another fail. This means
that, it is not important if the system is so fast, but most of the
requests are failed to be executed. On the other hand, MRS latency
expresses how much delay in the system as it can be seen in Figure
15-e. If the system delay value is equal to zero as can be seen in
the 26th minutes of Figure 15-e, this means that the number of
unprocessed requests is equal to zero as well, as can be seen in the
26th minutes of Figure 15-b.

The MRS efficiency graph shown in Figure 15-f is derived
from dividing the data in Figure 15-c (successful requests) by the
data Figure 15-d (fail requests). The MRS efficiency value is
absolute. When the MRS efficiency is higher than one, this means
that the number of success requests is higher than the number of
fail request. Figure 15-f shows that the simulated MRS efficiency
is higher than or equal to one during the simulation runtime.

Figure 16: (a) Robots States – (b) Robots tasks history

Table 2: Robots availability, utilization, and effectiveness

One of the PLN responsibilities is to monitor the balance the

tasks among the available robots. Figure 16-a shows that the
robots’ available is changing over the simulation runtime.
Simultaneously, Figure 16-b shows that the PLN compensates this

variation by balancing the MRS. For instance, the task distribution
among the available robot is converging to be 6 tasks per robot at
the 6th minute of the simulation. Then, the robots’ tasks distribution
is diverging till it balanced again to be 20 tasks per robot at the 19th
minute of the simulation. Table 2 can be also concluded from
Figure 16-a. In this table, R3 is the most utilized and available robot
during the simulation runtime, and hence R3 is the most effective
in comparison to R1 and R2. Accordingly, the PLN compensates
this variation by maximizing R1 and R2 task assignment, to balance
them with R3.

8. Summary and Discussion

This article has highlighted new dimensions of the MRS design
problem, which are the formalization, simulation, and evaluation
of the solution architecture. The proposed modeling approach is
based on a formal generic ADLs, that can be used to transfer the
solution concept over different system case studies, regardless the
implementation technology. Furthermore, the illustrated
simulation method can be used to verify different architecture
design patterns, based on the concluded system performance
measurements.

The fundamental SysML diagrams have been implemented to
design the proposed MRS system model. Moreover, BPMN
language has been used to implement the activity diagram as it
extends UML/SysML notations, semantics, and syntax. The
collection of these standard models is used as the MRS blueprints.
Those blueprints can be easily coded in any programming
environment that supports distributed system implementation. For
instance, JADE has been used in this research to implement these
blueprints, however Robot Operation System (ROS) or Web
Service (WS) are very suitable candidates to deploy the system.

A group of MRS performance requirements have been defined
during this article, to quantify the system performance during the
simulation runtime. Those criteria can are technology agonistic as
well, which means that they can be used to compare between the
system performance when it is implemented with different
technologies. Furthermore, the system simulation is not only used
during the design phased, but it can be reused in a form of a real
time digital twin during the implementation phase. For instance, to
check in advance different planning and scheduling algorithms
before executing them on the real system.

Using a formal description language such as SysML or BPMN
enables separating the model from the code, which is a common
domain specific programming method. Therefore, in the future
work, we will write a code generator that can be used to
automatically generate the implementation code. Therefore, the
model that has been developed in this article will turn to be
executable and will be used as the main software artifact of the
project. This can dramatically reduce the coding time and effort
and improve the system readability and maintainability.
Additionally, in the future work, the same performance
measurements that have been used in this article can be used in the
implementation phase, as a part of the system visualization.

References

[1] A.R. Sadik, C. Goerick, M. Muehlig, “Modeling and Simulation of a Multi-
Robot System Architecture,” in Proceedings of the 2019 International

http://www.astesj.com/

A.R. Sadik et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 4, 176-183 (2021)

www.astesj.com 183

Conference on Mechatronics, Robotics and Systems Engineering, MoRSE
2019, 2019, doi:10.1109/MoRSE48060.2019.8998662.

[2] B. Sendhoff, H. Wersing, “Cooperative Intelligence-A Humane Perspective,”
in 2020 IEEE International Conference on Human-Machine Systems
(ICHMS), 1–6, 2020.

[3] L.E. Parker, “Current research in multirobot systems,” Artificial Life and
Robotics, 7(1), 1–5, 2003.

[4] R. Alami, “Multi-robot Cooperation : Architectures and Paradigms,” in
Journées nationales de la recherche en robotique, 2005.

[5] I. Jawhar, N. Mohamed, J. Wu, J. Al-Jaroodi, “Networking of multi-robot
systems: Architectures and requirements,” Journal of Sensor and Actuator
Networks, 7(4), 2018, doi:10.3390/jsan7040052.

[6] D.D. Walden, G.J. Roedler, K. Forsberg, “INCOSE Systems Engineering
Handbook Version 4: Updating the Reference for Practitioners,” INCOSE
International Symposium, 25(1), 2015, doi:10.1002/j.2334-
5837.2015.00089.x.

[7] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice (3rd
Edition),” Architecture, 2012.

[8] R. Tesoriero Tvedt, P. Costa, M. Lindvall, Evaluating Software Architectures,
Advances in Computers, 61(C), 2004, doi:10.1016/S0065-2458(03)61001-6.

[9] J. Holt, S. Perry, SysML for systems engineering: 2nd edition: A model-based
approach, 2013, doi:10.1049/PBPC010E.

[10] J.E. Perez-Martinez, A. Sierra-Alonso, “UML 1.4 versus UML 2.0 as
languages to describe software architectures,” Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 3047, 2004, doi:10.1007/978-3-540-24769-
2_7.

[11] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML, 2012,
doi:10.1016/C2010-0-66331-0.

[12] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang, “What industry
needs from architectural languages: A survey,” IEEE Transactions on
Software Engineering, 39(6), 2013, doi:10.1109/TSE.2012.74.

[13] R. Eshuis, “Symbolic model checking of UML activity diagrams,” ACM
Transactions on Software Engineering and Methodology, 15(1), 2006,
doi:10.1145/1125808.1125809.

[14] R. Petrasch, R. Hentschke, “Process modeling for industry 4.0 applications:
Towards an industry 4.0 process modeling language and method,” in 2016
13th International Joint Conference on Computer Science and Software
Engineering, JCSSE 2016, 2016, doi:10.1109/JCSSE.2016.7748885.

[15] S. Zor, D. Schumm, F. Leymann, “A Proposal of BPMN Extensions for the
Manufacturing Domain,” Proceedings of the 44th CIRP Conference on
Manufacturing Systems (ICMS 2011); Madison, Wisconsin, June 1-3, 2011.,
2011.

[16] N.R. Jennings, M.J. Wooldridge, Agent Technology: Foundations,
Applications and Markets, 1998.

[17] S. Kumar, U. Kumar, Java Agent Development Framework, International
Journal of Research, 1(9), 2014.

[18] A.R. Sadik, A. Taramov, B. Urban, “Optimization of tasks scheduling in
cooperative robotics manufacturing via Johnson’s algorithm case-study: One
collaborative robot in cooperation with two workers,” in Proceedings - 2017
IEEE Conference on Systems, Process and Control, ICSPC 2017, 2017,
doi:10.1109/SPC.2017.8313018.

[19] M. Hoffmann, “Analysis of the current state of enterprise architecture
evaluation methods and practices,” in ECIME 2007: European Conference on
Information Management and Evaluation, 2007.

[20] I. Sommerville, Software engineering (10th edition), 2016.

http://www.astesj.com/

	2. Problem and use case
	3. Solution preliminaries
	3.1. Systems Modeling Language
	3.2. Business Process Model and Notation
	3.3. Java Agent Development

	4. Performance requirements
	5. System model
	5.1. Requests manager
	5.2. Planner
	5.3. Robots Manager

	6. Simulation
	7. Simulation results analysis
	8. Summary and Discussion
	References

