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 Multi-Robot System (MRS) is a complex system that contains many different software and 
hardware components. This main problem addressed in this article is the MRS design 
complexity. The proposed solution provides a modular modeling and simulation technique 
that is based on formal system engineering method, therefore the MRS design complexity is 
decomposed and reduced. Modeling the MRS has been achieved via two formal 
Architecture Description Languages (ADLs), which are Systems Modeling Language 
(SysML) and Business Process Model and Notation (BPMN), to design the system 
blueprints. By using those abstract design ADLs, the implementation of the project becomes 
technology agnostic. This allows to transfer the design concept from on programming 
language to another. During the simulation phase, a multi-agent environment is used to 
simulate the MRS blueprints. The simulation has been implemented in Java Agent 
Development (JADE) middleware. Therefore, its results can be used to analysis and verify 
the proposed MRS model in form of performance evaluation matrix.  
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1. Introduction   

This paper extends the work presented at the 2019 International 
Conference on Mechatronics, Robotics, and System Engineering 
(MoRSE) [1]. Related work can be also seen in [2]. 

Multi-Robot System (MRS) is a cyber-physical system that 
contains more than one robot, each of them owns a unique set of 
capabilities. The idea of an MRS is to solve a complex problem by 
collectively using the current capabilities of existing robots [3]. 
Therefore, the MRS must match the given problem with the 
existing robots’ capabilities, to plan the solution steps. Many MRS 
applications can be seen in swarm robotics, cooperative automated 
transportation, unmanned aerial vehicles, and cooperative 
manufacturing [4]. The advantages of an MRS is increasing the 
performance by saving the time and the effort to solve the problem. 
Moreover, distributing the solution among different robots 
provides more computational processing power, this means faster 
and higher capacity to solve many problems simultaneously [5].  

Implementing an MRS without a proper system architecture 
design is a crucial mistake that is often done by the system 
developers. Because the system requirements and functionalities 
are lost in a non-human readable machine code. Therefore, in this 
article we purpose a model driven development approach that uses 
the system model as the main software artifacts [6]. The proposed 

design approach in this article is based on the V-Model, which is a 
de facto solution for complex systems such as MRS. 

 
Figure 1: The V-Model simplified version – adapted from [6] 

The V-Model shown in Figure 1 describes the required stages to 
build an MRS. In the first stage of the V-Model, the system is 
decomposed. In this stage, the system components and architecture 
are designed based on the system requirements. In the second 
stage, the implementation of the MRS is carried out. The 
implementation of an MRS often involves the coding the 
individual components. In the final stage, the MRS individual 
components are tested through unit tests, then integration tests are 
carried out over sub-systems and eventually the overall integrated 
system. This article focusses on the first stage of the V-Model to 
build an MRS. As the design stage is the most curtail stage of an 
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MRS system building, because all the following stages are 
depending on this design. 

Section 2 of the article describes the problem and the use case 
of concern. Section 3 introduces the background that that is needed 
to model and simulate the use case. Section 4 discusses the system 
requirements that are used to build and evaluate the system 
performance Modeling the use case is explained in detail in section 
5, while its simulation is shown in section 6. Therefore, the 
performance analysis is explained in section 7. Ultimately, the last 
section concludes the work and the future research. 

2. Problem and use case  

The main article objective is to design an MRS architecture 
model that can be simulated and evaluated due to a predefined 
evaluation criterion. An MRS architecture is an overall system 
description that abstracts its functionalities, logic, and constrains 
[7]. Accordingly, it provides an analysis tool to grasp and improve 
system characteristics, and a conceptual model that can be used as 
the system blueprints [8]. In this work, SysML block definition 
diagram is used to describe the proposed MRS architecture and 
components as shown in Figure 2 and Figure 3. SysML diagrams 
will be explained in the next section as many of them are used in 
constructing the proposed MRS design. 

 
Figure 2: SysML block definition diagram for the proposed architecture 

 
Figure 3: SysML internal block diagram for the proposed MRS architecture 

Figure 2 is the proposed MRS block definition diagram. The 
block definition diagram defines the main components of the 
architecture, which are the Requests Manager (RqM), the planner 
(PLN), and the Robots Manager (RbM). Figure 3 shows the 
proposed MRS internal block diagram that describes the 
connections among the components as illustrated in Figure 2.  
When the RqM receives a request (Rq), it checks if there is a plan-
blueprint (Pb) in the Knowledge Base (KB) to fulfill this Rq. A Pb 
is a sequence of tasks (T), i.e., Pbi = {T1,...,Tn}, where n is the 
number of tasks and could be different from one blueprint to 
another. A task is a function of the capabilities (C) of the robot (R), 
i.e., Ti = f (Cx, Cy, …), where each robot owns different capabilities 
set. If the RqM finds a match between Pb to and a Rq, it forwards 
the Pb to the PLN. The PLN checks the robots’ availability, and 
their capabilities to achieve the tasks in the Pb. If more than a robot 
owns the capabilities to fulfill the task, the PLN compares the 

number of tasks that have been achieved by these robots in the past. 
Based on this comparison, the PLN selects a robot to assign for the 
task. If the PLN complete the matching of all the tasks with the 
robots, it sends a verified plan (Pv) to the RbM. The RbM sends 
the tasks to the robots and waits their response.  

 
Figure 4: UML/SysML use case diagram for the proposed architecture 

The use case diagram in Figure 4 shows three variation types 
that are considered during the simulation. First is the Pbs variation, 
by adding, editing, or omitting a Pb. Second is variation in the 
number of the available robots. The maximum number of robots 
that can exist is constrained to three. The robots are constrained to 
register or deregister through the RbM. Third is the variation in the 
robots’ capabilities, by updating or editing the capabilities of a 
robot. the robot is constrained to deregister to be able to update its 
capabilities, then register again through the RbM, which 
automatically updates the robot new capabilities in the KB. 

3. Solution preliminaries 

3.1. Systems Modeling Language  

SysML is a general-purpose modeling language that is derived 
from Unified Modeling Language (UML) [9]. SysML and UML 
belong are both developed by Object Management Group (OMG). 
UML is is a visual modeling language that is particularly used to 
construct, design, and document the software systems in fields 
such as web-development, telecommunication, banking, and 
enterprise services [10]. While SysML is extending and modifying 
UML diagrams to fit complex industrial systems that involve 
variety of hardware, software, information, and processes (e.g., 
Aviation, Space, Automotive) [11].   

SysML 
Diagrams

Behavior 
Diagrams

Activity 
Diagram

Sequence 
Diagram

State 
Machine 
Diagram

Use 
Case

 Diagram

Requirement 
Diagram

Structure 
Diagrams

Block 
Definition
 Diagram

Internal 
Block

 Diagram

Parametric
 Diagram

Package
 Diagram

New diagram type

Modified diagram type

Same as UML

 
Figure 5: SysML Taxonomy and comparison to UML  
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Figure 5 shows the relation between SysML and UML graphs 
[12]. Requirement and parametric diagram are two new diagrams 
that distinguish SysML [13]. Section 4 of this article used the 
requirement diagram to define the system performance criteria 
requirements and their relations. Block definition diagram and 
internal block diagram are used to describe the main components 
of the system architecture and the connection among the 
components as illustrated in section 2, while the use case diagrams 
describe the interaction of the system as a black box with the 
external world or actors. The activity diagram is used in section 5 
to represent the MRS components logic. The more detailed logic 
is represented in the activity model, the easier to automatically 
generate a low-level code from this activity model. For this reason, 
BPMN is used to build the MRS logic, as it extends the notations, 
semantics, and syntax of SysML and UML activity diagram. The 
state machine diagram is used in section 4 to model the internal 
states of the robot. While the sequence diagram is used in section 
6 to represent the interaction and communication among the 
components during a simulation scenario. 

3.2. Business Process Model and Notation 

Since UML activity diagram provides an abstract high-level 
process description, BPMN extends the UML activity diagram to 
fulfill the following two drawbacks. First, UML activity diagram 
lakes the syntax and the logical execution among the actions. 
Second, the poverty in UML notations and semantics in 
comparison with BPMN [14].  

Table 1: BPMN control gateways 

 
Flow control gateways is the best example to demonstrate how 

BPMN is improving UML activity diagram. Flow control 
gateways are all equivalent to only one notation in UML, which is 
the decision notation. Table 1 shows the notations, semantics, and 
syntax of the basic gateways of BPMN. Three different notations 
are demonstrated in Table 1, which are exclusive-OR, inclusive-
OR, and parallel-AND. The three mentioned gates operate either 
as spilt or merge context. In spilt context, exclusive-OR splits one 
input to only one output based on the conditions on the output 
branches. Inclusive-OR splits one input to more than one output 
simultaneously based on the conditions on the output branches. 
Parallel-AND splits one input to all the output simultaneously 
when the input branch is triggered. In merge context, exclusive-
OR merges any of the input branches to only one output, when any 
of the input branches is triggered. Inclusive-OR merges more than 
one input branches to only one output, when these inputs are 
simultaneously triggered. Parallel-AND merges all the input 
branches to only one output, when all the inputs are simultaneously 
triggered [15]. 

3.3. Java Agent Development 

JADE is a Multi-Agent System (MAS) middleware [16] that 
has been used in this research to deploy the proposed solution as 

shown in  Figure 6-a. Each entity in the proposed SysML internal 
block diagram is implemented as a JADE agent. JADE Agent 
Management System (AMS) address each agent with a unique 
Identifier (AID) to facilitate the communication among the agents. 
While JADE directory Facilitator (DF) announces the services that 
every agent afford. JADE applies the Foundation for Intelligent 
Physical Agent (FIPA) specifications, to enable agent 
communication through FIPA-Agent Communication Language 
(FIPA-ACL) [17]. 

 
Figure 6 (a) JADE framework – (b) JADE sequence diagram example 

Each JADE agent has a complex individual behaviour that can 
be seen as a composite of two simple behaviours. First is one-shot 
behaviour that is executed only once when it is triggered. Second 
is a cyclic behaviour that continuously executed when it is 
triggered. An example of JADE agent communication and 
decision making based on their behaviours can be seen in Figure 
6-b. JADE is a suitable tool to build an agent simulation based on 
the MRS SysML/BPMN model. As the MRS logic and 
architecture can be easily translated to JADE implementation 
concepts [18]. 

4. Performance requirements  

To evaluate the MRS design, it is necessary to measure the 
system performance during the simulation. Qualitative criteria 
such as reusability, scalability, extensibility, and interoperability 
have been proposed in [19]. However, these criteria are often 
relatively vague without quantitative performance measurements. 
Therefore, this research defines the quantitative indicators that are 
shown in  Figure 7. The research assumes that the MRS is a black 
box that receives different Rq, that can either success or fail during 
the execution. The following measurements can be used to express 
the system performance: 

• Throughput: the number of requests that are processed. 

• Latency: the time needed from the request arrival till the 
request execution. 
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• Success rate: the number of request that success to be executed 
per the overall received requests number. 

• Failure rate: the number of request that fail to be executed per 
the overall received requests number. 

• Efficiency: the ration between the success rate and the failure 
rate. 

Multi-Robot System Performance Evaluation

A group of quantitative criteria that can be measured during 
the MRS run time  to evaluate its overall performance.

Control System Performance
A group of quantitative criteria that 
focuses on evaluating the control system 
performance with out the external actors 
(i.e., requestors, and robots).
   

Robot Entity Performance
A group of quantitative criteria 
that focuses on evaluating the 
robots performance. 

the success 
rate 
divided by 
the failure 
rate.

Efficiency

Latency
the time taken from the 
arrival of a request to 
the start of executing 
this request (shorter 
latency means better 
performance).

Success rate
the number of 
successful requests 
divided by the 
number of received 
requests per time unit.

Failure rate
the number of failed 
requests divided by 
the number of 
received requests 
per time unit.

Effectiveness
the robot 
controlled time 
(Tc) with 
respect to its 
uncontrolled 
time (Tunc).

Throughput
the number of 
processed 
(successful and 
fail) requests 
per time unit.

the robot 
registered time 
(Tr) with respect 
to its overall 
time (Tov).

Availability

Utilization
the robot controlled time 
(Tc) with respect to its 
overall time (Tov). 

 
Figure 7: Requirement diagram of the MRS performance evaluation criteria  

 
Figure 8: State machine diagram of the robot entity 

The robot performance is also considered in this research as 
another measurement of the MRS performance [20]. The robot 
performance is fundamentally derived from its state machine 
diagram that is shown in Figure 8. The the robot state machine is 
built upon measuring the following times: 

• Controlled time (Tc): the time that the robot needs to perform 
an assigned task. 

• Uncontrolled time (Tunc): the robot waiting time to be assigned 
to a task after registration. 

• Registered time (Tr): the sum of the controlled and the 
uncontrolled time of the robot. 

• Unregistered time (Tunr): the accumulation of the robot 
unregistered time. 

• Overall time (Tov): the sum of the registered and the 
unregistered time of the robot. 

Accordingly, the robot performance criteria are calculated as 
follows: 

• Availability: the ration between the robot registered time (Tr) 
and the overall time (Tov). 

• Utilization: the ratio between the robot controlled time (Tc) 
and the overall time (Tov).  

• Effectiveness: the ration between the robot controlled time 
(Tc) and the uncontrolled time (Tunc). 

5. System model  

5.1. Requests manager 

The RqM receives requests from various requestors, then it 
looks for an associated Pb within the KB. If the RqM finds the 
associated Pb, it forwards it to the PLN. The RqM decision making 
model is shown in Figure 9 via the BPMN activity diagram.  
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Figure 9: Requests-manager BPMN activity diagram 

The RqM uses First Come First Serve (FCFS) technique to 
schedule the received requests. The RqM checks in the associated 
Pb for every received request. If there is no associated Pb with the 
request, the RqM directly sends a negative feedback to the 
requestor. If the RqM finds an associated Pb to the request, it 
forwards this Pb to the PLN, and waits for the feedback. If this 
feedback exceeds predefined limits, the RqM considers this 
request as a failure one. If not, it waits the execution feedback to 
forward it to the requestor.  

5.2. Planner 

The PLN receives the Pb and makes sure that it is visible to 
build a Pv instance according to the current system status. The PLN 
decision making model is shown in Figure 10 via the BPMN 
activity diagram.  
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Figure 10: Planner BPMN activity diagram 

To construct a Pv instance from a Pb, The PLN checks the 
available registered robots, the robots’ capabilities, and the robots’ 
tasks history. In case that there is only one available robot, the PLN 
directly considers a plan failure, as it is known in advance that a 
plan requires at least two robots to get executed. If at least two 
robots are available, the PLN compares the tasks in the Pb to the 
available robots’ capabilities. If the robots’ capabilities do not 
match the required tasks in the Pb, the PLN considers a plan 
failure. If there are two robots or more that can perform the same 
task, the PLN checks their tasks history, and assign the task to the 
robot that performed less tasks. This is to balance the task 
assignment among the available robots within the MRS. If all the 
tasks in the Pb could be assigned to robots, the PLN creates a Pv 
instance and sends it is the RbM to be executed. 

5.3. Robots Manager 
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Figure 11: Robots-manager BPMN activity diagram 

The RbM receives the Pv, then it assigns the tasks in this Pv to 
the available robot. Additionally, the RbM is also responsible for 
registering/unregister the robots from the MRS. this way it 
monitors the robots’ availability. The RbM decision making model 
is shown in Figure 11 via the BPMN activity diagram. 

When the RbM assigns a task to a robot, it waits the robot 
feedback within a time limit. If the robot feedback did not arrive 

within the predefined limits, the RbM sends a negative feedback 
to the RqM. This feedback means that the whole plan is failed to 
be executed. If the RbM received a positive feedback from the 
robot within the predefined time limits, it assigns the next task due 
to the Pv. If all the tasks in the Pv are executed, the RqM sends a 
positive feedback to the RqM, otherwise it sends a negative 
feedback.  

6. Simulation 

The activity diagrams that have been illustrated in the previous 
section are used as the MRS blueprints. JADE has been used in 
this research to deploy these blueprints, and hence enables the 
MRS simulation during the design phase. The Graphical User 
Interface (GUI) shown in Figure 12 has been created to achieve 
interact with every entity in the proposed architecture. The RqM 
GUI in Figure 12-a can be used to add/edit/remove the Pb. The 
PLN GUI in Figure 12-b is used to monitor the Pv execution, the 
robots’ availability, the robots’ status, the robots’ capabilities, and 
the robots’ tasks history. The RbM GUI in Figure 12-b is used to 
show the assigned tasks status.   

 
Figure 12: (a) Requests Manager GUI – (b) Planner GUI – (c) Robots Manager 

GUI 

To illustrate the simulation scenario, an interaction example 
among the MRS entities is show in Figure 13. In this example, The 
RqM receives Rq2. Therefore, the RqM sends the Pb in a form of 
the ACL-message shown in Figure 14-a to the PLN. Accordingly, 
the PLN constructs a Pv by matching the available robots’ 
capabilities and tasks history with the received Pb. In this case, R1 
and R3 were registered into the MRS as shown in Figure 14-b. As 
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T1 needs (C1, C3, C4) to be executed, T1 was assigned to R1, because 
(C1, C3, C4) are unique capabilities of R1. Similarly, T3 was 
assigned to R3, as T3 needs (C2, C5) which is unique capability of 
R3. However, in case of T2, both R1 and R3 own the capability C2 
which is needed to execute this task. Therefore, the PLN checks 
both robots’ task history to be able to assign T2. The PLN finds out 
that R1 task history is 9 while R3 task history is 11. Accordingly, 
the PLN assigns T2 to R1, to balance the robots’ tasks distribution.  
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Figure 13: Simulation scenario plan execution sequence diagram – an example  

Ultimately, the PLN sends the Pv in form of the ACL-message 
shown in Figure 14-b to the RbM. The RbM assigns the tasks to 
the associated robots according to the Pv. The task assignment is 
sent as an ACL-message as shown in Figure 14-c. The RbM waits 
the robots’ feedback within a timeframe window. If all the RbM 
received success feedbacks for all the assigned tasks, it sends a 
plan success feedback to the RqM. 

 
Figure 14: (a) Plan blueprint message – (b) Verified Plan message – (c) Assigned 

task message 

7. Simulation results analysis  
As it has been demonstrated in the previous section, the robots’ 

availability, the robot’s capabilities, and the the plan blueprints are 
the variables that can be used to build different simulation 
scenarios. Accordingly, to measure the system performance, the 
robots’ availability was randomly altered during the run time. 
Thus, analyzing the simulation results has been done by running 
JADE MAS for 30 minutes as shown in Figure 15, then measuring 
the system performance indicators that are concluded in section 4. 
Each one minute, a new request is generated, one robot randomly 

unregister from JADE MAS, and one random robot register to 
JADE MAS. the robot’s capabilities and the the plan blueprints do 
not change during the simulation scenario.  

 
Figure 15: Simulation graphs (a) Processed requests – (b) Unprocessed request – 

(c) Successful requests – (d) Failed requests – (e) Latency – (d) Efficiency  
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One of the RqM responsibilities is to monitor the requests 
status. The number of processed requests by the RqM is shown in 
the graph in Figure 15-a. Accordingly, the MRS throughput can be 
directly calculated from this chart. On the one hand, MRS 
throughput expresses how fast the system, therefore it is a relative 
value. Thus, to understand the MRS throughput, Figure 15-c and 
Figure 15-d should be considered as well. For instance, the number 
of requests at minute 4 is two requests as can be seen in Figure 15-
a. But, if we look closely into Figure 15-c and Figure 15-d, we will 
find out that one request is success and another fail. This means 
that, it is not important if the system is so fast, but most of the 
requests are failed to be executed. On the other hand, MRS latency 
expresses how much delay in the system as it can be seen in Figure 
15-e. If the system delay value is equal to zero as can be seen in 
the 26th minutes of Figure 15-e, this means that the number of 
unprocessed requests is equal to zero as well, as can be seen in the 
26th minutes of Figure 15-b.  

The MRS efficiency graph shown in Figure 15-f is derived 
from dividing the data in Figure 15-c (successful requests) by the 
data Figure 15-d (fail requests). The MRS efficiency value is 
absolute. When the MRS efficiency is higher than one, this means 
that the number of success requests is higher than the number of 
fail request. Figure 15-f shows that the simulated MRS efficiency 
is higher than or equal to one during the simulation runtime.  

 
Figure 16: (a) Robots States – (b) Robots tasks history  

Table 2: Robots availability, utilization, and effectiveness  

 
One of the PLN responsibilities is to monitor the balance the 

tasks among the available robots. Figure 16-a shows that the 
robots’ available is changing over the simulation runtime. 
Simultaneously, Figure 16-b shows that the PLN compensates this 

variation by balancing the MRS. For instance, the task distribution 
among the available robot is converging to be 6 tasks per robot at 
the 6th minute of the simulation. Then, the robots’ tasks distribution 
is diverging till it balanced again to be 20 tasks per robot at the 19th 
minute of the simulation. Table 2 can be also concluded from  
Figure 16-a. In this table, R3 is the most utilized and available robot 
during the simulation runtime, and hence R3 is the most effective 
in comparison to R1 and R2. Accordingly, the PLN compensates 
this variation by maximizing R1 and R2 task assignment, to balance 
them with R3. 

8. Summary and Discussion 

This article has highlighted new dimensions of the MRS design 
problem, which are the formalization, simulation, and evaluation 
of the solution architecture. The proposed modeling approach is 
based on a formal generic ADLs, that can be used to transfer the 
solution concept over different system case studies, regardless the 
implementation technology. Furthermore, the illustrated 
simulation method can be used to verify different architecture 
design patterns, based on the concluded system performance 
measurements.   

The fundamental SysML diagrams have been implemented to 
design the proposed MRS system model. Moreover, BPMN 
language has been used to implement the activity diagram as it 
extends UML/SysML notations, semantics, and syntax. The 
collection of these standard models is used as the MRS blueprints. 
Those blueprints can be easily coded in any programming 
environment that supports distributed system implementation. For 
instance, JADE has been used in this research to implement these 
blueprints, however Robot Operation System (ROS) or Web 
Service (WS) are very suitable candidates to deploy the system.  

A group of MRS performance requirements have been defined 
during this article, to quantify the system performance during the 
simulation runtime. Those criteria can are technology agonistic as 
well, which means that they can be used to compare between the 
system performance when it is implemented with different 
technologies. Furthermore, the system simulation is not only used 
during the design phased, but it can be reused in a form of a real 
time digital twin during the implementation phase. For instance, to 
check in advance different planning and scheduling algorithms 
before executing them on the real system. 

Using a formal description language such as SysML or BPMN 
enables separating the model from the code, which is a common 
domain specific programming method. Therefore, in the future 
work, we will write a code generator that can be used to 
automatically generate the implementation code. Therefore, the 
model that has been developed in this article will turn to be 
executable and will be used as the main software artifact of the 
project. This can dramatically reduce the coding time and effort 
and improve the system readability and maintainability. 
Additionally, in the future work, the same performance 
measurements that have been used in this article can be used in the 
implementation phase, as a part of the system visualization. 
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