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Solar energy becomes widely used in the global power grid. Therefore, enhancing the
accuracy of solar energy predictions is essential for the efficient planning, managing and
operating of power systems. To minimize the negatives impacts of photovoltaics on electricity
and energy systems, an approach to highly accurate and advanced forecasting is urgently
needed. In this paper, we studied the use of Deep Learning techniques for the solar energy
prediction, in particular Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRU). The proposed prediction methods are based on
real meteorological data series of Errachidia province, from 2016 to 2018. A set of error
metrics were adopted to evaluate the efficiency of these models for real-time photovoltaic
forecasting, to achieve more reliable grid management and safe operation, in addition to
improve the cost-effectiveness of the photovoltaic system. The results reveal that RNN and
LSTM outperform slightly GRU thanks to their capacity to maintain long-term dependencies

in time series data.

1 Introduction

Currently, the global trend is to integrate renewable energies to
generate electricity and rethink its energy mix. In this regard, the
use and expansion of renewable energy have become an important
element in maintaining energy security, as well as to establish an
ecological and sustainable electrical system [1]. Nevertheless, the
energy context is affected by price variations, changes in demand
and the volatility of renewable energy production. In order, to con-
front these main challenges of the energy mix, it is essential to
have a good forecasting model for renewable energies, which is
particularly useful for optimizing and adapting supply to demand.
This must reliably provide advance information on the availability
of power, which helps to achieve the grid’s stable operation and to
allow for optimal unit engagement and economic dispatching [2].
In this work, we concentrate on solar energy forecasting. Photo-
voltaic (PV) forecasting methods fall into two groups: direct and
indirect prediction models. As described in [3, 4], solar radiation
at different time scales is predicted with different methods and then
converted to power based on the panel characteristics in the case of
indirect prediction, while direct predictions are performed directly
from the output power of the plant. Besides, Statistical, physical,
artificial intelligence (AI) and hybrid approaches were used in pre-

dicting PV solar energy. However, thanks to their great learning
and regression capabilities, Al and especially, Deep Learning (DL)
techniques [5], have been widely used in this area. They have the
capability to extract in-depth features from PV power datasets and
get more reliable predictive outputs. Authors in [6] have applied
Recurrent Neural Network (RNN) as a good tool for predicting solar
irradiation time-series using recorded meteorological data. Besides,
in [7] the author have proposed an RNN-based forecasting
method for short-term PV power prediction. Moreover, another
research in [8] has proposed a hybrid deep learning model using
Wavelet Packet Decomposition (WPD) and Long Short-Term
Memory (LSTM) to forecast PV power for one hour ahead with an
interval of five min-utes. WPD is applied to split the PV power
output time-series and next the LSTM is implemented to forecast
high and low-frequency subseries. The results of this study
indicate that the WPD-LSTM method outperforms in various
seasons and weather conditions than LSTM, Gated Recurrent
Units (GRU), RNN, and Multilayer Per-ceptron (MLP). Authors
in [9] have presented a deep LSTM based on historical power data
to predict the PV system output power for one hour ahead. The
aim in [10] to suggest a hybrid model using LSTM and attention
mechanism for short-term PV power forecast-ing, and employed
LSTM to extract features from the historical data and learn in
sequence the information on long-term dependence, to
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apply the attention mechanism trained at the LSTM to target the
extracted relevant features, which has greatly enhanced the origi-
nal predictive power of LSTM. An LSTM approach for short-term
forecasts based on a timescale that includes global horizontal irradi-
ance (GHI) one hour ahead and one day ahead have been applied
in [11]. Furthermore, authors in [12] have implemented univariate
and multivariate GRU models employing historical solar radiation,
external meteorological variables, and cloud cover data to predict
solar radiation. In [13], authors have presented multivariate GRU to
predict Direct Normal Irradiance (DNI) hourly. And the suggested
method is evaluated compared to LSTM using historical irradiance
data. In addition, a hybrid deep learning model have introduced in
[14] that combines a GRU neural network with an attention mecha-
nism for solar radiation prediction. All these research contributions
cited above are valuable. However, they are not able to identify
the important parameters that would have an impact on the accu-
racy of predictions. and make real-time predictions for efficient
and optimized management. Given the fluctuating nature of output
power generation as a function of meteorological conditions such as
the temperature, the wind speed, the cloud cover, the atmospheric
aerosol levels and the humidity level, which leads to high uncer-
tainties on the output power of PV [15]. Besides, according to the
forecast horizon, PV forecasts range from very short to long term. In
general, researchers focus on short-term, hourly and daily forecasts
as opposed to long-term. The first are of major significance for the
management of PVs and the related security constraints (planning,
control of PV storage and the rapprochement of the electricity mar-
ket, providing the secure operation of generation and distribution
services, and reinforcing the security of grid operation), while the
long-term forecasts are useful particularly, for maintenance [16]. In
this context, we study the efficiency of three DL models. We also
focus in this study, on real-time prediction of solar energy in order
to help planner, decision-makers, power plant operators and grid
operators to making responsive decisions as early as possible, and
to manage smart grid PV systems more reliably and efficiently [17].
Moreover, the use of real-time prediction allows to adjust to changes
in production and to react to complex events (exceptionally high or
low load production or consumption). In addition, it decreases the
amount of operating reserves needed by the system, thus reducing
system balancing costs [18]. However, the models we have selected
give good results and seem to be suitable for long-term forecasting
thanks to their power as a deep learning model and their ability
to perform complex processing on huge data sets. Moreover, we
outline that our work has been experimented with Moroccan’s case,
particularly in the region of Errachidia. In this perspective, Moroc-
can decision-makers have launched a global plan to improve the
percentage of renewable energy in the energy mix and substantially
improve energy efficiency. In view of increasing the percentage
of electricity generation capacity from renewable energy sources
(42% by 2020 and 52% by 2030) [19]. Therefore, we believe that
the case of Morocco remains an interesting case study that could
lead to important findings since it is not only a promising future PV
energy supplier, but also one of the leading countries in the global
energy transition, particularly in Africa. The remainder of this paper
is organized into four sections. Section 2 gives an overview of our
comparative methodology. Subsequently, section 3 presents the ap-
proach applied to elaborate the forecast models. Section 4 presents
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and discusses the obtained results. Finally, section 5 summarizes
the conclusions and perspectives of this study.

2 Methodology

Solar energy prediction is a key element in enhancing the competi-
tiveness of solar power plants in the energy market, and decreasing
reliance on fossil fuels in socio-economic development. Our work
aims to accurately predict the solar energy. For this purpose, we
explore architectures of the RNN, LSTM and GRU algorithm which
is suitable to be used for forecasting such time-series data, and we
experiment and evaluate them in Morocco’s case, especially Er-
rachidia area. This section presents at first the basis architecture of
this recurrent neural network before explaining the important steps
that we follow to build our models and perform our comparative
study.

2.1 Recurrent Neural Network architecture

Recurrent neural network (RNN) is a category of neural network
used in sequential data prediction where the output is dependent
on the input [20]. The RNN [21] is capable to capture the dynamic
of time-series data by storing information from previous computa-
tions in the internal memory. RNN has been applied in a context
where past values of the output make a significant contribution to
the future. It is mainly used in forecasting applications because of
its ability to process sequential data of different length.

The basic principle of RNNSs is to consider the input of a hidden
neuron which takes input from neurons at the preceding time step
[22]. To this purpose, they employ cells represented by gates that
influence the output using historical data observations are given to
generate the output. RNN is particularly efficient for learning the
dynamic temporal behaviors exhibited in time-series data [23]. In
RNN, the hidden neuron ht for a given input sequence x, it has
information feedback from other neurons in the preceding time step
multiplied by a Wy, which is the weight of the preceding hidden
state h,_; can be calculated sequence by Eq.1. x is the input at
instant time t, Wy, is the weight of the actual input state, tanh is the
activation function. The output state y, is computed according to
the Eq.2 where Wy, is the weight at the output state.

h; = tanh(Wpphe. + Wixy) (D

i = Whayhy 2

The LSTM is a special kind of RNN, designed to avoid and
resolve the vanishing gradient problems that limit the efficiency
of simple RNN [8]. LSTM network has memory blocks that are
connected through a succession of layers. In the LSTM cells, there
are three types of gates: the input gate, the forget gate and the output
gate. This makes it possible to achieve good results on a variety of
time-series learning tasks, particularly in the nonlinear of a given
dataset [24]. Each block of LSTM handles the state of the block and
the output, it operates at different time steps and transmits its output
to the following block and then the final LSTM block generates the
sequential output [9]. Besides, LSTM is a robust algorithm, which
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allows the recurrent neural network to efficiently process time-series
data. Its key component is memory blocks which have been released
to address the vanishing gradient disadvantage by memorizing net-
work parameters for long durations [25].an LSTM block gets an
input sequence after that, the activation units are used by each gate
to decide whether or not it is activated. This operation enables the
change of state and the adding of information passing through the
block conditional. In the training phase, the gates have weights that
can be learned. In fact, the gates make the LSTM blocks smarter
than conventional neurons and allow them to remember current
sequences [10]. LSTM is flexible and estimates dependencies of
different time scales thanks to its ability to perform long task se-
quences and to identify long-range features. Basically, LSTM starts
with a forget gate layer (f;) that uses a sigmoid function combined
with the preceding hidden layer (h,_;) and the current input (X,) as
described in the following equations:

i = o (Wi.[her, x,] + by) 3)
& = tanh(We.[he1, ] + be) 4)
f, = o(We.[he1, x.] + bp) (5)
0r = 0 (Wo.[fi1, x,] + bo) (6)
¢ = frou +ic )

h; = oy. tanh(c,) (8)

where i, ¢, fi, o, ¢; and h, represent the input gate, cell input
activation, forget gate, output gate, cell state, and the hidden state
respectively. Wi, W., W and W,, represent their weight matrices
respectively. b;, b, by, and b, represent the biases. x; is the input,
hy is the last hidden state, h, is the internal state. o is the sigmoid
function.

2.2 Gated Recurrent Units architecture

The GRU [26] is a particular type of recurrent neural network pro-
posed by Cho in 2014 which, is the same as the LSTM) in terms
of use to resolve the issue of long-term memory network and back-
propagation. The GRU network involves the design of several cells
that store important information and forget those that are deemed ir-
relevant in the future [27]. The feedback loops of the GRU network
can be regarded as a time loop, because the output of the cell from
the past period is taken as an input in the following cell in addition
to the actual input. This key property allows the model to remember
the patterns of interest and to predict sequential time-series datasets
over time. Unlike the LSTM, the GRU [28] consists of only two
gates: update and reset gates. the GRU substitutes the forget gate
and the input gate in the LSTM with an update gate that verifies the
cell state of the previous state information that will be moved to the
current cell, while, the reset gate defines whether new information
will be included in the preceding state. For this reason, GRU has
proven to be one of the most efficient RNN techniques, because of
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its capacity to learn and acquire dependencies over the long term
and observations of varying length [29]. This characteristic is par-
ticularly useful for time-series data, and it is helpful in reducing the
computational complexity [30]. GRU cells are described using the
following equations:

2y = o(Wy.[her, x) ©))

1, = o(Wr.[he1, x,]) (10)

hy = tanh(W.[r; — he1, X(]) (11)
he = (1 = z).hey + 2.0y (12)
Y=o (Wo.h) (13)

where z; and r; respectively correspond to the output of the up-
date gate and the reset gate, while W,, W;, W, and Wo respectively
are the weights of each gate. o and tanh respectively are the sigmoid
and the hyperbolic tangent activation function, and Xx; is the network
input at time t. ht and hy; correspond to the hidden layer informa-
tion of the actual and precedent time, and ﬁt is the candidate state
of the input. Initially, the network input x, at the time of the hidden
state hy; and t at the last state computes the output of the reset gate
and the update gate by Eq.9 and 10. Next, after the reset of the
reset gate r; calculates the amount of memory stored, the implicit
layer hy is computed by Eq.11, which is the new information at the
actual time t. Then, by using Eq.12, the update gate z, determines
the amount of information was removed at the previous time, and
how much information is stored in the candidate hidden layer ht at
this time. The hidden layer information h; is subsequently added.
Finally, the output of the GRU is switched to the next GRU gated
loop unit according to Eq.13: which is a sigmoid function.

3 Our approach for predicting solar en-
ergy

In this study, we apply three different DL models to predict the
PV solar energy output, especially RNN, LSTM and GRU for the
half-hour ahead. The aim of this study is to compares the relevance
of the mentioned models, in order to identify the best algorithm
to be used for predicting solar energy. The process of the method
employed in this work is illustrated in Figure 1. It is organized into
four main stages: data collection, data pre-processing, model train-
ing and parameterization, and model testing and validation. This
section details how each of these processing/selection steps was
performed, as well as key details on the architecture and parameters
of the developed models.
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Figure 1: Our method for predicting solar energy

3.1 Dataset

The datasets used in this work, they represent meteorological data
of Errachidia province, which is situated in the sunny region of
Morocco, it benefits from an important solar energy potential during
all the year. This data consists of measurements from three years
(2016, 2017 and 2018), and they are used to predict the solar energy
level based on a set of measurable weather conditions, in purpose
of analyzing the performance of the studied models.

3.2 Preprocessing and Feature Selection

Pre-processing and feature selection are fundamental steps in DL
approaches for making collected data in an appropriate form. Pre-
processing allows numerous tasks and operations to convert the
source data in a clean data, in a way that it can be easily integrated
into DL models. It impacts the accuracy of the model and its results.
Feature selection provides the most appropriate features that prop-
erly affect the learning process, and can minimize the number of
variables to efficiently enhance the accuracy of the model and avoid
costly computations. Therefore, in this work, we proceed with the
following steps to prepare and select features from the source data:
extraction of target data inputs, selection of relevant features, filling
in the null values, normalization of the data, and adjustment of the
steps to be taken into account for prediction.

The source data give multiple features but not all of them are
important for use in the prediction. In our case, we have selected
four important features: solar energy, temperature, humidity and
pressure. These features are the most and highly correlated variables
to the targeted output (solar energy) according to Pearson correla-
tions [31]. The objective of this step is to help developing most
accurate models that learn from the most correlated data in order to
give the most accurate forecasts. We note that we have selected the
Median in order to fill missing data.

The features of a given dataset are usually presented at different
scales. To ensure that all these values are at the same scale and to
add uniformity to our dataset, we employ the Min-Max scale that
transforms all values between O and 1, which removes the noise
from our data and simplifying the learning process of our models.

Besides, the meteorological data are time-series with a time
step of 30 min, and therefore, the actual data values are needed as
inputs for making predictions. Time-series data cannot use future
values as input features, whereas the inputs of a time-series model
are the values of past features. In this work, we adjust our model
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to learn from the past to predict PV solar energy for the next half
hour. This choice has been adopted because of the size of the data
and to perform real-time predictions for an efficient and optimized
management. Finally, based on best practices in the area of data
analytics, the dataset is split into 80% and 20% were respectively
used to train and test the models developed.

3.3 Training and models parametrization

Each of the models developed must be parameterized during the
training phase in order to be able to provide the most accurate fore-
casts while taking into account the size of the batches. After setting
different parameters for our DL models during the training and eval-
uating the results obtained, the Adam optimizer has proved to be
the best optimizer and was then selected as the common parameter
for all proposed DL models. ADAM, which is widely used and
works better than other stochastic optimizers in empirical results
[32], would allow the models to learn quickly. In addition, the
tanh activation function has shown a good fitting for all DL models.
On the other hand, we notice that our DL models have different
architectures and that the number of layers and neurons for example
has been fixed after tuning several values and selecting the ones
that have given the best precisions. Figure 2 illustrates the neural
network architecture, and Table 1 shows details on the architectures
and the key parameters of each model suggested for the dataset
studied.

Hidden layer

Input
7
Te t {
emperature —{ ) \
— =
Humidity —-< /,‘ ~ Output
- 22 N
~ \_/)—' Forecasted solar energy

Pressure —h\ / X

—()

solar energy L /,‘

Figure 2: ANN architecture for predicting solar energy

Table 1: Architecture and parametrization of the models.

Parameters
Models Layers Epocs | Activation Optimizer | Batch size
Function
RNN RNN cell Of 100 units 20 Tanh Adam 12719
LSTM | LSTM cell Of 100 units 20 Tanh Adam 12719
GRU GRU cell Of 100 units 20 Tanh Adam 12719
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3.4 Performance metrics

To evaluate the performance of the proposed DL models for PV
solar energy prediction. A set of evaluation metrics widely-used
are employed to evaluate the results accuracy forecasting. In this
step, we have applied the most suitable to the context of DL and
regression problems. For this purpose, five performance metrics,
whose equations are presented below, have been employed for mod-
els testing as well as training: MAE (Mean Absolute Error), MSE
(Mean Square Error), RMSE (Root Mean Square Error), Max Error
(ME) and R squared (R?).

RS .
MAE = ~ j_zle -3 (14)
1 n
_ A \2
MAE = - ;m -9 (15)
I < .
RMSE = [~ Z(yj — 9,2 (16)
j=1
ME = maxly; - §j| (17)
1<j<n
SSte
R?=1-—2 18
SStr (1%

where y is the actual output, ¥ is the predicted output and n is
the number of samples. Eq. 14 computes MAE as the average of the
absolute errors (absolute values indicating the differences between
the actual and the predicted values). Eq. 15 shows the MSE, which
is the average squared errors (difference between the real values and
what is estimated. Eq. 16 calculates RMSE, which is the square root
of the MSE, and is applied in cases with small errors [33], whereas
Eq. 17 measures the maximum residual error ME and reveals the
worst error between the actual and predicted value. In addition, to
calculate the predictive accuracy of proposed models, we also used
R-squared, which is a statistical metric in a regression model, to
identify the proportion of variance of the dependent variable that
can be made explicit by the independent variable. Expressly, Eq. 18
indicates the R-squared measure to which the data correspond in
the regression model (the goodness of fit) where SS;, is the sum
of the squares due to the regression and SS is the total sum of
the squares [34]. Eventually, in the different steps outlined in this
section, we employed a set of technical tools for the implementation
of the studied algorithms based on the Python libraries, including
Pandas, NumPy, SciPy and Matplotlib in a Jupiter Notebook, in
addition to Scikit-learn (sklearn) and TensorFlow.

4 Results and discussion

In this section, we present and discuss the results of our three studied
models tested for PV solar energy forecasting. It should be noted
that although R-squared (R?)is a commonly used metric, it is not
regarded as an effective indicator of the models fit with the data [35].
A low or high R? value does not always indicate that the model is
wrong or that it is automatically right [36]. Due to the controversy
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concerning the efficiency of R? as an appropriate metric for deter-
mining the best regression model [35, 36], we additionally evaluate
our results using other statistical metrics that are the most widely
used: MAE, MSE, Max Error and RMSE. The RMSE remains the
most frequently employed in the regression area [37]. Table 2 show
the metrics values corresponding to solar energy prediction in real
time of studied models. Considering the parameters presented in
Table 2, we can see the results for one-half hour ahead prediction of
our experiments for the recurrent neural networks: RNN, LSTM and
GRU. In spite of their architectural differences, RNN and LSTM
have demonstrated similar performance, showing that the better
model is strongly dependent on the task. Thanks to their ability to
handle long-term dependencies in sequential information for time-
series predicting applications, both RNN and LSTM perform better
with very high accuracy as shown by their related R? values which
are respectively equal to 94.68% and 94.26%. GRU gives slightly
less performance than the RNN and LSTM with 90.32 as value. It
also causes errors unlike RNN and LSTM. We observe that for GRU,
2.74,15.53, 3.94, 37.30 are given as MAE, MSE, RMSE and ME
values, respectively. Furthermore, these measures are nearly similar
for RNN and LSTM with MAE=1.83, MSE=8.53, RMSE=2.92and
ME=30.42 for RNN, and MAE=1.90, MSE=9.20, RMSE=3.03 and
ME=29.73 for LSTM. Figure 3, Figure 4, Figure 5, Figure 6, Figure
7 and Figure 8 show their training and testing curves. In reality,
more accurate prediction results mean less uncertainty and fluctua-
tions in PV solar energy generation. Accuracy is a crucial factor in
the efficient planning and use of electrical energy and energy sys-
tems with high PV power penetration. In short, as shown in Table
2, the prediction capability of RNN and LSTM seems very reliable
compared to GRU under meteorological conditions, and they are
better adapted to meet real-time PV solar energy prediction needs
with high accuracy. Due to their ability to minimize errors during
learning and test processes, they can reduce uncertainties related to
the operation and planning of PV energy integrated management
systems.

Table 2: Metrics related to PV solar energy dataset.

Models | Data MAE MSE RMSE ME ME
RNN Training 1.73 7.22 2.68 34.06 95.62
Test 1.83 8.53 2.92 30.42 94.68
Training 1.77 7.65 2.76 35.42 95.36
LST™M Test 1.90 9.20 3.03 35.42 94.26
GRU Training 2.63 13.69 3.70 34.26 91.70
Test 2.74 15.53 3.94 37.30 90.32
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Figure 3: RNN training curves of solar energy
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Besides, while RMSE is regarded in the literature as a good
metric for evaluating and comparing regression models, it is still

difficult to interpret properly. Therefore, we also normalize the
RMSE values to provide a more meaningful representation of our
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results, which would allow more efficient conclusions. The normal-
ized RMSE (NRMSE) represents the rate of the RMSE value and
the range (the maximum value minus the minimum value) of the
actual values. Table 3 shows a results synthesis based on this metric
for real-time solar energy prediction. We can observe that RNN and
LSTM provide good and similar NRMSE values with 0.055 and
0.058 respectively.
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Figure 8: GRU testing curves of solar energy
Table 3: Results synthesis for real time prediction.
Models Data NRMSE
Trainin, 0.055
RNN &
Test 0.066
Trainin 0.058
LSTM &
Test 0.068
Trainin, 0.077
GRU &
Test 0.089

5 Conclusion and Perspectives

With the growing deployment of solar energy into modern grids,
PV solar energy prediction has become increasingly important to
deal with the volatility and uncertainty associated with solar power
in these systems. In the literature, different models have been pro-
posed for the prediction of PVs by using the Al techniques capacity.
However, the majority of the research contributions in this area offer
different techniques for making separate short-term and long-term
forecasts, and do not focus on real-time forecasts. For this reason,
we are working to find a model capable of producing continuous
real-time forecasts using meteorological data, which is primordial
for providing important decision support for power system operators
to ensure more efficient management and secure operation of the
grid and enhance the cost-effectiveness of the PV system. In this
study, we investigated the efficiency of three different DL models:
RNN, LSTM and GRU. The models were tested with data from a
Moroccan region to make real-time PV forecasts. Further, the analy-
sis of the results was based on six metrics MAE, MSE, RMSE, ME,
R? and NRMSE to determine both forecast accuracy and margin
of error. The results prove the efficiency of RNN and LSTM for
real-time PV prediction thanks to their ability to address long-term
dependencies in sequential information for time-series regression
problems, compared to GRU that gives slightly less performance
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than the RNN and LSTM. From these findings, it can be concluded
that RNN and LSTM showed very high accuracy and low errors,
they are reliable models that can minimize errors in the learning and
testing process, in addition to reduce the uncertainties associated
with the operation and planning of integrated PV energy manage-
ment systems. Moreover, they are promising techniques that also
appears to be suitable for long-term PV forecasting and should be
studied and recommended as a possible unified and standard tool
for real-time, short-term and long-term PV prediction. As future
work of this study, we plan to enhance these models by employ-
ing other approaches, extend them to longer term PV forecasting,
as well as to studying other promising deep learning methods in
view of providing and deploying a powerful model for PV energy
prediction.
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