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 This paper presents the generalized integral transform method for solving flexural and 
elastic stability problems of rectangular thin plates clamped along /2y b= ±   and simply 
supported along remaining boundaries (x = 0, x = a) (CSCS plate). The considered plate 
is homogeneous, isotropic and carrying uniformly distributed transversely applied loading 
causing bending. Also studied, is a plate subject to (i) biaxial (ii) uniaxial uniform 
compressive load. The method uses the eigenfunctions of vibrating thin beams of equivalent 
span and support conditions in constructing the basis functions for the plate deflection and 
the integral kernel function. The transform is applied to the governing domain equation, 
converting the problem to integral equations for both cases of bending and elastic buckling. 
The integral equation reduces to algebraic problems for the bending problem, and 
algebraic eigenvalue problem for the elastic buckling problem. The deflections are 
obtained as double infinite series with rapidly convergent properties. Bending moments 
expressions are double series with infinite terms which are rapidly convergent. Maximum 
deflections and bending moments values occur at the plate centre in agreement with 
symmetry. The present results gave double series solutions with good convergent properties 
in closed form for bending problems. The resulting bending solutions were exact. Solving 
the resulting eigenvalue equation gave closed analytical equation for the buckling loads. 
Buckling loads are computed for the cases of biaxial and uniaxial uniform compression of 
square thin plates using one term approximations. The buckling load obtained for one term 
approximation of the eigenfunction gave results that are 12.23% greater than the exact 
solution. The use of more terms in the eigenfunction expansion could give more acceptable 
results for the eigenvalue problem of buckling of CSCS plates. 
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1. Introduction 

 Plates can be defined as structural members with inplane 
dimensions of length and width and transverse dimension of 
thickness where the least inplane dimension is usually much 
greater than the thickness. Plate problems are thus three-
dimensional (3D) problems of elasticity for dynamic, static or 
stability cases [1–6]. The behaviour and classification of plates 
depend on the ratio of the transverse dimension and the smaller 
inplane dimension of the plate. They can be categorized as thin, 

moderately thick and thick plates. In thin plate, which is the subject 
of this study the ratio of the transverse dimension to the least 
inplane dimension is usually smaller than 1/20. 

Under certain simplifying assumptions and hypotheses, the 
theories of plates have been approximated using two-dimensional 
(2D) idealizations and classical examples are the thin plate theories 
[1–6]. Plates are applied extensively in the varied fields of 
engineering and used in civil, mechanical, aeronautical, naval, 
spacecraft and structural components. This has resulted in the 
extensive studies done by many previous scholars on the subject 
matter [1–10]. Plates are subject to loads that produce dynamic 
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flexural, static flexural, and buckling responses. Plates are 
categorized by using geometries  as rectangular, square, skew, 
triangular, trapezoidal, sector, circular, elliptical, polygonal, 
quadrilateral, rhombic; and by their material properties as 
heterogeneous, homogeneous, anisotropic, orthotropic or 
isotropic. 

This work considers rectangular thin plates made with 
isotropic, homogeneous, linear elastic materials. 

1.1. Theories of plates 
Several theories have been derived and developed for plates 

subjected to flexure and buckling loads [11–17]. Kirchhoff’s 
(classical small deformation thin) plate theory (KPT) used the 
following assumptions/hypotheses: 

(i) Cross-section planes that are orthogonal to the plate’s mid-
plane prior to loading and bending would continue to be plane 
and orthogonal to the mid-plane. This is called the normality 
or orthogonality requirement. 

(ii) The thickness remains unchanged during the bending 
deformation. 

The merits of the KPT are: 

(i) The equation of equilibrium that governs the problem is a 
linear equation. 

(ii) The governing PDE is expressed in terms of the unknown 
displacement field in the transverse direction which is found 
by solving the linear PDE. 

(iii) Bending moments and shear force expressions can be found 
from the transverse displacement using the equations that 
relate bending moment to transverse deflection, and equations 
that relate the shear force to transverse deflection. 

(iv)  The KPT results in parabolic distribution of shear stresses τyz 
and τzx over the thickness, and this agrees with results from 
structural mechanics. 

The demerits include: (i) the limitation of the KPT to small 
deformations and (ii) the inability of the KPT to cater for 
transverse shear deformations, thus limiting the scope of 
application of the KPT to thin plates; for which transverse shear 
deformations are negligible. 

In [11], the author presented the domain PDE for variable 
thickness thin plate theory. Few problems of plates with variable 
flexural rigidity have been solved using analytical methods. Large 
deflection thin plate theory was developed by von-Karman, as a 
system of equilibrium and compatibility equations. 

Reissner derived a stress-based theory for analysing 
moderately thick plates by the use of Castigliano’s theorem 
resulting in a system of three PDEs. In [3] the author derived a first 
order shear deformation plate theory (FOSDT). The theory 
considered transverse shear deformation effects by assuming linear 
variations across the thickness for the three displacement 
components. The governing PDE of Mindlin plate theory are a set 
of three coupled PDEs in terms of three unknown displacements 
w, θx and θy where w(x, y) denotes deflection in the transverse 
coordinate, θx and θy are the rotations of the plate mid-plane (z = 
0). 

In [18], the authors presented flexural solutions for thin plates 
subjected to linear variations of transversely applied loading. In  
[19] the author used the Vlasov variant of Galerkin’s methodology 
to present a bending solution to thin plate resting on one parameter 
foundations where the plate is submitted to applied loading. In [4] 
the authors deployed a Vlasov modification of the Galerkin 
method to the bending problem of rectangular thin plate under 
uniform distribution of transversely applied loading over the entire 
plate domain. 

In [7], the authors have deployed the Galerkin-Vlasov 
technique for bending analysis of thin plates with opposite edges 
fixed and the other edges on simple supports. In [20] the authors 
have also applied the Galerkin-Vlasov methodology for obtaining 
solutions to the natural vibration equation of thin plates having 
simply supported boundaries and obtained the eigenfrequencies 
and vibration modal shape functions. 

Ritz variational methodologies has been deployed for the 
formulation and solution of classical Kirchhoff plate problems by  
authors in [21-23]. 

In [21], the authors deployed Ritz technique for finding 
solutions to the bending analysis of rectangular Kirchhoff-Love 
plates subject to transverse hydrostatically varying loading 
distributions over the plate region. In [22], the author presented 
systematically the Ritz method for the flexural analysis of simply 
supported rectangular Kirchhoff plates under distributed 
transverse loadings. Similarly, in [23], the author used Ritz 
technique to solve the bending problems of rectangular thin plates 
resting on one parameter foundations, with the plate subject to 
uniformly distributed loading over the entire domain. 

Shear deformation theories of plates have been formulated by 
authors in [2], [24] and [25] amongst others to incorporate the 
transverse shear stresses and strains on their bending, dynamic and 
stability behaviours. 

1.2. Review of solution methods for plate problems 

Plate problems of dynamic and static bending and stability 
have been analysed using numerical and analytical methods by 
several researchers. 

In [1], the author obtained an infinite series solution to the 
small displacement bending problems of CSCS (or SCSC) 
rectangular thin plates subject to uniformly distributed loading, by 
using the superposition principle to the solution for simply 
supported plates carrying uniform transverse distribution of 
loading and the solution to the same problem under an applied 
torque distribution along the clamped edges where the applied 
torque is of such a magnitude that rotations vanish at the clamped 
edges. 

Integral transform methods were used for determining 
problems of thin plates under bending deformations by authors in 
[10] and [26]. 

In [8], the authors used the finite Fourier sine transformation 
methodology for flexural analysis of thin plates resting on one 
parameter foundations. In [26], the author presented the bending 
solutions of thin plate supported/resting on one-parameter discrete 
model of Winkler with the aid of finite Fourier sine transformation 
technique. In [27], the author presented two-dimensional Fourier 
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cosine series technique to solve bending problems of rectangular 
thin plates supported by Winkler one-parameter foundations with 
the plate domain subject to transverse loading. 

Kantorovich-Vlasov method was used for the thin plate flexure 
problems by authors in [9], [28]-[31]. 

In [9] the authors have studied the use of Kantorovich-Vlasov 
method for solving bending problems of thin plate with Dirichlet 
conditions under uniformly distributed transverse loading. In [28], 
the author presented a mixture of Kantorovich, Euler-Lagrange 
and Galerkin’s techniques and used it for solving bending 
problems of rectangular thin plates. In [29], the authors used the 
Kantorovich method to perform natural transverse vibrational 
analysis of rectangular Kirchhoff plates, thus obtaining the natural 
frequencies of transverse vibration. In [30], the authors used the 
Kantorovich-Vlasov methodology for solving the flexural 
problems of rectangular Kirchhoff plates with opposite sides fixed, 
and the other two sides simply supported; with the plate subject to 
distributed uniform loading. In [31], the authors used the 
Kantorovich method to solve flexural problems of Kirchhoff-Love 
plates having two sides fixed and the other sides on simple 
supports. 

Thick thick plates modelled using FOSDT and Mindlin plate 
theories were studied by authors in [5], [12-17]. 

Elastic stability problems involving rectangular Kirchhoff 
plates subjected to inplane compressive loads were investigated by 
authors in [32-36]. 

In [32], the authors used the two-dimensional finite Fourier 
sine integral transformation technique for solving the elastic 
buckling problems of simply supported rectangular thin plates. In 
[33], the authors used the one-dimensional (single) finite Fourier 
sine integral transform method for the elastic stability solutions of 
thin plates simply supported at two opposite sides and fixed along 
the remaining two sides for uniaxial uniform compression. In [34], 
the authors used the Galerkin-Kantorovich technique for the elastic 
buckling analysis of thin rectangular shaped plates with two 
opposite sides simply supported and the other two sides fixed 
(SCSC plates). In [35], the authors used the Galerkin-Vlasov 
variational method for solving the elastic problems of rectangular 
thin plates with two types of boundary constraints namely: (a) 
simply supported on two opposite sides, clamped along the third 
side and free along the fourth side (SSCF plates). (b) simply 
supported along the four sides (SSSS plates). They obtained for 
each considered case, closed form solution that satisfies the 
boundary conditions and domain equation. In [36], the authors 
performed and obtained stability solutions for rectangular thin 
SSCF and SSSS plates using the single finite Fourier sine integral 
transform method. They obtained for the studied problems, exact 
solutions that satisfied the deformation and force equations at the 
restrained boundaries and the governing field equation. 

In [37], the authors presented the flexural analysis of annular 
plates using the indirect Trefftz boundary method. They based 
their formulation for thin and thick plates on the Kirchhoff 
classical thin plate theory and the Reissner stress based thick plate 
theory respectively. They adopted the Trefftz method for their 
analysis because the Trefftz method uses complete set of solutions 
satisfying the governing fourth order PDE of the KPT classical thin 

plate theory and the sixth order PDE of the Reissner plate theory. 
Another fundamental merit that informed their use of the Trefftz 
method is that the method avoids singular integrals due to the 
properties of the solution coordinate functions. They adopted the 
method because the boundary conditions are automatically 
considered by the method, rendering the method effective 
compared with other methods. They solved illustrative problems 
by the method to demonstrate its effectiveness. 

In [38], the authors demonstrated the use of the finite integral 
transformation technique for solving the flexural problems of 
clamped orthotropic rectangular shaped thin plates resting on one-
parameter elastic foundations. In [39], the authors used the exact 
wave propagation approach for the natural vibration and stability 
analysis of thick plates modelled using the third order shear 
deformation plate theory. In [40], the authors presented the refined 
plate theory for the natural vibration analysis of nanoplates. In 
[41], the authors investigated vibrational behaviour of nonlinear 
rectangular plates modelled using the shear deformation plate 
theory. In [42], the authors presented a new technique for solving 
nonlinear vibrational problems of rectangular plates subjected to 
inplane compressive forces. In [43], the authors used the 
trigonometric shear deformation plate theory for the flexural 
analysis of moderately thick plates according to the shear 
deformation assumptions. 

Other contributions to the knowledge of plates are found in 
such seminal papers as presented by authors in [44-51]. 

Other contributions to the theory of plates are found in 
references [52–60]. 

In [61], the authors used the GITM for obtaining closed-form 
mathematical expressions for the stability problems of rectangular 
Kirchhoff plates. 

In [62], the authors applied the finite integral transformation 
method to solve the flexural problems of rectangular Kirchhoff 
plates made with orthogonally anisotropic materials. They 
considered plates with two adjacent free boundaries and the other 
boundaries fixed or on simple suppports (FFCC or FFSS) plates. 

In [63], the authors used the two-dimensional finite integral 
transformaion method to determine the mathematical expressions 
that solve the flexural problems of Kirchhoff plates that are 
rectangular in plan shape. They considered and studied such plates 
that are supported at the corner points. 

In [64], the authors used the finte integral transformation 
method to solve the natural vibration problems for transversely 
anisotropic thin plates with opposite sides that are prevented from 
rotational displacement and the other sides free of support. 

In [65], the authors used the techniques of finite integral 
transformation for flexural problems involving plates made of 
transversely-anisotropic materials where the plates opposite 
boundaries are fixed while the rest of the edges are free. 

In [66], the authors used the two-dimensional finite integral 
transformation method to determine the mathematical expressions 
for the flexural problems of rectangular shaped plates with 
moderate thickness resting on Winkler foundations. They used the 
Mindlin plate theory to describe the plate and obtained the 
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solutions to the system of governing equaitons using the two-
dimensional finite integral tansformation technique. 

2. Theory 

2.1. The thin plate flexure problem: 

The governing PDE describing flexure for thin plates a × b 
which is displayed in Figure 1 is given by the PDE: 

( , ) ( , )4 0
qw x y x y
D

∇ − =       (1) 

where ∇4 is the biharmonic operator, q(x, y) represents 
distribution of applied load intensity, w(x, y) denotes the 
deflection. D denotes the flexural rigidity of the plate, expressed 
in terms of the elastic properties and geometrical properties of the 
plate by Equation (2) as follows: 

( )

3

212 1
EhD =
−µ

       (2) 

µ is Poisson’s ratio, h is plate thickness. E is Young’s modulus of 
elasticity. 

For clamped edges, the restraint equations for displacements 
are: 

( ), /2 0w x y b= ± =        (3) 

( ), 0
2

w bx y
y

∂ ±
= =

∂
       (4) 

For (x = 0, y) and (x = a, y) edges, restraint (displacement) and 
bending moment force equations give: 

( , ) ( , )0 0w x y w x a y= = = =     (5) 

( , ) ( , )w wx y x a y
x x

∂ ∂
= = = =

∂ ∂

2 2

2 20 0     (6) 

Mxx and Myy are: 
2 2

2 2xx
w wM D

x y
 ∂ ∂

= − +µ ∂ ∂ 
      (7) 

2 2

2 2yy
w wM D

y x
 ∂ ∂

= − +µ ∂ ∂ 
      (8) 

 

 
Figure 1: Rectangular thin plate ( )a b×  with two opposite clamped boundaries 
( /2),y b= ±  others on simple supports (SCSC or CSCS plate) subject to uniformly 
distributed transverse loading 
 
2.2. Field equations for stability of rectangular thin plates 

subjected to uniaxial and biaxial compressive forces 

The governing equation for the problem shown in Figure 2 is 
for biaxial buckling given by: 

 
 

Figure 2: Biaxial buckling of rectangular thin (SCSC or CSCS) plates 
 

( , ) ( , )( , )
2 2

4
2 2 0x y

w x y w x yD w x y N N
x y

∂ ∂
∇ + + =

∂ ∂
   (9) 

or, ( , ) ( ( , ))4 2 0
Nw x y w x y
D

∇ + ∇ =      (10) 

when x yN N N= =   
Let Ny = 0, then Equation (10) simplifies to become: 

2
4

2 0x
wD w N

x
∂

∇ + =
∂

      (11) 

The geometric and force equations for the buckling problem 
are expressed by Equations (3–6). 

3. Methodology 

In the Generalized Integral Transformation Method (GITM), 
the basis functions are chosen as the eigenfunctions of a freely 
vibrating thin beam of equivalent edge support conditions as the 
plate. The plate is simply supported along the boundaries x = 0, 
and x = a. The eigenfunction of a simply supported thin beam of 
span a at the nth vibration mode is: 

( ) sinn
n xF x
a
π =  

 1        (12) 

n = 1, 2, 3, 4, 5, 6, … 
The eigenfuction of a thin beam of span b clamped at y = ±b/2 

at the mth vibration mode is given by: 

cos
( ) cos( ) cosh( )

cosh

m

m m m
m

b

F y y y
b

β  
 = β − β
β  

 

2
2

2

   (13) 

m = 1, 2, 3, 4, 5, 6, … 
In compact form, 

( ) cos( ) cosh( )m m m mF y y y= β −λ β2     (14) 
where  

cos

cosh

2

2

m

m
m

b

b

β  
 λ =
β  

 

       (15) 

where βm are the roots (eigenvalues) of the eigen equation, which 
for clamped-clamped thin beams is a transcendental equation. 
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tan tanh 0
2 2
m mb bβ β   + =   

   
     (16) 

The roots (which are infinite in numbers) are obtained for the 
first five modes of vibration using Mathematica software as 
follows: 

. ...1 2 36502037243135
2
bβ
= ±  

. ...2 5 49780391900084
2
bβ
= ±  

. ...3 8 63937982869974
2
bβ
= ±  

. ...4 11 7809724510202
2
bβ
= ±  

. ...5 14 9225651045516
2
bβ
= ±   (17) 

For large values of ,mbβ 
 
 2

tanh mbβ  = 
 

1
2

 and 

sin
tan

cos

m

m

m

b
b

b

β  β   = − =  β    
 

21
2

2

  

Approximate solutions (eigenvalues) of the transcendental 
equation for m > 5 are obtained by solving the equation – Equation 
(18) using Mathematica and other root-finding software. 

tan ( )mb −β  = − 
 

1 1
2

       (18) 

The solution to Equation (18) is: 

( )mb
m

β  = π − π 
 

1
4

2 4
      (19) 

    (m > 5) 
Then, w(x, y) is constructed from the double infinite series of 

eigenfunctions in the x and y Cartesian coordinates as the 
following infinite double series: 

( , ) ( ) ( )mn n m
m n

w x y C F x F y
∞ ∞

= =

=∑∑ 1 2
1 1

    (20) 

where Cmn is an unknown displacement (deflection) parameter 
sought for w(x, y) to be a solution to the governing equation. 

It is easily verified that F1n(x) and F2m(y) both satisfy all the 
boundary conditions of the thin plate problem for both flexure and 
elastic buckling. 

3.1. The thin plate flexural problem 

Applying the GITM to the PDE of the thin plate flexure 
problem results in the integral equation given as: 

/

/

( ) ( ) ( ) ( )
a b

mn n m n m
m nb

q
C F x F y F x F y dxdy

D

∞ ∞

= =−

 
∇ − =  
 
∑∑∫ ∫

2
4 0

1 2 1 2
1 10 2

0   

        …(21) 
where 

( )( )( , ) ( ) ( ) sin cos( ) cosh( )mn n m m m m
n x

K x y F x F y y y
a
π

= = β − λ β1 2 (22) 

Knm(x, y) denotes the nucleus (kernel) function. 

Hence, simplification of Equation (21) gives: 
/

/

( ( ) ( )) ( ) ( )
a b

mn n m n m
m n b

C F x F y F x F y dxdy
∞ ∞

= = −

∇∑∑ ∫ ∫
2

4
1 2 1 2

1 1 0 2

 

  
/

/

( ) ( )
2

0 1 2

0 2

1
a b

n m
b

q F x F y dxdy
D

−

= ∫ ∫   (23) 

Simplifying further, we have: 
/

/

( ( ) ( ) ( )
a b

iv
mn n n m

m n b

C F x F x F y
∞ ∞

= = −

+∑∑ ∫ ∫
2

2
1 1 2

1 1 0 2

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ))2
1 1 2 2 1 2 22 ′′ ′′ + iv

n n m m n m mF x F x F y F y F x F y F y dxdy  

 
/

/

( ) ( )
2

0
1 2

0 2

a b

n m
b

q
F x F y dxdy

D
−

= ∫ ∫    (24) 

where the primes represent differentiations with respect to the 
respective space coordinates. 

For any m, n, we have Cmn determined by: 

( )
0 7 8 1

1 2 3 4 5 6 22
mn

mn
mn

q I I G
C

D I I I I I I G
= =

+ +
    (25) 

1 0 7 8mnG q I I=        (26) 
( )2 1 2 3 4 5 62mnG D I I I I I I= + +      (27) 

where ( ) ( )1 1 1

0

a
iv
n nI F x F x dx= ∫      (28) 

/

/

( )
2

2
2 2

2

b

m
b

I F y dy
−

= ∫        (29) 

( ) ( )3 1 1

0

a

n nI F x F x dx′′= ∫       (30) 

/

/

( ) ( )
2

4 2 2

2

b

m m
b

I F y F y dy
−

′′= ∫       (31) 

( )2
5 1

0

a

nI F x dx= ∫       (32) 

/

/

( ) ( )
2

6 2 2

2

b
iv
m m

b

I F y F y dy
−

= ∫       (33) 

( )7 1

0

a

nI F x dx= ∫       (34) 

/

/

( )
2

8 2

2

b

m
b

I F y dy
−

= ∫        (35) 

Then, 

( ) ( )
( , )

( )

n m

m n

q
I I F x F y

Dw x y
I I I I I I

∞ ∞

= =

=
+ +∑∑

0
7 8 1 2

1 2 3 4 5 61 1 2
    (36) 

By differentiation, 
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( ) ( )

( )

n m

xx
m n

q
I I F x F yw Dw

I I I I I Ix

∞ ∞

= =

′′∂
= =

+ +∂ ∑∑
0

2 7 8 1 2

2
1 2 3 4 5 61 1 2

   (37) 

( ) ( )

( )

n m

yy
m n

q
I I F x F yw Dw

I I I I I Iy

∞ ∞

= =

′′∂
= =

+ +∂ ∑∑
0

2 7 8 1 2

2
1 2 3 4 5 61 1 2

   (38) 

The bending moments are: 

( ( ) ( ) ( ) ( ))
( )
n m n m

xx
m n

q I I F x F y F x F y
M

I I I I I I

∞ ∞

= =

′′ ′′+ µ
= −

+ +∑∑ 0 7 8 1 2 1 2

1 2 3 4 5 61 1 2
  (39) 

( ( ) ( ) ( ) ( ))
( )
n m n m

yy
m n

q I I F x F y F x F y
M

I I I I I I

∞ ∞

= =

′′ ′′+ µ
= −

+ +∑∑ 0 7 8 1 2 1 2

1 2 3 4 5 61 1 2
  (40) 

At the plate centre, the bending moment expressions for Mxx 
and Myy found by substitution of the centroidal coordinates are: 

( ) ( ( ) ( ) ( ) ( ))
,

( )
n m n m

xx
m n

q I I F a F F a FaM x y
I I I I I I

∞ ∞

= =

′′ ′′+ µ
= = = −

+ +∑∑ 0 7 8 1 2 1 2

1 2 3 4 5 61 1

0 0
0

2 2
  

        …(41) 

( ) ( ( ) ( ) ( ) ( ))
,

( )
n m n m

yy
m n

q I I F a F F a FaM x y
I I I I I I

∞ ∞

= =

′′ ′′+ µ
= = = −

+ +∑∑ 0 7 8 1 2 1 2

1 2 3 4 5 61 1

0 0
0

2 2
  

        …(42) 
At the middle of the clamped boundaries, the coordinates are: 

( ), ,
2 2
a bx y= = ±   

The bending moment expressions for the midpoint of the fixed 
boundaries are found and given by: 

( ),
2 2xx
a bM x y= = ±  

( ) ( ) ( ) ( )( )( )
( )

n m n m

m n

a b a bq I I F F F F

I I I I I I

∞ ∞

= =

′′ ′′± + µ ±
= −

+ +∑∑
0 7 8 1 2 1 2

1 2 3 4 5 61 1

2 2 2 2
2

 

        …(43) 

( ),yy
a bM x y= = ±2 2  

( ) ( ) ( ) ( )( )
( )

n m n m

m n

a b a bq I I F F F F

I I I I I I

∞ ∞

= =

′′ ′′± + µ ±
= −

+ +∑∑
0 7 8 1 2 1 2

1 2 3 4 5 61 1

2 2 2 2
2

 

        …(44) 

3.2. Biaxial buckling of SCSC plate 

The application of GITM to the elastic buckling equation 
gives the integral equation: 

( / )

( / )

( ) ( )
ba

mn n m
m nb

C F x F y
∞ ∞

= =−

 
∇ +  
 
∑∑∫ ∫

2
4

1 2
1 10 2

 

  ( ) ( ) ( ) ( )mn n m n m
m n

N C F x F y F x F y dxdy
D

∞ ∞

= =

 
∇ =  

 
∑∑2

1 2 1 2
1 1

0    (45) 

Let 2N
D

= α         (46) 

Then, 

{
( / )

( / )

( ( ) ( )) ( ) ( )
ba

mn n m n m
m n b

C F x F y F x F y
∞ ∞

= = −

∇ +∑∑ ∫ ∫
2

4
1 2 1 2

1 1 0 2

 

 }( ( ) ( )) ( ) ( )2 2
1 2 1 2 0n m n m dxdyF x F y F x F y =α ∇  (47) 

Simplifying Equation (47) gives: 

{
( / )

( / )

( ( ) ( ) ( )
ba

iv
mn n n m

m n b

C F x F x F y
∞ ∞

= = −

+∑∑ ∫ ∫
2

2
1 1 2

1 1 0 2

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ))2
1 1 2 2 1 2 22 iv

n n m m n m mF x F x F y F y F x F y F y′′ ′′ + +  

}( ( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 1 2 1 2 2 0n n m n m m dxdyF x F x F y F x F y F y =′′ ′′α +  (48) 

Hence, 

{ }( ) ( )mn
m n

C I I I I I I I I I I
∞ ∞

= =

=+ + + α +∑∑ 2
1 2 3 4 5 6 3 2 5 4

1 1

02   (49) 

For nontrivial solutions, 0mnC ≠  and  

( )2
1 2 3 4 5 6 3 2 5 42I I I I I I I I I I+ + = −α +     (50) 

Solving for α2, 
2 1 2 3 4 5 6

2 3 4 5

2I I I I I IN
D I I I I

+ + α = = − + 
     (51) 

In compact form, 
2 2

3

mn

mn

G
G
−

α =         (52) 

where, 
3 2 3 4 5mnG I I I I= +        (53) 

Thus, the buckling load is: 
2

3

mn

mn

G
N D

G
=         (54) 

3.3. Uniaxial buckling of SCSC plate 

For uniaxial buckling due to Nx applied alone, Ny = 0, and the 
GITM yields: 

2 1 2 3 4 5 6

2 3

2I I I I I IN
D I I

+ + α = = − 
 

    (55) 

The buckling load for uniaxial compression in the x direction is: 
2

4

mn

mn

G
N D

G
−

=        (56) 

where, 4 2 3mnG I I=        (57) 

4. Results 

By differentiation of the eigenfunctions,  

( ) sin ( )n n
n n x nF x F x
a a a
π π π     ′′ = − = −        

2 2

1 1    (58) 

( ) sin ( )iv
n n

n n x nF x F x
a a a
π π π     = =        

4 4

1 1    (59) 

( )( ) cos( ) cosh( )m m m m mF y y y′′ = −β β + λ β2
2     (60) 

( )( ) cos( ) cosh( ) ( )iv
m m m m m m mF y y y F y= β β −λ β = β4 4

2 2   (61) 
Then, 
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( ) ( ) ( )
4

2
1 1 1 1

0 0

a a
iv
n n n

nI F x F x dx F x dx
a
π = =  

 ∫ ∫    (62) 

Substitution of the expression for F1n and integration gives: 

sin
sin

a
a

n x
n n x n x aI dx na a a

a

π   
  π π π       = = −       π         

   
∫

4 4
2

1

0
0

2

2 4
  (63) 

Substituting the integration limits gives: 

( )n aI
a
π =  

 

4

1 2
       (64) 

Similarly, I2 is evaluated as: 

( )
( / ) ( / )

( / ) ( / )

( ) cos( ) cosh( )
b b

m m m m
b b

I F y dy y y dy
− −

= = β − λ β∫ ∫
2 2

22
2 2

2 2

  (65) 

Expanding the integrand in Equation (65) gives: 

( )
( / )

( / )

cos ( ) cosh( )cos( ) cosh ( )
b

m m m m m m

b

I y y y y dy
−

= β − λ β β + λ β∫
2

2 2 2
2

2

2   

               …(66) 
Using the linearity property of integration, Equation (66) 

simplifies to: 
( / ) ( / )

( / ) ( / )

cos ( ) cosh( )cos( )
b b

m m m m
b b

I y dy y y dy
− −

= β − λ β β +∫ ∫
2 2

2
2

2 2

2  

   
( / )

( / )

cosh ( )
b

m m
b

y dy
−

λ β∫
2

2 2

2

  (67) 

Each integral in Equation (67) is evaluated. 
( / ) ( / )

( / )( / )

sin( )
cos ( )

b b
m

m
m bb

yyy dy
−−

β β = + β ∫
2 2

2

22

2
2 4

   (68) 

Substituting the limits, and simplifying, gives: 

( )( / )

( / )

sin
cos ( )

b m

m
mb

b
by dy

−

   β   β = + − 
β ∫

2
2

2

2
/2 2
2 4

 

 
( )( )sin sin( )2/2 2

2 4 2 2

− β  β−
+ = + β β 

m
m

m m

b
bb b   (69) 

Similarly, 
( / )

( / )

cosh( )cos( )
b

m m
b

y y dy
−

β β∫
2

2

 

    sinh( )cos( ) cosh( )sin( )m m m m m m

m m

y y y yβ β β +β β β =  β +β 
2 2

 (70) 

Also, 
( / )

( / )

cosh( )cos( )
b

m m
b

y y dy
−

β β∫
2

2

 

sinh cos cosh sin
2 2 2 2

2

m m m m

m

b b b bβ β β β         +               = − 
β 

 

sinh cos cosh sin
2 2 2 2

2

m m m m

m

b b b bβ β β β         − −               
 

β 
  (71) 

Then, 
( / )

( / )

cosh( )cos( )
b

m m
b

y y dy
−

β β∫
2

2

 

sinh cos cosh sin
2 2 2 2
m m m m

m

b b b bβ β β β       +       
       =

β
  (72) 

Also, 
( / ) ( / )

( / )( / )

sinh( )cosh( )
cosh ( )

b b
m m

m
m bb

y yyy dy
−−

β β β = + β ∫
2 2

2

22
2 2

 (73) 

Substituting the limits, gives: 

( / )

( / )

sinh cosh
cosh ( )

m mb

m
mb

b b
by dy

−

β β            β = + − 
β ∫

2
2

2

2 2
4 2

 

 
sinh cosh

2 2
4 2

m m

m

b b
b

β β            − − 
β 

 

  
sinh cosh

2 2
2

m m

m

b b
b

β β      
   = +

β
   (74) 

Then, substitution of Equations (69) (72) and (74) into 
Equation (67) yields: 

sin( )
2 2

2 2
m

m
m

bbI
β

= + − λ
β

 

 

 
sinh cos cosh sin

2 2 2 2
m m m m

m

b b b bβ β β β         +                + 
β 

 

  
sinh cosh

2 2 2
2

m m

m
m

b b
b

β β            λ + 
β 

   (75) 

But the eigenvalue equation from which Equation (16) is 
derived is: 

sinh cos cosh sin 0
2 2 2 2
m m m mb b b bβ β β β       + =       

       
  (76) 

Hence, I2 expressed by Equation (75) simplifies to: 

sinh coshsin( ) 2
2

2 2
2 2 2

m m

m
m

m m

b b
bb bI

β β         β    = + + λ + 
β β 

  (77) 

Similarly, I3 is evaluated as: 

( ) ( ) ( )
2 2

2
3 1 1 1

0 0
2

a a

n n n
n n aI F x F x dx F x dx
a a
π π   ′′= = − = −   

   ∫ ∫   

               …(78) 
I4 is evaluated as: 
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(
( / ) ( / )

( / ) ( / )

( ) ( ) cos( )
b b

m m m m
b b

I F y F y dy y
− −

′′= = −β β +∫ ∫
2 2

2
4 2 2

2 2

 

 )( )cosh( ) cos( ) cosh( )m m m m my y y dyλ β β −λ β  (79) 
Simplification of Equation (79) gives: 

( )
( / )

( / )

cos ( ) cosh ( )
b

m m m m
b

I y y dy
−

= −β β −λ β∫
2

2 2 2 2
4

2

   (80) 

Hence, 

sinh coshsin( )2 2
4

2 2
2 2 2

m m

m
m m

m m

b b
bb bI

β β           β    = −β + −λ +  
β β  

  

               …(81) 
Similarly, 

( ) sin2 2
5 1

0 0
2

a a

n
n x aI F x dx dx
a
π = = = 

 ∫ ∫     (82) 

Also, 
( / ) ( / )

( / ) ( / )

( ) ( ) ( )
b b

iv
m m m m

b b

I F y F y dy F y dy
− −

= = β∫ ∫
2 2

4 2
6 2 2 2

2 2

   (83) 

sin( )4 4
6 4 2 2 2

m
m

m

bbI I
β = β = β + + β 

   

  
sinh cosh

2 2 2
2

m m

m
m

b b
b

β β            λ + 
β 

(84) 

Similarly, 

( ) sin cos7 1
0

0 0

a a a

n
n x a n xI F x dx dx
a n a
π π = = = −  π∫ ∫   (85) 

Substituting the limits, 

( ) ( )cos( ) cos cos( )a aI n n
n n

= − π − = − π −
π π7 0 1    (86) 

I8 is evaluated as: 

( )
( / )

( / )

cos( ) cosh( )
b

m m m
b

I y y dy
−

= β −λ β∫
2

8

2

 

 
/

/

sin( ) sinh( ) b
m m

m
m m b

y y

−

β β = − λ β β 

2

2

   (87) 

Substituting the limits, 

sin sinh8
2

2 2
m m

m
m

b b
I

β β    = − λ    
    β

    (88) 

4.1. Results for the thin plate flexure problem 

Then, substituting the integrals into Equation (25), we have: 

( )
sin sinh

cos( )
m m

m

m mn
mn

mn

b b
aq

n
n G

C
Gn a n a aI I I

a a

β β    − λ    −     π −
π β

= =
π π   ⋅ − +   

   

0

1
4 2

2
2 4 6

2 2 21

2
2 2 2

 

        …(89) 

( ) ( ) ( )( )cos( ) sin sinhm m
mn m

m

aq b bG n
n
− β β

= π − − λ
πβ

0
1

2
1

2 2
  (90) 

sin( )4

2 2 2 2
m

mn
m

bn a bG
a

βπ  = + +    β
 

 
sinh cosh

2 2 2
2

m m

m
m

b b
b

β β            λ + − β 
 

 
sin( )2

22
2 22

m
m

m

bbn a
a

βπ     + −−β     β  
  

sinh cosh
2 2 2

2

m m

m
m

b b
b

β β           +    λ +  β 
  

sin( )4

2 2 2
m

m
m

ba b ββ + + β
  

  
sinh cosh

2 2 2
2

m m

m
m

b b
b

β β            λ + β 
(91) 

sinh coshsin( )4
2

2
2 2

2 2 2 2

m m

m
mn m

m m

b b
bn a b bG

a

β β           βπ     = + + λ + +      β β  
  

sinh coshsin( )2
2 2 2 22

2 2 2 2

m m

m
m m

m m

b b
bn a b b

a

β β           βπ     β + −λ + +      β β  
  

sinh coshsin( )4 2 2 2
2 2 2 2

m m

m
m m

m m

b b
ba b b

β β           β    β + + λ +  
β β  

  

        …(92) 
4

4
2 2 2mn m

n a aG
a

 π = + β  
  

 

 
sinh coshsin( ) 2 2 2

2 2 2

m m

m
m

m m

b b
bb b

β β           β    + + λ + +  
β β  

 

sinh coshsin( )2
2 2 2 22

2 2 2 2

m m

m
m m

m m

b b
bn a b b

a

β β           βπ     β + −λ +      β β  
 

        …(93) 
4 2

4
2 2 42

2 2 2
 π π   = + β −    
    mn m

n a a n aG I I
a a

   (94) 

Then, 1

2

mn
mn

mn

G
C

G
=  is evaluated and w(x, y) is found using 

Equation (36) as:  

( , ) ( ) ( )mn
n m

mnm n

G
w x y F x F y

G

∞ ∞

= =

=∑∑ 1
1 2

21 1

    (95) 

where m = 1, 2, 3, …; n = 1, 2, 3, … 
 

The bending moments are obtained from substitution of 
Equation (95) in Equations (7) and (8): 

( ) cos cosh2 0 0 0 1m m mF y = = −λ = −λ     (96) 

( ) cos coshm m
m m

b bbF y
β β   = ± = −λ   

   2 2 2 2
   (97) 
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( ) (cos cosh ) ( )2 2
2 0 0 0 1m m m m mF y′′ = = −β + λ = −β + λ   (98) 

( ) cos coshm m
m m m

b bbF y
β β    ′′ = ± = −β + λ    

    
2

2 2 2 2
  (99) 

( ) ( )sin sinn
a n a nF x

a
π π   = = =   

   1
/2

2 2
    (100) 

( ) ( )sin sinn
a n n a n nF x

a a a
π π π π     ′′ = = − = −     

     

2 2

1
/2

2 2
  (101) 

 
Results for deflections and bending moments evaluated at x = a, 
y = 0 

The deflections and bending moments expressions evaluated 
at x = a, y = 0 are found from: 

( )( , ) ( )mn n m
m n

aw a C F x F y
∞ ∞

= =

= = =∑∑ 1 2
1 1

0 0
2

 

 sin ( )mn
m

mnm n

G n
G

∞ ∞

= =

π
= −λ∑∑ 1

21 1

1
2

   (102) 

( ) ( )( )( , ) ( ) ( )mn
xx n m n m

mnm n

G a aM a F F F F
G

∞ ∞

= =

′′ ′′= + µ∑∑ 1
1 2 1 2

21 1

0 0 0
2 2

  (103) 

( ) ( )( )( , ) ( ) ( )mn
yy n m n m

mnm n

G a aM a F F F F
G

∞ ∞

= =

′′ ′′= + µ∑∑ 1
1 2 1 2

21 1

0 0 0
2 2

  (104) 

Results for deflection and bending moment expressions evaluated 

at the midpoint of the fixed edges ( ),
2 2
a bx y= = ±   

The deflection and bending moments expressions evaluated at 
the midpoint of the fixed edges are found and given by:  

( ) ( ) ( ), mn
n m

mnm n

Ga b a bw F x F y
G

∞ ∞

= =

± = = = ± =∑∑ 1
1 2

21 1

0
2 2 2 2

 (105) 

Since  

( )
cos

cos cosh
cosh

m

m m
m

m

b
b bbF y

b

β 
 β β    = ± = ± − ±   β    
 
 

2
2

2 2 2
2

 

 
cos

cos cosh
cosh

2 0
2 2

2

m

m m

m

b
b b

b

β  β β    = − =   β     
 

 (106) 

( ),xx
a bM x y= = ±2 2   

( ) ( ) ( ) ( )( )mn
n m n m

mnm n

G a b a bF F F F
G

∞ ∞

= =

± ±′′ ′′= + µ∑∑ 1
1 2 1 2

21 1 2 2 2 2
 (107) 

( ),yy
a bM x y= = ±2 2   

( ) ( ) ( ) ( )( )mn
n m n m

mnm n

G a b a bF F F F
G

∞ ∞

= =

± ±′′ ′′= + µ∑∑ 1
1 2 1 2

21 1 2 2 2 2
 (108) 

The obtained results are presented in Tables 1, 2, 3, 4, 5, 6, 7, 8 
and 9. 
 

Table 1: Maximum deflection coefficients (α1) of rectangular Kirchhoff CSCS 
plate having clamped boundaries ( ),= − = +/2 /2y b y b  two opposite 
boundaries (x = 0, x = a), simply supported and the plates submitted to uniform 
load of intensity q0 (case when b ≤ a or a ≥ b) for .µ = 0 30  

a/b max

4
0

1
q b

w
D

 
= α  

 
 

Present study (GITM) α1  [1]  α1 
1.0 1.92 × 10−3 1.92 × 10−3 

1.1 2.09 × 10−3 2.09 × 10−3 
1.2 2.23 × 10−3 2.23 × 10−3 
1.3 2.34 × 10−3 2.34 × 10−3 
1.4 2.40 × 10−3 2.40 × 10−3 
1.5 2.47 × 10−3 2.47 × 10−3 
2 2.60 × 10−3 2.60 × 10−3 
∞ 2.60 × 10−3 2.60 × 10−3 

Table 2: Maximum deflection coefficient (α2) of rectangular Kirchhoff CSCS 
plates with clamped boundaries ( );y b= ± /2  opposite simply supported 
boundaries (x = 0, x = a) where the plate carries uniform loading with an intensity 
q0 (case when b ≥ a) for .µ = 0 30  

b/a max

4
0

2
q a

w
D

 
= α  

 
 

Present study (GITM) α2  [1] α2 
1.0 1.92 × 10−3 1.92 × 10−3 

1.1 2.51 × 10−3 2.51 × 10−3 
1.2 3.19 × 10−3 3.19 × 10−3 
1.3 3.88 × 10−3 3.88 × 10−3 
1.4 4.60 × 10−3 4.60 × 10−3 
1.5 5.31 × 10−3 5.31 × 10−3 
1.6 6.03 × 10−3 6.03 × 10−3 
1.7 6.68 × 10−3 6.68 × 10−3 
1.8 7.32 × 10−3 7.32 × 10−3 
1.9 7.90 × 10−3 7.90 × 10−3 
2 8.44 × 10−3 8.44 × 10−3 
3 11.68 × 10−3 11.68 × 10−3 
∞ 13.02 × 10−3 13.02 × 10−3 

Table 3: max
 

= α  
 

4
0

1
q bw

D
 convergence study of the maximum deflection 

function for CSCS (or SCSC) plate for the cases where b < a (or a > b) for 
.µ = 0 30  

a/b 
Present study  
n = 1, m = 1 

α1 

Relative 
error 

Present study  
n = 1, 3,  
m = 1, 2 

α1 

Relative 
error  [1] α1 

1.0     1.92 × 10−3 
1.1 2.188125 × 10−3 4.69 2.081875 × 10−3 −0.39 2.09 × 10−3 
1.2 2.345625 × 10−3 5.18 2.21625 × 10−3 −0.62 2.23 × 10−3 
1.3 2.476875 × 10−3 5.85 2.320625 × 10−3 −0.83 2.34 × 10−3 
1.4 2.585625 × 10−3 7.73 2.399375 × 10−3 −0.03 2.40 × 10−3 
1.5 2.67625 × 10−3 8.35 2.461875 × 10−3 −0.45 2.47 × 10−3 
2 2.64875 × 10−3 1.875 2.59375 × 10−3 −0.24 2.60 × 10−3 
∞ 2.63625 × 10−3 1.39 2.60125 × 10−3 −0.05 2.60 × 10−3 

Table 4: Convergence study of the maximum deflection of the CSCS plate 
studied for the cases where b < a up to 5 terms each of the series for .µ = 0 30  

a/b 
n = 1,  
m = 1 
α1 

n = 1, 3 
 m = 1, 2 

α1 

n = 1, 3,  5 
m = 1, 2, 3 

α1 

n = 1, 3,  5, 7 
m = 1, 2, 3, 4 

α1 

n = 1, 3,  5, 7, 9 
m = 1, 2, 3, 4, 5 

α1 
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(×10−3) (×10−3) (×10−3) (×10−3) (×10−3) 
1.1 2.188125  2.081875 2.09125 2.089375 2.09 
1.2 2.345625 2.21625 2.228125 2.225625 2.23 
1.3 2.476875  2.320625 2.335625 2.3325 2.34 
1.4 2.585625  2.399375 2.418125 2.414375 2.40 
1.5 2.67625  2.461875 2.481875 2.476875 2.47 
2 2.64875  2.59375 2.623125 2.610625 2.60 
∞ 2.63625  2.60125 2.605 2.60375 2.60 

Table 5: Convergence study of the maximum value of deflection of CSCS 
Kirchhoff plates studied for cases b ≥ a for .µ = 0 30  

b/a 

α2 

n = 1, 
 m = 1 

 (×10−3) 

α2 

n = 1, 3 
 m = 1, 2 
(×10−3) 

α2 

n = 1, 3,  5 
m = 1, 2, 3 

(×10−3) 

α2 

n = 1, 3,  5, 7 
m = 1, 2, 3, 4 

(×10−3) 

α2 

n = 1, 3,  5, 7, 9 
m = 1, 2, 3, 4, 5 

(×10−3) 
1.0 1.998125 1.91125 1.919375 1.9175 1.92 
1.1 2.625  2.520625 2.53 2.5275 2.509375 
1.2 3.310625 3.184375 3.195625 3.193125 3.13375 
1.3 4.035  3.8825 3.896875 3.89375 3.88 
1.4 4.778125  4.594375 4.55 4.60875 4.60 
1.5 5.5225  5.3025 5.3250 5.32 5.31 
1.6 6.2875  5.9925 6.02 6.01375 6.03 
1.7 6.960625 6.651875 6.685625 6.680625 6.68 
1.8 7.635 7.27375 7.314375 7.305625 7.32 
1.9 8.2725 7.8525 7.901875 7.89125 7.90 
2 8.87 8.38625 8.445 8.4325 8.44 
3 12.866875 11.50375 11.7325 11.67625 11.68 
∞ 13.07125 13.0175 13.02125 13.020625 13.02 

Table 6: Bending moment coefficients evaluated at the centroidal coordinates of 
CSCS plates edges (x = 0, x = a) on simple supports, two sides ( )= ±b/2y  fixed 
with the plate carrying uniform loading of intensity q0 (case where b < a, and µ = 
0.30)  = α 2

3 0xxcM q b   = α 2
4 0yycM q b  

a/b 
Present 
study 
α3 

 [1] α3 
Present 
study 
α4 

 [1] α4 

1.1 0.0230 0.0230 0.0355 0.0355 
1.2 0.0215 0.0215 0.0375 0.0375 
1.3 0.0203 0.0203 0.0388 0.0388 
1.4 0.0192 0.0192 0.0399 0.0399 
1.5 0.0179 0.0179 0.0406 0.0406 
2 0.0142 0.0142 0.0420 0.0420 
∞ 0.0125 0.0125 0.0417 0.0417 

Table 7: Bending moment coefficients for uniformly loaded rectangular Kirchhoff 
CSCS plate studied. Sides ( )= ± /2y b  clamped, opposite edges (x = 0, x = a) on 
simple supports (case where b ≥ a, and µ = 0.30) 

b/a 

2
5 0xxM q a= α  2

6 0yyM q a= α  

α5 
Present 
study 

(GITM) 

 [1] α5 

α6 
Present 
study 

(GITM) 

 [1] α6 

1.0 0.0244 0.0244 0.0332 0.0332 
1.1 0.0307 0.0307 0.0371 0.0371 
1.2 0.0376 0.0376 0.0400 0.0400 
1.3 0.0446 0.0446 0.0426 0.0426 
1.4 0.0514 0.0514 0.0448 0.0448 
1.5 0.0585 0.0585 0.0460 0.0460 
1.6 0.065 0.0650 0.0469 0.0469 

1.7 0.0712 0.0712 0.0475 0.0475 
1.8 0.0768 0.0768 0.0477 0.0477 
1.9 0.0821 0.0821 0.0476 0.0476 
2 0.0869 0.0869 0.0474 0.0474 
3 0.1144 0.1144 0.0419 0.0419 
∞ 0.0125 0.0125 0.0375 0.0375 

Table 8: Bending moment coefficients at the midpoint of the fixed edges of 
rectangular Kirchhoff CSCS plate under uniform loading over the plate domain 
(for the case b < a) for .µ = 0 30  

a/b 

2
7 0yyM q b= α  

α7 Present study 
(GITM)  [1] α7 

1.1 −0.0739 −0.0739 
1.2 −0.0771 −0.0771 
1.3 −0.0794 −0.0794 
1.4 −0.0810 −0.0810 
1.5 −0.0822 −0.0822 
2 −0.0842 −0.0842 
∞ −0.0833 −0.0833 

Table 9: Bending moment coefficients at the midpoint of fixed edges of thin 
CSCS plates carrying uniform loading (cases b ≥ a; µ = 0.30) 

b/a 

2
8 0yyM q a= α  

α8 Present study 
(GITM)  [1] α8 

1.0 −0.0697 −0.0697 
1.1 −0.0787 −0.0787 
1.2 −0.0868 −0.0868 
1.3 −0.0938 −0.0938 
1.4 −0.0998 −0.0998 
1.5 −0.1049 −0.1049 
1.6 −0.1090 −0.1090 
1.7 −0.1122 −0.1122 
1.8 −0.1152 −0.1152 
1.9 −0.1174 −0.1174 
2 −0.1191 −0.1191 
3 −0.1246 −0.1246 
∞ −0.1250 −0.1250 

 
4.2. Results for stability problems studied 

4.2.1. Biaxial buckling of CSCS plate 

G2mn is found from Equation (93) 

sinh coshsin( )2
2

3
2 2

2 2 2 2

m m

m
mn m

m m

b b
bn a b bG

a

β β           βπ     = − + + λ + −      β β  
  

sinh coshsin( )2 2 2 2
2 2 2 2

m m

m
m m

m m

b b
ba b b

β β           β    β + −λ +  
β β  

 (109) 

sinh coshsin( )2
2

4
2 2

2 2 2 2

m m

m
mn m

m m

b b
bn a b bG

a

β β           βπ     = − + + λ +      β β  
 

 …(110) 
N is calculated from Equation (54). 
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For m = 1, n = 1, an approximate value for N for biaxial 
buckling load as well as the buckling load in uniaxial compression 
are found as follows: 

4

1 32
I

a
π

=         (111) 

.2 0 50883I b=        (112) 
.

6 3

254 702I
b

=        (113) 

2

3 2
I

a
π

= −         (114) 

5 2
aI =         (115) 

.
4

6 25988I
b

= −        (116) 

.3 2 2 510975
bI I
a

= −        (117) 

.4 5 3 12994
aI I
b

= −       (118) 

( ).. . .3
2 510975

2 510975 3 12994 3 12994
b aG r
a b r

 = − + = − + 
 

  

 …(119) 

where ar
b

=         (120) 

. . .
2 2 3 2 2

24 7823 127 351 61 782rG
b r b b r

= + +     (121) 

Then, 
. . .

. .

2 3 2 2
2

24 7823 127 351 61 782

2 510975
3 12994

r
N b r b b r
D r

r

 + + 
α = =  

 + 
 

 

 . . .
. .

2 2

2 2

27 7823 127 351 61 782 1
2 510975 3 12994

r r
r b

− + +
=  
 +

  (122) 

For r = 1, 

. .
2

2 237 9221 3 8423
D DN
b b

π
= =      (123) 

Similarly, a one term solution for the buckling load for 
uniaxial compression in the x duration is given by: 

. . .

.
2 3 2 2

2

24 7823 127 351 61 782

2 510975

r
b r b b r

r

 + + 
α =  

  
 

    (124) 

. . .2
2 2

9 8696
50 7177 24 6048

DN r
r b

 = + + 
 

    (125) 

For r = 1, 

( , ) . .
2

2 21 1 85 1921 8 63176
π

= = = = =
D DN r m n
b b

   (126) 

The exact solution for the lowest/critical elastic buckling load 
in uniaxial compression in the x Cartesian coordinate direction is 
[1]: 

.
2

27 691
DN
b
π

=        (127) 

The obtained GITM solution for the elastic buckling load under 
uniaxial uniform compression of CSCS plate for a one term 
approximation is 12.23% greater than the exact solution. It is 
suggested that more acceptable solutions that do not differ 
markedly from the exact solution for the elastic stability problems 
of square CSCS plates under uniaxial compressive loading could 
be obtained by using more terms in the eigenfunction expansion. 

5. Discussion 

The Generalized Integral Transform Method (GITM) has been 
used in this work to solve the bending and buckling problems of 
rectangular thin plates having two boundaries (x = 0, x = a) on 
simple supports and the other two boundaries (y = ±b/2) fixed. In 
the thin plate bending problem presented, the plate was submitted 
to a uniform distribution of loading. The PDE for homogeneous, 
isotropic plates is the inhomogeneous biharmonic equation 
expressed by Equation (2). The natural and force equations at the 
supported boundaries are expressed using the Equations (3 – 6). 
The study thus presented solutions to the domain Equation (2) 
using the GITM, where the solutions are required to satisfy 
Equations (3 – 6) along the boundaries. 

The elastic buckling problem considered in the study is given 
for biaxial compressive forces by Equation (9) or Equation (10) 
when the biaxial compressive forces are equal for both the x and 
y directions (Nx = Ny). The domain PDE for uniaxial buckling in 
the x direction is given by Equation (11). The boundary conditions 
for buckling are given by Equations (3 – 6). The two-dimensional 
GITM which is a generalization of the integral transform methods 
uses the eigenfunctions of an equivalent vibrating thin beam for 
the respective Cartesian coordinates as the basis functions in the 
respective coordinate directions. 

Thus the basis functions (eigenfunctions) for the problem 
considered are chosen as Equations (12) and (13). The unknown 
displacement w(x, y) is considered to be constructed from the 
basis functions as the double infinite series given by Equation (20). 
The unknown deflection w(x, y) is a function of Cmn, unknown 
displacement parameters which are sought such that w(x, y) 
satisfies the domain equation at all point in the solution space. 

The basis functions F1n(x) and F2m(y) each satisfies the 
geometric and force equation at the supports for both bending and 
elastic buckling analysis. The GITM transforms the governing 
PDE for plate bending to the integral equation given by Equation 
(21) where the kernel function is expressed by Equation (22). The 
general solution of the integral equation is found for Cmn as 
Equation (25) which is expressible using integrals I1, I2, …, I8. 
Thus w(x, y) is determined as Equation (36). With the aid of 
bending moments-displacement equations, the bending moments 
are obtained in general as Equations (39) and (40). The 
expressions for bending moments evaluated at the plate centre are 
obtained as Equations (41) and (42). The expressions for Mxx and 
Myy bending moments at the mid-point of the fixed edges are 
found as Equations (43) and (44). 

The generalized integral transformation of the governing 
equation for elastic buckling (biaxial case) gave the integral 
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equation – Equation (45). Simplification of the formulation 
yielded the algebraic eigenvalue problem in Equation (49). 

For nontrivial solutions (Cmn ≠ 0) Cmn would not vanish and 
the elastic stability equation was obtained as Equation (50). The 
solution of the equation gave α2 from which N could be found as 
Equation (51). Specializations of the solution for biaxial buckling 
gave the solution for uniaxial buckling as Equation (55). 

The general solutions obtained for both cases of bending and 
elastic buckling analysis are presented in terms of integrals. The 
integrals are evaluated in order to determine specific expressions 
for G1mn, G2mn, G3mn, G4mn, which are determined explicitly as 
Equations (90), (91), (109) and (110) respectively. 

The deflection was thus found explicitly as the double series 
of infinite terms as Equation (95). The deflection of the plate 
centre is thus found as Equation (102). The maximum deflection 
presented in Tables 1 and 2 occurs at the centre and agrees with 
the symmetrical features of the plate problem. The bending 
moments Mxx, Myy are found at the plate centre and the middle 
point of the fixed sides and presented in Tables 6, 7, 8 and 9. 
Tables 3, 4 and 5 which present convergence studies of the double 
series for maximum deflection at the plate centre confirm the 
series as rapidly convergent. Satisfactorily accurate results for 
maximum deflection are found with a small number of terms of 
the obtained double infinite series for the maximum deflection. 
The converged results obtained for deflections and bending 
moments were in excellent agreement with solutions presented 
using the superposition principle [1]. 

The eigenvalue problem of buckling yielded the approximate 
expression for α2 for m = 1, n = 1 from which N would be found 
as Equation (122) for biaxial buckling cases. For square thin 
plates the biaxial buckling load was found as Equation (123). The 
approximate expression for α2 for m = 1, n = 1 for uniaxial 
buckling under uniform compression was found as Equation (124). 
N was obtained as the expression in Equation (125). 

6. Conclusion 

In conclusion 

(i) The GITM assumes the unknown w(x, y) to be a double 
infinite series constructed as products of the 
eigenfuncions F1n(x) and F2m(y) of vibrating Euler-
Bernoulli beams with equivalent end support conditions 
respectively in the Cartesian coordinates, and terms Cmn 
sought to be determined. 

(ii) In the present problem the GITM assumes w(x, y) as the 
double infinite series of the product of Cmn and F1n(x) and 
F2m(y). F1n(x) is the eigenfunction of a vibrating Euler-
Bernoulli beam with simply supported ends which 
correspond to the simply supported boundaries of the 
plate. F2m(y) denotes eigenfunction of a vibrating Euler-
Bernoulli beam with clamped ends (y = ±b/2) which 
corresponds to the clamped boundaries (y = ±b/2) of the 
thin plate being studied. 

(iii) The eigenfunctions F1n(x) and F2m(y) thus satisfy the 
geometric and force equations of the thin rectangular 
CSCS plates considered for the two cases of bending 

analysis and elastic buckling analysis considered in the 
study. 

(iv) The GITM uses the eigenfunctions F1n(x) and F2m(y) as 
the integral kernel functions in the formulation of the 
integral equation from the domain equation for both the 
bending analysis and the elastic buckling analysis 
presented. 

(v) The application of GITM to the governing domain PDE 
converts the PDE over the domain to an integral equation 
in both cases of bending and elastic buckling analysis. 

(vi) The integral equations further reduce to algebraic 
problems for bending analysis leading to the 
determination of the unknown displacement parameters 
Cmn, and the full determination of the deflection w(x, y). 

(vii) The integral equation reduces to an algebraic eigenvalue 
equation for elastic buckling analysis, leading to the 
determination of α2 and thus N for nontrivial solutions. 

(viii) The bending moment expressions were found as double 
series with infinite terms. 

(ix) The expressions for the maximum values of the 
deflection and bending moments are found to be rapidly 
convergent double series of infinite terms in m, and n. 

(x) The maximum values for deflection and bending 
moments were found to occur at the plate centre, thus 
agreeing with the symmetrical features of the plate 
problems considered. 

(xi) Convergence studies done and presented in Tables 3, 4 
and 5 for the deflection expression computed at the plate 
centre validate that the deflection expression is rapidly 
convergent series, and exact solutions are obtained using 
five terms of the series in x and y directions. 

(xii) Satisfactorily accurate results are obtained for the 
maximum deflection with just a small number of terms 
of the infinite series expression. 

(xiii) For the verification and validation of the plate bending 
results found using the GITM in this work, the numerical 
values of the maximum deflections and maximum 
bending moments obtained were compared with values 
obtained for the same problem solved using the 
superposition technique. Good agreement between the 
present GITM solutions and solutions by superposition 
presented by authors in [1] was observed. 

(xiv) The GITM gave closed form mathematical expression as 
analytical solutions to the plate bending problem studied. 

(xv) The eigenvalue problem of elastic buckling studied for 
biaxial loading in uniform compression was illustrated 
using the first terms from the eigenfunction, and the 
approximate value of the buckling load computed for 
square CSCS plates. 

(xvi) The approximated value of the elastic buckling load was 
also found for uniaxial uniform compression of square 
CSCS plate and the obtained result had a relative error of 
12.23% compared with the exact solution. This 
demonstrates, the relative accuracy of the GITT since a 
1 × 1 term approximation gave a relatively small error. 
The use of more terms would definitely yield better 
results for the buckling load; however, with huge 
computational efforts (even with software due to the 
large demands of computer memory size/space). 
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