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 Recently, numerous scholars have suggested fuzzy time series (FTS) models to forecast 
many different fields. One of the vital issues for high accurate forecasting in FTS model is 
method of partitioning in Universe of discourse (UoD). In this research, we propose a novel 
FTS model, which is established by using hedge algebra (HA) and particle swarm 
optimization (PSO) for forecasting the different problems. In this model, HA is considered 
an algebraic structure for partitioning the UoD into unequal - size intervals based on 
optimal parameters which is determined by PSO. After making the intervals with unequal - 
length, the data values of times series on each interval are symbolized by fuzzy sets and 
then, these fuzzy sets are utilized to make fuzzy relation groups. Lastly, we keep using the 
PSO to adjust the size of each interval with view to reaching the better accurate prediction 
rate. The effectiveness of the proposed method is demonstrated on two datasets which are 
often applied in many studies in literature as enrolments data of the University of Alabama 
and Car road accident data in Belgium. The obtained results show that the proposed model 
produces higher accuracy forecasting when compared with the some of the recent FTS 
prediction models for all orders of model. 
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1. Introduction 

The time series forecasting problem is an attractive and vital 
research issue. This forecasting problem has been often handled by 
using a variety of methods like mathematical statistics, artificial 
neural networks, etc. The downsides of the traditional time series 
forecasting models are that they extensively dependent on 
historical data or require having the linearity assumption and 
cannot solve prediction problems in which the values of time series 
are linguistic terms. To overcome these difficulties, the authors in 
[1, 2] first produced the concepts of FTS, which have the ability to 
deal with vague and incomplete data sets by utilizing the fuzzy set 
theory [3]. They have proposed the two FTS forecasting models to 
implement on university enrolments of Alabama with a forecasting 
schema consisting of main five steps: (1) defining UoD, (2) 
Partitioning of the UoD into intervals, (3) determining the fuzzy 
sets and fuzzifying the time series, (4) Establishing fuzzy logical 
relationship, and (5) forecasting and defuzzifying the forecasting 
values.  

However, their approaches take a lot of time to build forecasting 
model because of using the complex max– min operations in fuzzy 
relationship matrix and lack of persuasiveness in partitioning the 
UoD. These limitations led research [3] to develop a new FTS 
forecasting model using simple arithmetic operations to replace the 
complex matrix operations [1, 2] in the determination of fuzzy 
relationship matrix and defuzzification output values. In addition, 
research works [5, 6] found out the importance of assigning 
weights to deal with the issue of recurrent fuzzy relationship and 
to reflect the difference in their importance. Expansion of the 
framework [3] into a high-order FTS schema [7], and the influence 
of the length of intervals in article [8] come with the development 
from the one-factor FTS models into two-factor FTS model [9]. 
These forecasted approaches are the basis for the strong 
development of many FTS models in the next time periods. 
Recently, many authors have applied different advanced data 
mining techniques in each stage of FTS model with view to 
enhancing forecasting accuracy. Study in article [10] used the 
automatic clustering technique for partitioning the UoD into 
unequal - size intervals at the fuzzification stage in their 
forecasting model. Some other researches apply soft computing 
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techniques(especially evolutionary computing, clustering 
techniques)  for adjusting and selecting intervals with unequal-
size,  can be found as genetic algorithm [11, 12], simulated 
annealing [13], PSO [14-22], K-mean [23, 24], fuzzy C-means [25, 
26]. Just recently, a completely different way from fuzzy approach, 
several works with regards to HA have been published.  In [27], 
the authors have presented a forecasting method based on the 
theory of hedge algebra [28] for forecasting university enrolments, 
to be a typical option. In which, the hedge algebra was used to 
construct linguistic domains and variables instead of performing 
data fuzzification and defuzzification in the fuzzy approach. In 
addition, researches in [29, 30] proposed the HA-based forecasting 
models to obtain unequal – length intervals in the UoD by mapping 
the semantics of linguistic variables into fuzziness intervals. 
However, two these research works only focus on building the 
first-order forecasting model to apply the number of students 
annually at the University of Alabama. In addition, their 
forecasting models have not yet applied the optimal techniques, so 
the obtained forecasting results are not really good enough.  

Based on analyzing of the aforementioned research works 
showed that determining of the length of interval and the order of 
fuzzy relationships affect strongly forecasting performance of the 
model. To avoid the above - mentioned limitations and promote 
the advantage of combination with methods of partitioning in the 
UoD. The purpose of this study is to suggest a new partition 
method which uses PSO algorithm to optimize parameters of HA 
in the FTS prediction model. Therefore, we develop a novel hybrid 
prediction model using method of fuzzy relation group [17], 
integrating with HA and PSO algorithm in the identification of 
optimal intervals with view to enhancing the forecasting 
performance of the proposed model. For making it become reality, 
HA has been used to divide the UoD into intervals with unequal – 
size based on the parameters optimized by PSO. After obtaining 
the intervals, the time series data is put into the intervals by fuzzy 
sets and used them to create the FLRs, group of FLRs. Later, all 
information in FLR groups are utilized to produce the final 
prediction results based on the our defuzzification principle [31]. 
Finally, to enhance the accuracy of the model, we continue 
applying PSO algorithm to readjust the initial interval lengths 
which are obtained by fuzzy parameters of HA into intervals with 
the more proper length. Our forecasting model is examined on two 
following real-world datasets: 1) the historical enrolment dataset 
of University of Alabama [3], 2) the dataset of car road accident 
[32]. The examined results point out that our forecasting model 
outperforms the some of the recent FTS models in terms of 
prediction accuracy rate. 

The next content of this paper introduces brief fundamental 
theories related to FTS model such as, fuzzy time series, Hedge 
Algebras and PSO algorithm.  A method using PSO technique 
which has never been applied before in the selecting optimal 
parameters of HA and optimal length of intervals simultaneously, 
is presented in Section 3. Section 4 discusses the forecasting 
performance by comparing the obtained results of the proposed 
model with ones of the previous models. The last section gives 
conclusions and directions for future work. 

2. The Fundamental Theories and Algorithms 
In this section, we briefly introduce general knowledge related 

to FTS which is proposed in [1, 2] and improved by study [3]. In 

addition to,  the hedge algebras [28] and PSO algorithm [33] is also 
reviewed.   

2.1. Fuzzy time series 

The concepts of FTS were proposed in [1, 2], in which the 
historical time series data are given in the form of fuzzy sets [3].  

Assume that  Y(t) (t = . . , 0, 1, 2 . . ) a real subset R (Y(t) ⊆ 
R), regarded as the UoD on which the fuzzy sets fi(t) (i =  1,2 … ) 
are defined. If  F(t) including the collection of f1(t), f2(t), … , then 
 F(t) is namely a FTS which is defined on Y(t) [1, 2] 

If there exists fuzzy logical relationship (FLR) between F(t-1) 
and F(t), namely R(t-1, t),  such that they can be expressed as  F(t) 
= F(t-1)∗ R(t-1, t) or F(t-1)→  F(t) ; Where R(t-1, t) is the first- 
order fuzzy relationship between F(t) and F(t-1) and  "∗ " 
represents the max–min composition operator. Here F(t) and F(t-
1) are fuzzy sets. If, let Ai = F(t) and Aj = F(t-1), the relationship 
between F(t) and F(t -1) is replaced by Ai →  Aj , where Ai and Aj 
are called the current state and the next state of fuzzy relationship, 
respectively [1, 2, 4] 

 Let F(t) be a fuzzy time series. If F(t) is derived by more fuzzy 
sets F(t-1), F(t-2),…, F(t-𝛽𝛽+1), F(t- 𝛽𝛽), then fuzzy relationship 
between them  can be represented as F(t- 𝛽𝛽), …, F(t-2), F(t-1) → 
F(t). This relationship is called the 𝛽𝛽 - order FTS model [1, 2, 7] 

Suppose that F(t) is derived from F(t-1), then the relationship 
can be denoted as F(t-1)→ F(t). If, let   Ai(t) = F(t) and Aj(t −
1)= F(t-1). The FLR of them can be replaced as  Aj(t − 1) →
 Ai(t) . In addition, at the time t, there are also exists fuzzy 
relationships as  Aj(t1 − 1) →  Ai1(t1), . . , Aj(tn − 1) →  Ain(tn) 
with t1, t2, . . , tn ≤ t. It is noted that Ai(t1), Ai (t2),…,  and Ai(tn) 
having the same fuzzy set Ai, but look at different times t1, 
t2,…, and tn, respectively. If these FLRs appear before  Aj(t −
1) →  Ai(t), they can be grouped into a fuzzy relationship group 
as follows: Aj(t − 1) →  Ai1(t1), Ai2(t2), … , Ain(tn), Ai(t) , and 
it is called TV-FRG [17]. 

2.2. Some basis concepts of Hedge Algebras 

Hedge Algebras are introduced by N.C. Ho in 1990. It is 
considered as a new approach to solve forecasting problems in 
which it is used  to quantify the linguistic variables. Each of 
linguistic variable 𝒳𝒳  is represented by an algebraic structure, 
which is built on the inherent semantic order of the linguistic terms 
[28] and defined as follows: 

Definition 1: The linguistic variable 𝒳𝒳  is a set including 5 
components 𝒜𝒜𝒳𝒳 = (𝑋𝑋,𝐺𝐺,𝐶𝐶,𝐻𝐻,≤) and called HA; 

In which, X is the basic set in 𝒜𝒜𝒳𝒳 ; “ ≤ ”  is a natural 
semantically ordering relation on X; G = {c−, c+},  c− ≤ c+ is the 
set of generating elements (eg.,  Low ≤ High) ;  C = {0, w, 1} is a 
set of constants, with (𝟎𝟎 ≤ c− ≤  𝐖𝐖 ≤ c+ ≤ 𝟏𝟏);  H = H− ∪ H+, 
with H− = { hi : − 𝑞𝑞 ≥ i ≥  −1} denotes the set of all negative 
hedges of X, and H+ = {hi: 1 ≤ 𝑖𝑖 ≤ p}  denotes the set of all 
positive hedges; 

Definition 2. Let 𝒜𝒜𝒳𝒳 = (X, G, C, H, ≤) be a HA. The function 
fm: X → [0, 1] is named to be a fuzziness measure of elements in 
X, if: 
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1) fm(c−) + fm(c+) = 1 and  ∑ fm(hx) = fm(x)h∈H  with ∀x ∈
X; 
2) f(x) = 0 with ∀𝑥𝑥𝑥𝑥𝑋𝑋  so that fm(0) = fm(W) = fm(1) = 0 

3) For ∀x, y ∈ X,∀h ∈ H, fm(hx)
fm(x)

= fm(hy)
fm(y)

, this equation does not 
depend on x; y and it is called fuzziness measure of the hedge h 
and namely by µ(h). The properties of fm(x) and µ(h) are given 
as below: 
Proposition 1. The fm denotes the fuzziness measurement on X, 
the following statements hold. 

With  ∈ 𝑋𝑋, 𝑥𝑥 = ℎ𝑛𝑛ℎ𝑛𝑛−1 … ℎ1𝑐𝑐, ℎ𝑗𝑗 ∈ 𝐻𝐻, 𝑐𝑐 ∈ 𝐺𝐺 

1) fm(hx) = µ(h)fm(x),∀x ∈ X  

2) ∑ 𝑓𝑓𝑓𝑓(ℎ𝑖𝑖𝑐𝑐) = 𝑓𝑓𝑓𝑓(𝑐𝑐)−𝑞𝑞<𝑖𝑖<𝑝𝑝,𝑖𝑖≠0  

3) ∑ 𝑓𝑓𝑓𝑓(ℎ𝑖𝑖𝑥𝑥) = 𝑓𝑓𝑓𝑓(𝑥𝑥)−𝑞𝑞<𝑖𝑖<𝑝𝑝,𝑖𝑖≠0  

4𝑓𝑓𝑓𝑓(𝑥𝑥) = 𝑓𝑓𝑓𝑓(ℎ𝑛𝑛ℎ𝑛𝑛−1 … ℎ1𝑐𝑐) = 𝜇𝜇(ℎ𝑛𝑛)𝜇𝜇(ℎ𝑛𝑛−1) …𝜇𝜇(ℎ1)𝑓𝑓𝑓𝑓(𝑐𝑐) 

5) ∑ 𝜇𝜇(ℎ𝑖𝑖)
−𝑞𝑞
𝑖𝑖=−1 = 𝛼𝛼  and ∑ 𝜇𝜇(ℎ𝑖𝑖)

𝑝𝑝
𝑖𝑖=1 = 𝛽𝛽 , with α, β > 0 and α +

β = 1 

 

 

 

 
 

Figure 1: The order of fuzziness measure of elements 𝑥𝑥 ∈ 𝑋𝑋, ℎ𝑗𝑗 ∈ 𝐻𝐻, 𝑐𝑐 ∈ 𝐺𝐺. 

2.3. Particle swarm optimization 

PSO is an evolutionary computation algorithm which is introduced 
by article [33] for searching the global optimum solution. It is 
developed by work [14] for applying in the forecasting field. Each 
particle in the swarm represents a potential solution to the global 
optimization problem. When particles move from this position to 
other position in q-dimensional space, all particles (i.e, N particles) 
have fitness values which are estimated according to fitness 
function. In the moving process of particles. The position of the 
best particle among all particles found so far is saved and each 
particle maintains its individual best position which has passed 
previously. Each individual particle kd (1≤ kd ≤ N) is composed 
of three components: its position Pkd = [pkd,1, pkd,2, … , pkd,q], the 
velocity vector Vkd = [vkd,1, vkd,2, … , vkd,q] and  the best position 
that it has individually found so far 𝒫𝒫best,kd =
[ 𝒫𝒫kd,1,𝒫𝒫kd,2, … ,𝒫𝒫kd,q] . Then the best position global Gbest =
min (𝒫𝒫best,kdt ) found by the overall best out of all the particles in 
the swarm. The briefly summarizes steps of the standard PSO 
algorithm in Algorithm 1 as follows: 

Algorithm 1: The PSO algorithm 
Initialize: learning factors C1 = C2 ;  ωmax , ωmin ; random 
positions Pkd,i ; random velocities Vkd,i in q-dimensional space 
(i= 1,2,…,q); 
 Positions of each kdth (kd = 1,2, …, N) particle's positions 
are randomly determined:  

                       Pkd = [pkd,1, pkd,2, … , pkd,q]                              

 where; pkd,i  denotes ith position of kdth particle; N is the 
number of particles in a swarm 
  Velocities are randomly determined: 

                         Vkd = [vkd,1, vkd,2, … , vkd,q]  
 Let 𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝑘𝑘 = Pkd 
while (t ≤ iter) do // iter is maximal iteration number 

  for each particle kd in swarm do 
 Calculate the fitness value of particle kd: f(xkd) 
 Update the personal best position of particle kd  

𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝑘𝑘
𝑏𝑏+1  = �

𝒫𝒫best,kd
t+1  ;    if f�Pkdt+1� > 𝒫𝒫best,kd

t

f�Pkdt+1� ;    if f�Pkdt+1�  ≤ 𝒫𝒫best,kd
t  

End for 
   Update the global best position Gbest  according to the 

fitness value. 
  for each particle kd in swarm do 

 Update the velocity:  Vkd,i
t+1 =  ωt ∗  Vkd,i

t + c1 ∗ R1( ) ∗
�𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝑘𝑘 − Pkd,i

t � + c2 ∗ R2( ) ∗ � Gbest − Pkd,i
t �  (1) 

 Update the position:  Pkd,i
t+1 = Pkd,i

t + Vkd,i
t+1                  (2) 

End for 
 Update inertia weight  ω :  𝜔𝜔𝑏𝑏 = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 −

𝑏𝑏∗( 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚−𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚)
𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖

    (3)  
End while    

3. The FTS Proposed Model Using HA and PSO 

The aim of this section is to  present a new FTS forecasting 
model based on the advantage of using PSO to get optimal 
parameters of HA and optimal intervals in the UoD 
simultaneously. Firstly, PSO is selected in the proposed model to 
optimize parameters of HA like fuzziness measure of the hedges 
and fuzziness measure of primary generator for attaining initial 
intervals in the UoD. Then, we continue to apply PSO algorithm 
to readjust the initial interval lengths in fuzzy time series obtained 
by HA into optimal intervals with view to obtaining the better 
forecasting accuracy rate. Finally, from these optimal obtained 
intervals, we produce the forecasting results of model by defining 
fuzzy sets, fuzzy historical data on each divided interval, 
determinizing the FLRs, establishing fuzzy relationship groups 
and calculating the forecasting values from the defuzzification 
method [31]. The step-by-step of the our model is given as follows. 

Step 1: Define UoD of historical time series 
Assume that U = [dmin −  n1, dmax + n2]  is UoD. For 

defining U, the minimal value dmin and the maximal value dmax 
in the time series data is determined; n1  and n2  are two proper 
positive numbers, respectively to let the U cover the noise of the 
testing data. Then, partition UoD into several adjoining intervals 
based on optimal parameters of HA obtained by PSO algorithm. 
Step 2: Call the proposed algorithm “Optimizing parameters of 
HA based on PSO algorithm” to obtain the initial partition of the 
intervals. This algorithm is introduced in the next part: 
This study uses HA with structure which is presented in 
Definitions 1 and 2 as 𝒜𝒜𝒳𝒳 = (X, G, C, H,≤) , in which G =
{c−, c+} ={Low, High} with Low (Lw) ≤ High (Hi);   C = {0, w, 
1} a set of constants, with (𝟎𝟎 ≤ c− ≤  𝐖𝐖 ≤ c+ ≤ 𝟏𝟏) and H = 
{Little, Very }. Here, HA is applied as basis to partition data of 
time series into initial intervals with unequal-size [29] and PSO is 
used for optimizing the parameters of HA with elements fm(Low) 

fm�hpc−� fm(h1c−) fm(h−1c−) fm�h−qc−� fm�h−qc+� fm(h−1c+) fm(h1c+) fm�hpc+� 

0 1 𝐖𝐖 
fm(c+) fm(c−) 
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and µ(little), in which fm(Low) + fm(High) =1 and µ(little) + 
µ(very) =1. From the optimal parameters obtained, q initial 
adjoining intervals with different lengths which are defined u1 =
[dmin −  n1, x1] , u2 = [p1, p2] ,…, uk = [pq−1, dmax + n2] , 
respectively. 

Step 3: From on the intervals obtained in Step 2, Call the algorithm 
“PSO-based optimal lengths of intervals finding algorithm” to 
achieve the unequal intervals with optimal length. 
This step applies PSO to adjust the initial intervals which are 
obtained from HA.   
Step 4: From the optimal intervals achieved in Step 3, define the 
fuzzy sets Ai as follows: 
From q intervals, there are q fuzzy sets to represent various 
intervals on U. Determine the fuzzy sets Ai (1 ≤ i ≤  q) as follows: 

A1 =  a11 u1� + a12 u2� + ⋯+ a1q
uq�     

A1 =  a21 u1� + a22 u2� + ⋯+ a2q
uq�    

……………………………………. 
Aq =  aq1

u1� + aq2
u2� +. . . + aqq

uq�   

Where,  aij ∈[0,1] (1 ≤ i ≤  q, 1 ≤ j ≤ q), uj is the jth interval of 
the UoD. The value of aij denotes the degree of membership of uj 
in the fuzzy set Ai which are defined by the triangular membership 
function with three values 0, 0.5 and 1. 

Step 5: Fuzzy the historical time series data into fuzzy sets Ai 
Fuzzy time series is generated by converting each historical data 
into a fuzzy set. If a time series datum depends on interval uj and 
the maximal membership value of fuzzy set Ai occurs at uj, then 
the historical datum is considered as fuzzy set Ai. In this way, all 
historical data of time series is fuzzified into Ai. 

Step 6: Define all 𝛽𝛽 – order fuzzy logical relations (β ≥ 1 ). 
The fuzzy logical relationship can be construct by two or several 
consecutive fuzzified values, respectively. To create an β- order 
FLR, we need to explore any relationship - type as F(t − β), F(t −
β + 1), . . . , F(t − 1) → F(t) , in which F(t − β), F(t − β +
1), . . . , F(t − 1)  and F(t)  are called the “current state” and the 
“next state” of the fuzzy logical relationship, respectively. Then, it 
has been obtained by replacing the corresponding fuzzy sets 𝐴𝐴𝑖𝑖. 

Step 7: Establish all β - order fuzzy relationship groups (FRGs) 
We use fuzzy relationship group [17] to form FRGs in this study. 
To clarify this, we consider three first - order FLRs at three 
different times t-2, t-1 and t as follows:   Ai →  Aj;  Ai →  Ak and 
 Ai →  Aj , respectively. Suppose that we want to forecast the value 
of time series data of time t-1, the appearance of the fuzzy sets on 
the right-hand side of FLRs having the same left - hand side is 
considered to form into together G1 as  Ai→ Aj,  Ak. The same 
way, if forecasting time t, the FLRs which have the same right-
hand side are grouped into a group G2 as  Ai→ Aj,  Ak,  Aj. 

Step 8: Calculate and defuzzify the forecasted output values 
To defuzzify the fuzzified time series data which are based on the 
established FRGs, we apply two rules which are introduced in 
papers [31, 14] to calculate the forecasting output values at time t 
as follows: 

Rule 1: Applying for computing output values in the training 
stage 
Our defuzzified principle in article [31] is employed to calculate 
value based on information of each group. For each group in the 
training stage, we divide each corresponding interval with regards 
to the fuzzy sets in the next state of the TV- FRGs into three sub-
intervals with equal- length as calculated in (4) 

       Forecasted_output = 1
2∗n

∑ (submik
n
i=1 + Value_luik)      (4) 

where, n denotes the total number of fuzzy sets on the left-hand 
side of TV-FRG. 
 𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑖𝑖𝑘𝑘 denotes the medium value of one of three sub-

intervals ( 1 ≤ k ≤ 3) with regards to i-th fuzzy set in the 
next state of FRG that the real data at forecasting time falls 
into this sub-interval. 
 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑉𝑉_𝑉𝑉𝑠𝑠𝑖𝑖𝑘𝑘  denotes the one of two values belongs to 

lower or upper bound of one of three sub-intervals which has 
the real data at forecasting time ranges from 𝐿𝐿𝑖𝑖𝑘𝑘  to 𝑈𝑈𝑖𝑖𝑘𝑘  of 
sub-interval. If the real data value at forecasting time minor 
the mid-point value of sub-interval 𝑠𝑠ik, then  𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑉𝑉_𝑉𝑉𝑠𝑠𝑖𝑖𝑘𝑘 is 
allocated as the lower bound of sub-interval 𝑠𝑠ik ; else 
𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠𝑉𝑉_𝑉𝑉𝑠𝑠𝑖𝑖𝑘𝑘  is allocated as the upper bound of sub-interval 
𝑠𝑠ik 

Rule 2: Applying for calculating output value in the testing stage 
In the testing stage, prediction value of each group which has the 
unknown linguistic value on the next state is estimated by the 
master vote scheme [14]. Assume there a β - order FRG which has 
type as At−β , At−(β+1), At1 → #, the prediction value is estimated 
according to (5) as follows:  

𝐹𝐹𝐹𝐹𝐹𝐹𝑉𝑉𝑐𝑐𝑉𝑉𝐹𝐹𝑉𝑉d_output =
(Mt−1∗wh)+Mt−2+⋯+Mt−β

wh+(β−1)
                      (5) 

Where , the symbol 𝑤𝑤ℎ is the highest votes predefined by user;  is 
the order of the FLRs; the symbols 𝑀𝑀𝑏𝑏−1, 𝑀𝑀𝑏𝑏−2… and 𝑀𝑀𝑏𝑏−𝛽𝛽 are 
the medium values corresponding to intervals in accordance to the 
latest fuzzy set and other fuzzy sets on the current state of FRG 
having the maximal membership values of At−1 , At−2, …, and 
At−𝛽𝛽 occur at intervals ut1, ut2,..., and ut−𝛽𝛽, respectively. 

Step 9: Evaluate the performance of the proposed model 
The forecasting performance of the proposed model estimated 
by two following criterions as: Mean Square Error (MSE) and 
Mean Absolute Percentage Error (RMSE).  

MSE = 1
n
∑ (Fk − Rk)2n
k=𝛽𝛽          (6) 

RMSE =  �1
n
∑ (Fk − R𝑘𝑘)2n
k=𝛽𝛽     (7) 

Here, Rk  and Fk  are the actual and forecasted value at time k, 
respectively, n is number of observations to be forecasted, 𝛽𝛽 is 
the order of fuzzy relationship. 
In the following, we propose a new approach for optimizing 
parameters of Hedge Algebras, called “Optimizing parameters of 
HA based on PSO”. This approach is utilized  in Step 2 of the 
proposed model to get the optimal parameters of HA. Details of 
this approach are shown in Algorithm 2. 
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Algorithm 2: Optimizing parameters of HA based on PSO 
algorithm 

Step 1: Initialize; Generate P particles in two - dimensional space  

 Assume that the fuzziness interval of “Low” term denotes the 
first dimension and fuzziness intervals of “Little” hedge 
denotes the second dimension in the construct HA.  

 Let kd be a particle including two elements 𝑉𝑉𝑘𝑘𝑘𝑘,1  and 𝑉𝑉𝑘𝑘𝑘𝑘,2 ,  
represented by the position vector Lkd = [𝑉𝑉𝑘𝑘𝑘𝑘,1, 𝑉𝑉𝑘𝑘𝑘𝑘,2]; where  
𝑉𝑉𝑘𝑘𝑘𝑘,i ∈ [0, 1], 0 ≤ i ≤ 1 and 𝑉𝑉𝑘𝑘𝑘𝑘,1+ 𝑉𝑉𝑘𝑘𝑘𝑘,2 = 1. These two elements 
act as the fuzziness intervals of fm(Low) and µ(Little) of HA, 
as given in Figure 2(a). The velocity of each particle kd is 
denoted by the velocity vector Vkd = [𝑣𝑣𝑘𝑘𝑘𝑘,1, 𝑣𝑣𝑘𝑘𝑘𝑘,2] including 
two elements 𝑣𝑣𝑘𝑘𝑘𝑘,1 and 𝑣𝑣𝑘𝑘𝑘𝑘,2 as shown in Figure 2(b).  

 In th PSO, the initial position vector Lkd and the initial velocity 
Vkd of each particle kd are generated randomly in range [0, 1],  
the personal best position vector Pbest,kd  =[𝑝𝑝𝑘𝑘𝑘𝑘,1, 𝑝𝑝𝑘𝑘𝑘𝑘,2 ] of 
each particle kd denoting the best position which has the 
minimum objective value found so far. Initially, the personal 
best position vector Pbest,kd of each particle kd like its initial 
position vector Lkd. 
𝐥𝐥𝐤𝐤𝐤𝐤,𝟏𝟏 𝐥𝐥𝐤𝐤𝐤𝐤,𝟐𝟐 

a) Position vector of particle kd 

𝐯𝐯𝐤𝐤𝐤𝐤,𝟏𝟏 𝐯𝐯𝐤𝐤𝐤𝐤,𝟐𝟐 

b) Velocity vector of particle kd 

Figure 2: The graphical representation of particle kd 

Step 2:  while (t ≤  iter) do // iter is a predefined number of 
iterations 

For each particle kd do the following steps: 

Step 2.1: Calculate the objective value 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘 of each particle kd, 
as given by following sub-steps: 

Step 2.1.1: Generate q linguistic terms corresponding to q intervals 
From the position vector Lkd = [lkd,1, lkd,2]  or two parameters 
fm(Low) and µ(Little) of HA, divide the U into q intervals as u1 =
[dmin −  n1, p1] , u2 = [p1, p2] ,…, uk = [pq−1, dmax +  n2] , 
respectively. 
Step 2.1.2: Based on the obtained intervals, define q fuzzy sets as 
𝐴𝐴1, A2,…, Aq−1 and Aq 
Step 2.1.3: Fuzzy the historical time series data into fuzzy sets 𝐴𝐴𝑖𝑖 
Step 2.1.4: Establish fuzzy relationships based on the fuzzy sets 𝐴𝐴𝑖𝑖 
defined and fuzzified data 
Step 2.1.5: Establish all TV-FRGs based on FLRs defined 
Step 2.1.6: Defuzzify and calculate the forecasting output values 
Step 2.1.7: Compute the objective value 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘 of each particle 
based on formula (6) 
Step 2.2:  Update the private best position vector 𝒫𝒫best,kd of each 
particle kd, if MSEt(kd)  <= MSEt−1(kd) ; pkd,1 = lkd,1 and 
pkd,2 = lkd,2 
Step 2.3: Choose the best particle Gbest among all P particles, 
(which has the minimum MSE value), set PGbest  = [ lGbest,1 , 
lGbest,2] be the position vector of the Gbest 
Step 2.4: Update the velocity Vkd  and the position Lkd  of each 
particle kd according to (1) and (2), respectively; update 𝜔𝜔 in (3). 
end for 
Step 3: Check the stopping criterion 

 If (t < iter), then let t = t+1 and go to Step 2.1 else, print the 
results ( the position vector PGbest  = [𝑉𝑉𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,1 , 𝑉𝑉𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,2 ]  be the 
optimal parameters of HA by letting Fm(Low) = 𝑉𝑉𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,1  and 
µ(Little) = 𝑉𝑉𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,2)). 
end while 

To sum up, the flowchart of the proposed algorithm 
“Optimizing parameters of HA based on PSO”, which is shown 
in Figure 3. 
Next, we present algorithm “Finding optimal intervals using 
PSO” which has been called in Step 3 of the proposed model to 
find the best length of each interval with view to getting the better 
accurate forecasting. 
Finding optimal intervals using PSO  

In this algorithm, PSO is used to adjust the initial interval lengths 
which are determined by Algorithm 2. The briefly explanations of 
this algorithm are given as below: Each particle of PSO in q-
dimensional space is used to represent the partitioning of time 
series data, where q is the number of intervals in the UoD. Assume 
that the lower bound and upper bound of UoD be p0= (dmin −  n1) 
and pq  =(dmax +  n2 ), respectively. Each particle represents a 
vector including q-1 elements as pkd,1 , pkd,2 , …, pkd,q−2  and 
pkd,q−1 , where (1 ≤ i ≤  q − 1) and pkd,i ≤  pkd,i+1. From  q-1 
elements, attain the q adjoining intervals as u1 = [p0, pkd,1], u2 =
[pkd,1, pkd,2],...,uq = �pkd,q−1, pkd,q�, respectively. If particles in a 
swarm move to from current position to another, the elements of 
the new vector with regards to position of particles that need to be 
adjusted in an ascending order (pkd,1 ≤  pkd,2 ≤ ⋯ ≤  pkd,q−1). In 
the training phase, position of each particle is changed by using (1) 
and (2), and repeated the steps until the repeated value (t) equal to 
the predefined number of iterations (iter). If (t = iter), then all the 
FRGs obtained by the (Gbest) among all personal best positions 
(𝒫𝒫best_kd) of all particles which used to forecast the new data in 
testing phase and presented in Algorithm 4. Here, the MSE 
function in (6) is used to represent the forecasting accuracy of each 
particle in the training stage. The steps of the algorithm “Finding 
optimal intervals using PSO” are shown in Algorithm 3 as 
follows: 

Algorithm 3: Finding optimal intervals using PSO 
Input: Historical time series data 
Output: Optimal intervals and the MSE value  

Initialize:  
 P particles in q-dimensional space, the maximum 
iteration (iter) 
 The initial position Pkd and the velocity Vkd of all 
particles, respectively. Where, the intervals in position 
vector is created by the particle 1 be the same as the one 
which are created from HA as u1 = [p0, p1,1] , u2 =
[p1,1, p1,2],…,and uq = [p1,q−1, p1,q], 
 The initial personal best position vectors of the kdth 
particle is the same as its initial position vector at the 
beginning: let 𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝑘𝑘 = Pkd 

while (t ≤ iter) do // iter is maximum iteration number 
  for each particle kd (1≤ kd ≤ P)  do 
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 Calculate the objective value 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘𝑘𝑘, of each particle kd 
by performing the steps from Step 4 to Step 8 above, such 
as: defining fuzzy sets, fuzzify time series data, 
determining all β − order fuzzy relations, establishing 
all  β − order TV- FRGs, computing forecasted values  

 Update Pbest,kd value of particle kd by the MSE values 

𝒫𝒫best,kdt+1  = �
𝒫𝒫best,kdt+1  ;    if MSE�Pkdt+1� > 𝒫𝒫best,kd

t

MSE�Pkdt+1� ;    if MSE�Pkdt+1�  ≤ 𝒫𝒫best,kd
t  

End for 
   Update the global best position Gbest by the MSE value. 
  for each particle kd (1≤ kd ≤ P)  do 
 Update the velocity:  Vkd,i

t+1 =  ωt ∗  Vkd,i
t + c1 ∗ R1( ) ∗

�𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝑘𝑘 − 𝑃𝑃kd,i
t � + c2 ∗ R2( ) ∗ � Gbest − Pkd.i

t �     
 Update the position:  Pkd.i

t+1 = Pkd,i
t + Vkd,i

t+1            
End for 

  Update inertia weight  ω :  𝜔𝜔𝑏𝑏 = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 −
𝑏𝑏∗( 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚−𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚)

𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖
  

End while    

Instance: Explanation of the optimization process of the proposed 
model using Algorithm 3 on the enrolments data [4] is given as 
follows: the number of intervals and particles corresponding be (q 
= 7 and P=4, respectively. From the historical enrolments data, we 
define the UoD as U = [13000, 20000], where lower bound p0 = 

13000 and upper bound p7= 20000, respectively. For finding the 
optimal solution, the parameters in PSO is defined as: the values 
of p𝑘𝑘𝑘𝑘,𝑖𝑖 fall within the range of (13000, 20000], the values of v𝑘𝑘𝑘𝑘,𝑖𝑖  
fall within the range of [-100, 100],  (1≤ i ≤ 7, 1≤ kd ≤ 4), the values 
of C1  and C2  be 2, and the 𝜔𝜔 value ranges from 0.9 to 0.4 and 
maximum number of iterations be 2, respectively. The positions 
and velocities of all particles are initialized randomly and listed in 
Tables 1 and 2, respectively. 

Algorithm 4: The forecasting algorithm in the testing stage 

The optimal lengths of intervals and order of FLRs obtained in 
Algorithm 3 that are used to estimate untrained data in the 
testing stage based on the Principle 2 in the forecasting model. 

In Table 1, we have given the 7 intervals for 4 particles which are 
 𝑠𝑠1 = [𝑝𝑝0, 𝑝𝑝1] , 𝑠𝑠2 = [𝑝𝑝1, 𝑝𝑝2] ,..., and 𝑠𝑠7 = [𝑝𝑝6, 𝑝𝑝7] , respectively. 
Where, the initial position of particle 1 act as the intervals are 
created as the same the one which are obtained from HA in 
Algorithm 2 and listed as u1= [13000, 14470.47), u2= [14470.47, 
15149.8) , u3= [15149.8, 15829.15), u4= [15829.15, 16143), u5= 
[16143, 16528.14), u6 = [16528.14, 17361.8),  u7 = [17361.8, 
20000]. The MSE value of particles is considered according to 
equation (6). From the corresponding MSE values, every particle 
records its own personal best positions (𝒫𝒫𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) so far.

 
Figure 3: Flow chart of the proposed algorithm “Optimizing parameters of HA based on PSO” 
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Table 1: The randomized initial positions of all particles 
P 𝐩𝐩𝟏𝟏 𝐩𝐩𝟐𝟐 𝐩𝐩𝟑𝟑 𝐩𝐩𝟒𝟒 𝐩𝐩𝟓𝟓 𝐩𝐩𝟔𝟔 MSE 
1 14470.47 15149.8 15829.15 16143 16528.14 17361.8 103486.13 
2 14188.81 14232.49 15853.02 16448.05 16905.66 18224.27 183494.58 
3 13951.02 14390.22 15579.73 16510.86 17408.76 18386.16 145004.74 
4 16098.76 17518.15 18332.49 18779.17 18995.24 19826.96 558449.1 

Table 2: Randomly generated initial velocities of all particles 

P 𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 𝒗𝒗𝟑𝟑 𝒗𝒗𝟒𝟒 𝒗𝒗𝟓𝟓 𝒗𝒗𝟔𝟔 
1 32.16 -60.62 97.31 86.1 -51.3 -26.34 
2 -81.93 88.23 -94.65 54.95 -1.92 26.4 
3 -56.46 -12.85 33.18 74.45 94.08 -27.5 
4 -71.06 -70.14 85.8 -92.89 -56.09 -53.16 

Table 3: The initial Pbest of all particles; the Gbest value is created by particle 1. 

P 𝐩𝐩𝟏𝟏 𝐩𝐩𝟐𝟐 𝐩𝐩𝟑𝟑 𝐩𝐩𝟒𝟒 𝐩𝐩𝟓𝟓 𝐩𝐩𝟔𝟔 MSE 

1 14470.47 15149.8 15829.15 16143 16528.14 17361.8 103486.13 
2 14188.81 14232.49 15853.02 16448.05 16905.66 18224.27 183494.58 
3 13951.02 14390.22 15579.73 16510.86 17408.76 18386.16 145004.74 
4 16098.76 17518.15 18332.49 18779.17 18995.24 19826.96 558449.1 

Table 4: The second positions of all particles 
P 𝐩𝐩𝟏𝟏 𝐩𝐩𝟐𝟐 𝐩𝐩𝟑𝟑 𝐩𝐩𝟒𝟒 𝐩𝐩𝟓𝟓 𝐩𝐩𝟔𝟔 MSE 

1 14499.41 15095.24 15916.73 16220.49 16481.97 17338.09 160447.25 
2 14288.81 14332.49 15762.27 16348.05 16805.66 18124.27 99566.34 
3 14051.02 14490.22 15679.73 16410.86 17308.76 18286.16 135650.18 
4 15998.76 17418.15 18232.49 18679.17 18895.24 19726.96 600250.48 

Table 5: The second Pbest of all particles; the Gbest value is obtained by particle 2 
P 𝐩𝐩𝟏𝟏 𝐩𝐩𝟐𝟐 𝐩𝐩𝟑𝟑 𝐩𝐩𝟒𝟒 𝐩𝐩𝟓𝟓 𝐩𝐩𝟔𝟔 MSE 
1 14470.47 15149.8 15829.15 16143 16528.14 17361.8 103486.13 
2 14288.81 14332.49 15762.27 16348.05 16805.66 18124.27 99566.34 
3 14051.02 14490.22 15679.73 16410.86 17308.76 18286.16 135650.18 
4 16098.76 17518.15 18332.49 18779.17 18995.24 19826.96 558449.1 

Firstly, the 𝒫𝒫best  values are initialized to the same as the initial 
position of all particles. Table 3 presents the 𝒫𝒫best  values of all 
particles so far and the global best position Gbest = min (𝒫𝒫best) 
which is particle 1. After the first iteration, all particles change its 
positions based on (1) and (2). The second positions and the 
corresponding new MSE values of all particles are presented in 
Table 4. 

Comparing the MSE values in Table 3 with the MSE values in 
Table 4, it can be seen that particle 2 and particle 3 in Table 4 
attained a better position than their own 𝒫𝒫best values so far. Thus, 
the two particles are updated in Table 5. The new Gbest is obtained 
by particle 2, because of the its smallest MSE value. The proposed 
model is accomplished by repeating the steps in Algorithm 3 until 
the maximal number of iterations is reached.  Finally, the proper 
lengths of intervals are achieved corresponding to Gbest value that 
the particle 2 gets so far. These obtained intervals are employed to 
forecast the final output results. 

4. Experiments and analysis 

In this paper, our forecasting model has been implemented on 
two datasets as enrolments data of University of Alabama [3] and 
number of deaths in car road accidents in Belgium [32]. These two 
datasets have been applied for forecasting with the huge amount of 

research works in the literature. Before implementing the proposed 
forecasting model, two time series datasets are briefly described. 
Then, the simulated results and analyses related to these datasets 
are given, respectively. Description of time series data and 
evaluation of the proposed model are discussed as follows. 

4.1. Prepare data for experiments 

4.1.1. Time series description   
This study, we focus on two time series datasets which are 

often used to demonstrate validity and performance of the FTS 
forecasting model. The statistical characteristics of two these time 
series are expressed as follows. 

(a) The enrolments dataset of university of Alabama 
This time series data consists of 22 values between 1971 and 

1992, see Figure 4(a). This dataset has utilized to examined with 
the huge amount of reseach works which are presented in the 
articles [1, 2, 4, 6 - 7, 10 -12, 14, 15, 17, 21 - 24, 29 - 31]. The 
obtained results among these works are choosed for comparing 
with our proposed model. Some of results among these studies are 
considered for comparing with that of the proposed model in this 
paper. The UoD of enrolments time series is determined as U =
[dmin −  n1, dmax +  n2] = [13000, 20000].   
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Figure 4: Plots of the amplitude of time series used in experiments 

In which, the minimal value and the maximal are dmin=13055 
and dmax=19337, respectively, and two proper positive values n1 
and n2 are set as 55 and 663, respectively 

(b) The dataset of car road accidents in Belgium 

There are 31 observations about the car road accidents ranges  
from 1974 to 2004 that taken from National Institute of Statistics, 
Belgium. Figure 4(b) depicts the yearly deaths in car road 
accidents in Belgium. This time series data is investigated in the 
research works [6, 32, 40 - 42]. The obtained results from these 
works have been also selected to compare with our proposed 
model. In this time series, the minimal value and the maximal are 
dmin= 953 and dmax=1644, and two proper positive values n1 and 
n2  are set as 3 and 6, respectively. Therefore, the UoD can be 
defined as U = [dmin −  n1, dmax + n2]  = [950, 1650]. 

Table 6: The parameters of PSO are applied to the enrolments data and car 
road accidents data 

The parameters in PSO Enrolments  Car road accidents  

The number of particles N 50 50 

The max number of 
iterations iter 150 150 

The inertial weight ω is 
decreased by 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚= 0.9 to 
𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛 = 0.4 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚= 0.9 to 𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛 = 
0.4 

The coefficient C1 = C2 2 2 

The positions P in search 
space  [13000, 20000] [950, 1650] 

The velocities V in search 
space [-100, 100] [-100, 100] 

Number of intervals q Defined by HA Defined by HA 

The number of particles N 50 50 

4.1.2. Setup parameters for experiments 

For implementing the experiments, we use C# programming 
tool on an Intel Core i7 PC with 8GB RAM. From parameters of 
each time series data in Table 6, our forecasting model is tested 30 
independent runs on each of dataset with various number of orders 
and intervals to make forecasting results. Then, the best result of 
among testing runs is recorded to compare with most well-known 
models in the same dataset with regards to MSE (6) and RMSE (7) 
functions. The selected parameters of the PSO are used in 

experiments for receiving optimal intervals and final forecasting 
results are placed in Table 6. 

4.2. Application of forecasting and comparing results 

In this section, we give out results of two experiments with 
regards to real-world time series datasets which are described in 
Section 4.1. Then, comparison of results between the proposed 
model and well-known FTS models in the literature are also 
presented. 

4.2.1. Applying for Experiment 1 

Case (1): Forecasted results obtained by the first – order FTS 

The forecasting results obtained from this experiment are 
compared with the ones of the current models [34-37, 27, 29] under 
the same number of intervals equal to 7. A comparison with 
regards to RMSE value between the proposed model and the 
different forecasting models are given in Table 7. Considering the 
Table 7, the results show that the proposed model has the smallest 
forecasting errors with regards to RMSE value equal to 188.8 
among all its counterparts. There are significant differences 
between the proposed model and the compared models above. It is 
the way which determining of the fuzzy relationship group and 
method of partitioning the UoD are applied in the forecasting 
model. Three models in works [34-36] are constructed according 
to the framework [3] to forecast different problems and apply 
information granules for partitioning, respectively, whereas the 
proposed model uses hedge algebras for determining unequal-
sized interval lengths. Comparing with two models in articles [27, 
29]. These models apply the fuzzy relation groups [3] to structure 
the forecasting model, in which the proposed model uses the fuzzy 
relation groups that we have proposed in article [17] to build the 
forecasting model. Comparing the model [37], the proposed model 
employs the HA combining with PSO to select the optimal 
intervals, whereas the model [37] applies the maximum spanning 
tree based fuzzy clustering for dividing intervals with different 
lengths in the intuitionistic FTS model.  In addition, the proposed 
model is also given to compare with other models which are 
presented in [6, 11, 14, 15, 17, 36, 38] under the number of 
intervals of 14. The forecasting results and MSE values between 
our model and other models are given in Table 8. Table 8 shows 
that our model has capable of more accurate forecasting and 
obtains the MSE value 5938.8 which is the smallest among all the 
existing models. 
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Table 7: Comparative results of proposed model with the current models based on first – order FTS under seven intervals 

Year Real data [34] [35] [36] [27] [37] [29] Proposed model 
1972 13563 13486 13944 14279 13820 13500 13865 13703.74 

1973 13867 14156 13944 14279 13820 14155 14082 13844.48 

1974 14696 15215 19344 14297 13820 14155 14514 14155.49 

1975 15460 15906 15328 15392 15402 15539 15391 15485.7 

--- --- --- --- --- --- --- --- --- 

1990 19328 18808 18933 19257 19135 18780 19165 19260 

1991 19337 18808 18933 19257 19135 19575 19165 19321.7 

1992 18876 18808 18933 19257 19135 18855 15219 19167.5 

RMSE  578.3 506 445.2 441.3 350.9 210.9 188.8 

Table 8: Comparative results of the proposed model with the current models based on first – order FTS with number of intervals of 14 

Year Real data [38] [6] [11] [14] [15] [17] [36] Proposed 
model 

1971 13055         
1972 13563 14436.5 13653 13714 13555 13579 13434 13512 13605.8 
1973 13867 14000 13653 13714 13994 13812 13841 13998 13753.55 
---- ---- ---- ---- ---- ---- ---- ---- ----- ---- 

1991 19337 19500 19059 19149 19340 19260 19340 19666 19292.14 
1992 18876 19500 19059 19014 19014 19031 18820 18718 19043.13 
MSE  297788 31684 35324 22965 8224 7475 14534 5938. 8 

 
Case (2): Forecasting results obtained by the high – order FTS 

In this case, all historical enrolments dataset [4] covering a 
period from year 1971 to 1992 are separated into two parts. The 
first part including 19 observations between 1971 and 1989 is used 
for training and the second part consists of 3 observations is 
utilized for testing. The forecasting performance of our model and 
the compared models are evaluated using the MSE and RMSE 
function.  

a) The obtained results in the training stage 

To authenticate the superiority of our prediction model based 
on the different high - order FLRs, the research works [7, 12, 14, 
15, 17] are cited for comparing. The comparative results for all 
forecasting models under the number of intervals equal to 7 are 
shown in Table 9.  From Table 9 shows that the proposed model 
outperforms in term of forecasting accuracy the other existing 
models under different high-order fuzzy relationships at all. In 
particularly, our model has the smallest average MSE value of 
1608.26 among all of compared models. Among all fuzzy 
relationships is done in the model, the proposed model obtains the 
lowest MSE value  equal to 111.6 by 6th- order fuzzy relationships. 
The major difference between our model and the compared models 
is approach of forming FRGs and optimization method they used. 
In optimization method, the model [12] performs genetic algorithm 
but the models in articles [14, 15, 17] and the proposed model 
proceed the PSO algorithm to achieve the best intervals, 
respectively. Also using PSO to find suitable intervals, our model 
incorporates HA to partition the different initial intervals of the 
UoD instead of equal length intervals. In the determining of FRGs, 
our model is constructed from model [17], the remaining models 
in articles [7, 12, 14, 15] are created from structure [3]. From the 

above analysis, it is clearly seen that our  model provides more 
convincing forecasted results when compared to five models 
considered above.  

In addition, our proposed model has been also applied to 
compare with other existing models based on the different high–
order FTS under number of intervals equal to 14.  These compared 
models which are presented in papers [7, 39,12, 14, 15]. The 
comparative results of the proposed model with its counterparts are 
placed in Table 10. Comparing model [39] with the proposed 
model, the proposed model provides the better MSE value. In 
addition, comparing the forecasting model in article [7] and the 
proposed model, both of them use the 5th-order fuzzy relationship 
but our model is much more superior in term of forecasting 
accuracy. When compared with remaining forecasting models in 
articles [12, 14, 15]. Although these modes use the fuzzy logical 
relationship with number of orders is larger, but the results 
obtained from our model are also better than the existing 
competing models. In particular, from Table 10, our model obtains 
the forecasting error MSE of 16.9 which is the lowest among five 
compared models above. This can conclude that the proposed 
model not only provides superior forecasting results but also shows 
the best stability based on the various high-order FLRs, for all 
cases. To be clearly imagined, Figure 5 describes the trend in term 
of forecasting accuracy between our model and the previous 
models for different orders. Viewing these curves, it is clearly seen 
that forecasting accuracy of our model is more accurate than those 
of compared models under dissimilar high-order FLRs at all. To 
sum up, the comparisons above is enough to demonstrate the 
effectiveness of our model which outpace the previous models 
based on high - order model with unlike number of intervals in the 
forecasting the enrolments of University of Alabama.
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Table 9: The results of the our model and the compared models with 7 intervals 

Orders [7] [12] [14] [15] [17] Proposed model 
2 89093 67834 67123 19594 19868 10824.85 
3 86694 31123 31644 31189 31307 533.2 
4 89376 32009 23271 20155 23288 441.36 
5 94539 24984 23534 20366 23552 289.6 
6 98215 26980 23671 22276 23684 111.6 
7 104056 26969 20651 18482 20669 143.46 
8 102179 22387 17106 14778 17116 251.6 
9 102789 18734 17971 15251 17987 270.4 

Average MSE 95867.63 31377.5 28121.38 20261.38 22183 1608.26 

Table 10: The obtained results of our model and the compared models with 14 intervals 

Years Real data [7] [39] [12] [14] [15] Proposed model 
1971 13055       
1972 13563       
1973 13867  14934.5     
1974 14696  15590     
1975 15460  15422.9     
1976 15311 15500 15603    15311.38 
1977 15603 15500 15861    15605.19 
1978 15861 15500 16807    15856.73 
1979 16807 16500 16919 16846   16808.78 
1980 16919 16500 16388 16846 16890 16920 16917.96 
1981 16388 16500 15553.9 16420 16395 16388 16386.01 
--- --- --- --- --- --- --- --- 

1991 19337 19500 18876 19334 19337 19335 19332.48 
1992 18876 18500 14934.5 18910 18882 18882 18875.09 
MSE  86694 53084 1101 234 173 16.9 

RMSE  294.44 230.4 33.18 15.3 13.15 4.11 

 

 

 

 

 

 

Figure 5: The curves of the MSE values between the our model and the compared models 

b) The obtained results in the testing stage 

From enrolments time series from 1971 to 1992, to forecast the 
new enrolments for the next year with one head - step. Can be 
explained through the examples as below: the historical data of 
enrolments from year 1971 to 1989, is utilized to forecast the new 
enrolment of year 1990. In the same way, the enrolments data 
between 1971 and 1990 are used to forecast data of year 1991. 
Thereafter the enrolments data have been well trained by our 

model, the future enrolments values could be accomplished to 
compare to the future ones of the forecasting models proposed in 
articles [4, 11, 14, 39]. A comparative forecasting results produced 
by the 3rd - order FTS with different number of intervals and the 
highest vote  𝑊𝑊ℎ=15 [14] which are shown in Table 11 and 12. 
From these Tables show that our model obtains the smallest 
RMSEs value equal to 99.2 and 60.28 among five competing 
models, respectively.
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Table 11: Comparative results of our model with other models under the number of intervals of 7 and which use vote 𝑊𝑊ℎ=15 

Year Real data [3] [11] [14] ATVF-KM [39]] ATVF-PSO [39] Proposed model 
1990 19328 18168 18059 18326 19525 19226 19246.4 
1991 19337 18909 18669 19212 19150 19182 19267.5 
1992 18876 19609 19083 19203 18933 18876 19010.2 

RMSE  773.66 576.66 484.16 160.43 107.29 99.2 

Table 12: Comparative results of our model with other models under the number of intervals of 14 and which use vote 𝑊𝑊ℎ=15 

Year Real data [3]  [11] [14] ATVF-KM [39] ATVF-PSO [39] Proposed model 
1990 19328 18162 17862 18120 19287 19238 19278.3 
1991 19337 18721 18633 19027 18811 19224 19363.2 
1992 18876 19221 19085 19137 18836 19224 18964 

RMSE  709 653.66 621.91 305.7 92.35 60.28 

Table 13: The obtained results between our model and the competing models using the different number of intervals and various orders 

Year Real data [40] [41] [42] [32] [6] 
Proposed model 

1st - order 3rd - order 

1974 1574 ---- --- ---- ---- ---- ---- ---- 
1975 1460 1497 ---- 1458 ---- 1506 1463.02 ---- 
1976 1536 1497 ---- 1467 ---- 1553 1529.42 ---- 
1977 1597 1497 1497 1606 1594 1598 1593.24 1596.94 
1978 1644 1497 1497 1592 1643 1584 1643.7 1645.18 

--- ---- ---- ---- ---- ---- ---- ---- ---- 
2002 1145 1095 1098 1114 1146 1143 1137.48 1143.68 
2003 1035 995 97 10 1097 1036 970 1087.35 1034.44 
2004 953 995 9 7 929 929 954 970 958.54 951.95 
MSE  83.12 46.78 37.66 19.2 41.61 29.4 0.85 

4.2.2. Applying for Experiment 2 

In this section, our proposed model have been implemented for 
forecasting the car road accidents in Belgium [32] ranges period 
from 1974 to 2004.  We also test 30 times and take the best 
forecasting result to compare  with the results from the other five 
forecasting models in articles [40 - 42, 32, 6]. The comparative 
results based on the different number of intervals and the various 
orders of FTS are shown in Table 13. Comparing between models 
[40, 6] and our proposed model, our model achieves the far better 
MSE value of 29.4 in two compared models based on the first - 
order FTS with different number of intervals. Also, from Table 13, 
we can be seen that, comparing model [41] and model [32], our 
proposed model produces the far smaller MSE value of 0.85 in two 
considered competing models using the 3rd - order FTS with 
different number of intervals. To summarize, the our model 
provides better forecasting results and higher accuracy than the 
models in [40 – 42, 32, 6] corresponding to the number of orders 
of FTS  and number of intervals equal to 14 as shown in Table 13. 

5. Conclusions and upcoming work 

In this paper, a novel model for predicting enrolments and car 
road accident is developed. To remedy the downside of the 
conventional FTS model, the FTS proposed model combines 
hedge algebras and PSO is developed to resolve two issues which 
are considered to be important and greatly affect the forecasting 
accuracy is that the length of intervals and fuzzy relationship 

group. By utilizing the concept of time variant fuzzy relationship 
group, the proposed model has handled the more persuasive 
historical data and has been demonstrated to be more appropriate 
for real-world applications. In addition to that the parameters of 
HA are modified by PSO algorithm to get the initial intervals 
partitioning of the UoD. In data mining and finding of optimal 
solution, PSO is considered to accomplish better compared to other 
heuristic techniques with regards to success rate and solution 
quality. Furthermore, the forecasting efficiency of the proposed 
model is significantly improved in adjusting the lengths of 
intervals. The forecasting performance of the proposed model is 
demonstrated by forecasting the enrolments at University of 
Alabama and the car road accidents in Belgium. Details of the 
comparison in Tables 7-13 indicate that the proposed model 
achieves the lowest forecasting errors when compared with other 
forecasting models., for many cases. Also, from Figure 5, it can be 
observed that the amount of error rate in terms of MSE obtained 
by our high - order FTS model are smaller than all other models 
considered in this research. Even though our model shows that the 
greater forecasting capability when compared with some of recent 
ones based on the high-order FLRs. Determining of the high-order 
FLR spends a lot of computational time than first-order FLR. 
Therefore, development of new approaches that can automatically 
select out the optimal degree of the high-order FLRs is a worthy 
idea in FTS forecasting model. Those will be the work closely 
related to this research in the coming time. 
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