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 This paper is carrying out a practical identification of a DC servomotor from input and 
output data. The system's step response was obtained from an acquisition card that we have 
developed using a microcontroller. The data is collected and downloaded to the PC 
Thought RS232 Protocol to process the identification process using polynomial models 
(ARX, ARMAX, OE, and BJ). Afterward, a comparison between the resulting models has 
been made using the validation criterions R² and FPE. The results show that the ARMAX, 
OE, and BJ models have reproduced a better fit compared to the ARX model. 
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 Introduction 

Servomotors have been developed at the origin of different 
uses. For example, radio-controlled aircraft, biped robots, and 
robotic arms. And nowadays, they are widely used in the robotics 
field, due to their cost, compactness, ease of use, and their high 
torque-to-weight ratio, which made them a good choice to achieve 
a compact and less expensive mechatronic system [1]. However, 
DCSM does not provide a good position control when it is in 
contact with a load and sometimes it provides a chattering motion. 
Thus, a mathematical model needs to be built to analyze and 
develop its performances. To do so, we tried to identify the 
mathematical equation of the system based on polynomial models. 

A mathematical model is a multitude of equations that describe 
the relationship between the variables of a process or a 
phenomenon. It can take many forms depending on the studied 
system, and we can distinguish between two major classes. 

1.1. Theoretical models 

Theoretical models, Also known as whit-box, are models, which 
mostly used for simulations and theoretical studies. They are based 
on mathematical and physical laws, which made them often 
complex and hard to define [2]; however, it can give a complete 
description of the system. 

1.2. Experimental models 

Experimental models, also known as grey-box or black-box 
models are models used to define a mathematical model from the 

experiment's data. As mentioned in [3], in system identification, 
we could distinguish between two types.  

• non-parametrical model is usually presented with 
numerical values, a graph, or a table, and it has an infinite 
number of parameters and an undefined structure. 

• parametrical models, which are defined models structure 
who have a finite number of parameters. 

According to [4], identifying a system or a process is about 
estimating a mathematical model that reproduces a static and 
dynamic response to a test input as close as possible to the real 
system. To do so, and to get a valid model, we need to follow a 
certain procedure [5], described in fig.1. It starts with the 
experiment preparation by choosing the sampling frequency and 
the input signal as a first step. Then choosing the model structure 
type, order, and delay as a second step. After that, selects the 
criterion that minimizes the error between the estimated model and 
the experimental data as the third step. Finally, the validation step 
that consists of applying several tests to prove the usability of the 
model. The resulting models' main objectives can be to understand 
the behavior of the studied system [6], or building the system 
control loop [7]. 

In this paper, Sections 2 and 3 cover a brief introduction of the 
linear polynomial models and parameter estimation process. 
Section 4 and 5 highlight the necessary steps for the 
implementation of the application. In sections 6 and 7, the results 
obtained from the experiment are presented and discussed. 

ASTESJ 
ISSN: 2415-6698 

*Corresponding Author: Mokhlis Salah-eddine, Email: mokhlis.id@gmail.com 
 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 507-513 (2020) 

www.astesj.com   

Special Issue on Multidisciplinary Sciences and Engineering 

https://dx.doi.org/10.25046/aj050660  

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050660


S. Mokhlis et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 507-513 (2020) 

www.astesj.com      508 

 
Figure 1: Experimental approach for defining a parametric model of a system 

 
Figure 2: Generalized transfer function Structure 

 Parametrical Models 

2.1. Generalities 

A discrete linear system can be presented as a general-linear 
polynomial model, which is considered as a transfer function 
whose parameters need to be estimated. This estimation is done by 
recursive and none recursive algorithms like maximum likelihood, 
instrumental variable or less square. This presentation, also gives 
flexibility for modelling both stochastic and system dynamics, and 
it is widely used in many real-world applications from different 
disciplines, e.g., [8–10].  

Polynomial models are described in [11]. They can be defined 
by the generalized transfer function expressed by (1) and the signal 
flow represented in figure 2 [5]: 

A(q)y(k) = B(z)
F(z)

z−nku(k) + C(z)
D(z)

e(k)                   (1) 

where: 

𝑒𝑒(𝑘𝑘): 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠 𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒   

𝑑𝑑𝑘𝑘: 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑒𝑒𝑠𝑠 𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑠𝑠   

𝐴𝐴(𝑧𝑧) = 1 + 𝑑𝑑1𝑧𝑧−1 + ⋯+ 𝑑𝑑𝑛𝑛𝑎𝑎𝑧𝑧
−𝑛𝑛𝑎𝑎                       (2) 

𝐵𝐵(𝑧𝑧) = 𝑑𝑑1𝑧𝑧−1 + ⋯+ 𝑑𝑑𝑛𝑛𝑏𝑏𝑧𝑧
−𝑛𝑛𝑏𝑏                                 (3) 

𝐶𝐶(𝑧𝑧) = 1 + 𝑑𝑑1𝑧𝑧−1 + ⋯+  𝑑𝑑𝑛𝑛𝑐𝑐𝑧𝑧
−𝑛𝑛𝑐𝑐                          (4) 

𝐷𝐷(𝑧𝑧) = 1 + 𝑑𝑑1𝑧𝑧−1 + ⋯+  𝑑𝑑𝑛𝑛𝑑𝑑𝑧𝑧
−𝑛𝑛𝑑𝑑          (5) 

𝐹𝐹(𝑧𝑧) = 1 + 𝑓𝑓1𝑧𝑧−1 + ⋯+ 𝑓𝑓𝑛𝑛𝑓𝑓𝑧𝑧
−𝑛𝑛𝑓𝑓          (6) 

and: 

𝑑𝑑𝑎𝑎 : The order of 𝐴𝐴(𝑧𝑧) 

𝑑𝑑𝑏𝑏 : The order of 𝐵𝐵(𝑧𝑧) 

𝑑𝑑𝑐𝑐  : The order of 𝐶𝐶(𝑧𝑧) 

𝑑𝑑𝑑𝑑 : The order of 𝐷𝐷(𝑧𝑧) 

𝑑𝑑𝑓𝑓 : The order of 𝐹𝐹(𝑧𝑧) 

By setting one or more 𝑑𝑑𝑎𝑎, 𝑑𝑑𝑐𝑐, 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑓𝑓 to 0 can create simpler 
models such as: 

2.1.1. ARX model 

ARX structure presented in equation (7) [5] is the result of 
setting 𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑓𝑓 to 0 the signal flow is presented in fig.3. In 
this structure the noise model 1

𝐴𝐴(𝑧𝑧)
 is coupled with the systems 

dynamics, it is used to obtain simple model with good signal to 
noise ratio. 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧)

𝑧𝑧−𝑛𝑛𝑛𝑛𝑑𝑑(𝑘𝑘) + 1
𝐴𝐴(𝑧𝑧)

𝑒𝑒(𝑘𝑘)                   (7) 

 
Figure 3: The ARX Structure 

2.1.2. ARMAX model 

The ARMAX structure presented in the equation (8) [5] is the 
result of setting 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑓𝑓 to 0 in the generalized transfer function 
(1), the signal flow is presented in fig.4. this structure provides 
more flexibility to model the noise by adding the 𝐶𝐶(𝑧𝑧) parameters 
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which is considered as a moving average of white noise. It is used 
when the noise enters in the input. 

𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝐵𝐵(𝑧𝑧)
𝐴𝐴(𝑧𝑧)

𝑧𝑧−𝑛𝑛𝑛𝑛𝑑𝑑(𝑘𝑘) + 𝐶𝐶(𝑧𝑧)
𝐴𝐴(𝑧𝑧)

𝑒𝑒(𝑘𝑘)              (8) 

 
Figure 4: The ARX Structure 

2.1.3. Output Error Model 

The OE presented in the equation (9) [5] is the result of setting 
𝑑𝑑𝑎𝑎, 𝑑𝑑𝑐𝑐 and 𝑑𝑑𝑑𝑑 to 0 in the generalized transfer function (1), the 
signal flow is presented in fig.5. In this structure, the noise model 
is considered as 1. It is used to parameterize the dynamic of the 
system only. 

𝑌𝑌𝑂𝑂𝑂𝑂(𝑘𝑘) = 𝐵𝐵(𝑧𝑧)
𝐹𝐹(𝑧𝑧)

𝑧𝑧−𝑛𝑛𝑛𝑛𝑑𝑑(𝑘𝑘) + 𝑒𝑒(𝑘𝑘)                      (9) 

 
Figure 5: The OE Structure 

2.1.4. Box- Jenkins Model 

The BJ structure presented in the equation (10) [5] is the result 
of setting 𝑑𝑑𝑑𝑑 to 0 the signal flow is presented fig.6. This structure 
provides more flexibility because the noise model is independent 
of the dynamics model. It is used when the noise enters as a 
measurement disturbance. 

 
𝑌𝑌𝐵𝐵𝐵𝐵(𝑘𝑘) = 𝐵𝐵(𝑧𝑧)

𝐹𝐹(𝑧𝑧)
𝑧𝑧−𝑛𝑛𝑛𝑛𝑑𝑑(𝑘𝑘) + 𝐶𝐶(𝑧𝑧)

𝐷𝐷(𝑧𝑧)
𝑒𝑒(𝑘𝑘)        (10) 

 

Figure 6: The BJ Structure 

 Parameters Estimation 

Parameter estimation is a mathematical process that uses 
experimental data to estimate the system parameters, in this paper; 
this process is done by the prediction error method described in 
[12] and fig 7. this method aims to minimize the error expressed 
in Eq (13) between the estimated and the real system [13]. 

 
 Figure 7: Prediction Error Method 

According to [14], to use the Prediction Error Method, we need 
to choose the model structure, the one-step-ahead predictor 
𝑠𝑠�(𝑘𝑘|𝑘𝑘 − 1, 𝜃𝜃) described with the equation (12) and the criterion 
function 𝐽𝐽(𝜃𝜃,𝑍𝑍𝑁𝑁) given by Eq (11): 

𝐽𝐽(𝜃𝜃,𝑍𝑍𝑁𝑁) = 𝑓𝑓�𝑅𝑅𝑁𝑁(𝜃𝜃,𝑍𝑍𝑁𝑁)�                               (11) 

where: 

𝑅𝑅𝑁𝑁(𝜃𝜃,𝑍𝑍𝑁𝑁) =  1
𝑁𝑁
∑ 𝑒𝑒(𝑘𝑘,𝜃𝜃)𝑒𝑒𝑇𝑇(𝑘𝑘, 𝜃𝜃)𝑁𝑁
𝑡𝑡 = 1              

𝑠𝑠�(𝑘𝑘|𝑘𝑘 − 1,𝜃𝜃) = 𝐻𝐻−1(𝑞𝑞)𝐺𝐺(𝑞𝑞)𝑑𝑑(𝑘𝑘) + (1 − 𝐻𝐻−1(𝑞𝑞))𝑠𝑠(𝑘𝑘) (12) 

And the prediction error is given by: 

𝑒𝑒(𝑘𝑘|𝑘𝑘 − 1) = 𝑠𝑠(𝑘𝑘) −  𝑠𝑠�(𝑘𝑘|𝑘𝑘 − 1,𝜃𝜃) 

                  =  𝐻𝐻−1(𝑞𝑞)(𝑠𝑠(𝑘𝑘) −  𝐺𝐺(𝑞𝑞)𝑑𝑑(𝑘𝑘))        (13) 

 Model Validation 

Model validation is the final step, which goal is to compare and 
validate the usability of the estimated model by testing several 
criterions like those in this paper: 

1.3. Akaike Final Prediction Error 

This criterion described in the equation (14) [5] was presented 
by Akaike (1967) as a final prediction error (FPE), based on 
Akaike's theory, the best model has the smallest FPE. 

FPE = det �1
N
∑ e(t, θN)(e(t, θN))T �

1+d N�

1−d N�
�N

1 �       (14) 

where: 

𝑁𝑁: The number of values in the estimation data set 

𝑒𝑒(𝑡𝑡): The vector of prediction error 

𝜃𝜃𝑁𝑁: The estimated parameters 

𝑑𝑑: The number of the estimated parameters 

4.1 Best Fit 

The RMSE criterion measures the similarity between the data 
and the estimated model and can be calculated using equation (15) 
[15]. 

Best Fit =   100(1 − ∑ (yi− y� )2 n
i=1

∑ (yi− y� )2 n
i=1

)        (15) 

where: 

𝑠𝑠𝑖𝑖  : The measured output 

𝑠𝑠� : The estimated output 
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𝑠𝑠�: The mean of the output 

 Application 

A DCSM is composed of a potentiometer and integrated circuit 
that ensures a dc motor's position control based on a reference 
signal received from a microcontroller or an external organ (fig.8). 
However, despite its different applications, there is a major 
problem in achieving good performance with those servo motors 
due to the integrated circuit [1]. Therefore, the goal is to estimate 
all the system's internal and external components' mathematical 
model, to design a new controller or exploit it in more complex 
systems. In this application, the reference signal is in the form of 
a pulse with modulation signal who does not exceed 20ms between 
two rising edges, and the DCSM supply voltage is 5V. 

 

 

To extract reliable input and output data, we build the 
acquisition card with pic16f877a. As shown in fig 9, this 
microcontroller has eight analogic inputs of 10-bit resolution, one 
digital input, one digital output of 8-bit resolution, and two PWM 
output of 8-bit resolution. Moreover, it is linked to the computer 
using RS232 communication with a speed of 115200bit/s to send 
and receive data necessary for the experiment. However, today’s 
computer does not support this type of communication. To solve 
this problem, an RS232 to USB adapter is used, as shown in fig 
10. 

 

Afterward, to know the sampling time 𝑇𝑇𝑖𝑖, which is related to 
the uncertainty of the internal and external components and the 
instructions execution time of the microcontroller. The analogic 
input of the acquisition card is subjected to a periodic signal of 
known frequency. The samples collected from the acquisition card 

are represented on a graph. Afterward, the frequency of the test 
signal is adjusted until a signal similar to that of the input is 
obtained, which 𝑇𝑇𝑖𝑖 =  0.0034 deduced in this application. This 
will allow having a speed of 300 𝑖𝑖𝑠𝑠𝑖𝑖/𝑖𝑖. 

Next, the analysis and parameter estimation process is applied 
to the collected data from the acquisition card.  

 Results 

Model order determination in parameter estimation is essential 
because a lower order model cannot adequately describe the 
system's dynamics, and a higher-order model may have 
uncertainties. Thus, to extract the best model and to see the effect 
of changing the order of the parameters, we applied the 
experimental approach of identifying a parametric model 
described in fig 1, and we fixed 𝑑𝑑𝑘𝑘 to 1 then: 

• Over 100 ARX models are calculated where 𝑑𝑑𝑎𝑎and 𝑑𝑑𝑏𝑏 are in 
the range of 1 to 10. 

• Over 125 ARMAX models are calculated where 
𝑑𝑑𝑎𝑎,𝑑𝑑𝑏𝑏 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑐𝑐 are in the range of 1 to 5. 

• Over 25 OE models are calculated where 𝑑𝑑𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑏𝑏are in the 
range of 1 to 5. 

• Over 625 BJ models are calculated where 𝑑𝑑𝑎𝑎,𝑑𝑑𝑎𝑎,𝑑𝑑𝑎𝑎  𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑎𝑎 
are in the range of 1 to 5. 

Afterward, the Best-fit criterion is used to select the best five 
structures in each model, and the PFE criterion is used to choose 
the best structure in each model. Those results are in tables 1 to 4. 

 Discussion 

As presented in tables 1 to 4, all the extracted models in each 
structure have closely a similar FPE. Then the choice of the model 
is based on the best-fit only. Besides, no significant change occurs 
in the best-fit criterion by increasing the models' order in each 
model type. Thus, the selected model will have the lowest order. 
This will allow a better processing time while doing online 
parameter estimation in real-time applications. 

• The best-estimated ARX model is the ARX331 shown in 
Figure 11 and Table 1. It has an order of  (nb=3 and na = 3),  
and a fit of 72,44 

• The best-estimated ARMAX model is the ARMAX2411 
shown in Figure 12 and Table 2. It has an order of (na = 2, nb 
= 4, nc=1), and a fit of 94,75%. 

• The best-estimated OE model is the OE131 shown in Figure 
13 and Table 3. It has an order of (nf = 3, nb = 1), and a fit of 
95.009. 

• The best-estimated BJ model is the BJ12331, shown in Figure 
14 and Table 4. It has an order of (nb = 1, nc = 2, nd = 3, nf = 
3), and a 95.02% fit. 

Based on those results and figure 16. The ARX models 
provided a fit of 72%, which is a poor fit compared to ARMAX, 
BJ and OE Models. However, if we want to use a model in real-
time applications, the best choice will be OE131 because of the 
resulting good fit with the measured output and fewer parameters.
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Table 1: The estimated ARX models 

Model Type Model Parameters 'Best Fit' 'FPE' 
'ARX431' A(z) = 1 - 1.065 z^-1 + 0.005417 z^-2 + 0.01607 z^-3 + 0.04765 z^-4 

B(z) = 3.841e-05 z^-1 + 0.002391 z^-2 + 0.001677 z^-3 
72,6272093 0,3764651 

'ARX441' A(z) = 1 - 1.065 z^-1 + 0.005351 z^-2 + 0.01617 z^-3 + 0.04766 z^-4 
B(z) = 3.741e-05 z^-1 + 0.002391 z^-2 + 0.002752 z^-3 - 0.001086 z^-4 

72,5563214 0,37670021 

'ARX421' A(z) = 1 - 1.065 z^-1 + 0.005566 z^-2 + 0.01616 z^-3 + 0.04759 z^-4 
B(z) = 3.772e-05 z^-1 + 0.004052 z^-2 

72,5177552 0,37624736 

'ARX331' A(z) = 1 - 1.069 z^-1 + 0.005651 z^-2 + 0.06704 z^-3 
B(z) = 0.000315 z^-1 + 0.002366 z^-2 + 0.001609 z^-3 

72,4480688 0,37718277 

'ARX341' A(z) = 1 - 1.068 z^-1 + 0.005065 z^-2 + 0.06748 z^-3 
B(z) = 0.0003129 z^-1 + 0.002366 z^-2 + 0.002673 z^-3 - 0.001074 z^-4 

72,386256 0,37731582 

Table 2: The estimated ARMAX models 
'Model Type' Model Parameters 'Best Fit' 'FPE' 

'ARMAX3421' A(z) = 1 - 2.598 z^-1 + 2.202 z^-2 - 0.6041 z^-3 
B(z) = 0.001024 z^-1 + 0.002355 z^-2 - 0.008141 z^-3 + 0.004814 z^-4 

C(z) = 1 - 1.576 z^-1 + 0.5755 z^-2 

94,8596855 0,36096562 

'ARMAX2421' A(z) = 1 - 1.985 z^-1 + 0.9851 z^-2 
B(z) = 0.001351 z^-1 + 0.0005912 z^-2 - 0.006229 z^-3 + 0.004419 z^-4 

C(z) = 1 - 0.9752 z^-1 - 0.02485 z^-2 

94,7854814 0,36124302 

'ARMAX4231' A(z) = 1 - 2.362 z^-1 + 1.557 z^-2 - 0.02015 z^-3 - 0.1743 z^-4 
B(z) = -0.0004067 z^-1 + 0.0004638 z^-2 

C(z) = 1 - 1.312 z^-1 + 0.1561 z^-2 + 0.156 z^-3 

94,7787217 0,36258016 

'ARMAX2411' A(z) = 1 - 1.986 z^-1 + 0.9859 z^-2 
B(z) = 0.001361 z^-1 + 0.0006902 z^-2 - 0.006188 z^-3 + 0.004261 z^-4 

C(z) = 1 - z^-1 

94,7591717 0,3611956 

'ARMAX3411' A(z) = 1 - 2.022 z^-1 + 1.059 z^-2 - 0.03639 z^-3 
B(z) = 0.001229 z^-1 + 0.0009276 z^-2 - 0.00656 z^-3 + 0.004529 z^-4 

C(z) = 1 - z^-1 

94,7457863 0,36131993 

 
Table 3: The estimated OE models 

'Model Type' Model Parameters 'Best Fit' 'FPE' 

'OE431' B(z) = 0.01849 z^-1 - 0.05449 z^-2 + 0.05356 z^-3 - 0.01755 z^-4 
F(z) = 1 - 2.947 z^-1 + 2.894 z^-2 - 0.9475 z^-3 

95,0341979 6,13354962 

'OE131' B(z) = 7.423e-06 z^-1 
F(z) = 1 - 2.933 z^-1 + 2.867 z^-2 - 0.9339 z^-3 

95,0098583 6,28005407 

'OE341' B(z) = 0.01923 z^-1 - 0.03923 z^-2 + 0.02007 z^-3 
F(z) = 1 - 2.14 z^-1 + 0.8912 z^-2 + 0.6443 z^-3 - 0.3956 z^-4 

94,9929819 6,21730334 

'OE321' B(z) = 0.04349 z^-1 - 0.08893 z^-2 + 0.04559 z^-3 
F(z) = 1 - 1.984 z^-1 + 0.9845 z^-2 

94,9848311 6,21616865 

'OE221' B(z) = -0.001383 z^-1 + 0.001513 z^-2 
F(z) = 1 - 1.985 z^-1 + 0.9851 z^-2 

94,8945691 6,55918215 

 
Table 4: The estimated BJ models 

'Model Type' Model Parameters 'Best Fit' 'FPE' 

'BJ23241' B(z) = 6.176e-05 z^-1 - 5.46e-05 z^-2 
C(z) = 1 - 0.6253 z^-1 + 0.01001 z^-2 + 0.02315 z^-3 

D(z) = 1 - 1.629 z^-1 + 0.6427 z^-2 
F(z) = 1 - 2.44 z^-1 + 1.393 z^-2 + 0.5362 z^-3 - 0.4889 z^-4 

95,0238364 0,360708 

'BJ12331' B(z) = 7.101e-06 z^-1 
C(z) = 1 - 1.609 z^-1 + 0.9796 z^-2 

D(z) = 1 - 2.46 z^-1 + 2.254 z^-2 - 0.7828 z^-3 
F(z) = 1 - 2.936 z^-1 + 2.872 z^-2 - 0.9367 z^-3 

95,0160798 0,33251152 

'BJ14131' B(z) = 7.24e-06 z^-1 
C(z) = 1 + 0.04146 z^-1 + 0.03341 z^-2 + 0.01694 z^-3 + 0.03648 z^-4 

D(z) = 1 - 0.9637 z^-1 
F(z) = 1 - 2.934 z^-1 + 2.87 z^-2 - 0.9354 z^-3 

95,0135709 0,36037501 

'BJ13131' B(z) = 7.263e-06 z^-1 
C(z) = 1 + 0.04056 z^-1 + 0.03335 z^-2 + 0.01701 z^-3 

D(z) = 1 - 0.9659 z^-1 
F(z) = 1 - 2.934 z^-1 + 2.869 z^-2 - 0.9351 z^-3 

95,0131615 0,36038438 

'BJ13231' B(z) = 7.26e-06 z^-1 
C(z) = 1 - 0.6241 z^-1 + 0.009762 z^-2 + 0.02454 z^-3 

D(z) = 1 - 1.627 z^-1 + 0.6415 z^-2 
F(z) = 1 - 2.934 z^-1 + 2.87 z^-2 - 0.9353 z^-3 

95,0129791 0,35994338 
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Figure 11: Comparison between the estimated model (ARX331) and measured 

output 

 
Figure 12: Comparison between the estimated model (OE131) and measured 

output 

 
Figure 13: Comparison between the estimated model (ARMAX2411) and 

measured output 

 
Figure 14: Comparison between the estimated model (BJ1313) and measured 

output

 
Figure 15: Comparison between the estimated Polynomial models (ARX331, ARMAX2411, OE131, and BJ1313) and measured output 

 Conclusion 

In this article, a practical identification of DCSM has been 
elaborated using polynomial models. To meet application 
requirements and to collect input-output data, a microcontroller-
based acquisition card has been developed.  Finally, the 
comparison between the data and the estimated models using 
validation criterions shows that the ARMAX, BJ, and OE model 
has provided a good fit with experimental data and can be used in 
simulations or a real application. 

In future work, the data acquisition system will be based on PLC 
to be adequate for industrial applications and to provide more 
sampling frequency and processing time. Moreover, other 
identification techniques will be applied to more complex non-
linear systems to build proper algorithms for the control loop or 
fault detection. 
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