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 Comparing to other types of vehicle accidents, fatality rate of tipped rollover accidents 
shows significant number. Thus, tripped rollover prevention systems are important in order 
to keep driver safe. In other hands, different rollover indices are defined to handle the risk. 
The variable unknown parameters of each index, for instance, current load of the vehicle 
or center of gravity, are considered as a difficulty. In this work, the recurrent neural 
networks, which are designed to work on sequential data in order to provide data estimation 
without additional estimation algorithm, are investigated in purpose to estimate the tripped 
and untripped rollover index. The vehicle simulation software with industrial standard 
CarSim is applied to validate the result. The Tanh recurrent neural network is stated in the 
result to be the most accurate tripped rollover index estimator for the uncertain parameters, 
for example, sprung mass and the height of the center of gravity. The suitable input features 
for tripped and untripped rollover index and neural network structure are verified. To 
prevent and provide warning of rollover, an advance future prediction can also be designed 
for the future tripped and untripped rollover prediction. 
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1. Introduction  

This work is an extension based originally on the groundwork 
presented in the 9th IEEE International Conference on Robotics, 
Automation and Mechatronics (CIS-RAM 2019) [1]. This paper 
will focus on development of recurrent neural networks for tripped 
rollover while Ref. [1] focus on only untripped rollover. The 
number of rollover accidents has grown continuously according to 
the change in vehicles’ size, which are both weight and dimension, 
over the last 10 years. The majority type of fatality on the road is 
pointed to rollover accidents. In 2010, 9.1 million cars, which 

includes passenger cars, SUVs, pickups and vans, crashed and 
2.1% of those crashes were caused by rollovers collected by 
National Highway Traffic Safety Administration’s records 
(http://www.safercar.gov). From those 2.1% of crashes, there were 
over 7,600 deaths which was up to 35% of total deaths from 
vehicle accidents [2]. In addition, 20% of vehicle-crash deaths in 
Europe are from the rollover [3]. In Germany, 2-5% and 90% of 
vehicle accidents and deaths from the accidents are caused by 
vehicle rollover accidents in 2005 respectively [4]. 

The vehicle rollover accidents are categorized as tripped and 
untripped rollovers. A rollover accident that have contacted with 
an external obstacle, such as a pothole or guardrail, is called a 
tripped rollover. Untripped rollovers are defined the other way 
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round. It happens because of the effect of high lateral acceleration 
on a dangerous turn, i.e. sharp turn, and it is unrelated to external 
input [5-6]. Tripped rollovers tend to happen more frequently than 
untripped rollovers with 95% and 5% of total rollovers according 
to the statistic provided by NHTSA [2]. From the significant 
number of deaths from rollovers compared to the total number of 
high-way traffic deaths, vehicle safety must be improved to 
prevent the vehicle from rollover accidents. 

Hence, several automotive manufacturers, e.g., Ford and Volvo 
have advanced with active rollover prevention systems which aim 
to prevent untripped rollover accidents [7]. Analysts and 
researchers likewise take interest largely in differential braking 
systems e.g.  Anti-lock Braking Systems (ABS), Electronic 
Braking Systems (EBS) and Electronic Stability Programs (ESP) 
[3, 7-13]. The baking systems perform vehicle’s yaw rate and 
speed reduction by adjusting each wheel’s sequence of brake 
patterns. Also steer-by-wire technology [13-17] e.g. active front 
steering (AFS), active rear steering (ARS), or four-wheel steering 
(4WS) are to be used in case of the balancing of performances 
among yaw stability, violence, and rollover prevention and an 
active suspension system [18-20] can be used to avoid rollover 
when the wheels lifted off the road. Then, an active roll bar 
stabilization system [20-22] uses an active stabilizer for active 
torque distribution between front and rear axles of the vehicle. This 
can reduce the roll motion. In addition, active torque management 
[23] has the capability to prevent rollover accidents. Many control 
techniques are developed to enhance these systems. 

Precise detection of vehicle rollover is mandatory in order for 
these active rollover prevention systems to fully function. To the 
present, there are multiple impending vehicle rollover detections 
developed with computational rollover index. The rollover indices 
are developed by various approaches. For example, Static Stability 
Factor (SSF) was developed to measure the rollover resistance of 
a given vehicle design configuration [24]; ref. [25] introduced 
rollover indices that consider kinetic energy, then Rollover 
Prevention Energy Reserve (RPER) is started off to look into 
rollover risks by taking energy function as the main account [7]; 
ref. [26] introduced a dimensionless rollover index that takes roll 
dynamics into consideration by utilizing phase plane analysis; 
zero-moment point also is developed to predict the possibility of 
rollover [9]; lateral Load Transfer Ratio (LTR) is popularly 
discussed in numerous studies [5, 7, 14-18]; to name a few. It is 
seen that a lot of rollover indicators are developed based on LTR 
such as Multiple Rollover Indices (MRIs) for trailer vehicles and 
Predictive Lateral Transfer Ration (PLTR) [9]. Lateral Load 
Transfer Ration is actually one of the approaches that take several 
factors into account, for example, roll angle, roll center and height 
of center of gravity of a vehicle. Many techniques have been 
established to estimate these factors. For example, extended 
Kalman filter technique or nonlinear observer/estimator has been 
built up to improve the accuracy of the lateral Load Transfer Ratio. 
Other than that, ref. [27] introduced an algorithm that utilizes the 
time-to-rollover (TTR) metrics to assess the time until rollover as 
a warning option. With this approach, an advance real-time 
prediction of rollover risk can be provided. Moreover, this 
technique can be used with several other rollover indices 
simultaneously. Despite a number of rollover detection techniques 
developed until now, only untripped rollovers are detected. 

Ref. [5, 6, 28] has introduced a new rollover index which 
incorporates external road inputs as a factor to detect not only the 
untripped but also tripped rollover conditions. The external 
obstacle road inputs are estimated based on a vehicle dynamic 
model and nonlinear observer. The simulation and experimental 
results are presented using a 1/8th scaled vehicle.  

 Since the indicator to detect rollover risk is very important for 
improving the rollover prevention systems and rollover warning 
system [29-31], it is necessary to develop the rollover indicator for 
detecting both tripped and untripped rollovers. It is shown that the 
traditional rollover index is not effective enough to identify tripped 
rollovers and there are only few focused on tripped rollovers that 
are published. In addition, most accurate rollover indicators relay 
on dynamic models which require known parameters such as 
vehicle mass or height of center of gravity of a vehicle. Therefore, 
here proposed is a neural network indicator developed to identify 
tripped and untripped rollovers. Neural networks known for 
adaptable and nonlinear information processing capability perform 
fittingly in the areas of predication, expert system, and mode 
identification [32-37]. By taking the approach to be introduced 
afterward into account, the estimation algorithms to estimate 
unknown parameters such as roll angle, height of center of gravity 
of a vehicle, or vehicle mass are not required. These parameters 
may be changed all the time due to the number of passengers and 
load. Also, the technique can be applied in many situations. This 
research is the extended technique in [1, 38] which is focused on 
untripped rollover to detect tripped rollover. 

This research has the following outline: Section 2 will 
introduce the vehicle rollover and the rollover index for detecting 
tripped and untripped rollovers. Next, the recurrent neural network 
technique for detecting tripped and untripped rollover is presented 
in Section 3, and the methodology to apply the recurrent neural 
network to the rollover problem is presented in Section 4. The 
process of evaluation of the suitable neural network, the suitable 
input features, the suitable neural network structure and the future 
tripped rollover prediction are included in this section. Then, 
Section 5 will present the tripped rollover results. Finally, Section 
6 will discuss the conclusion to the findings. 

2. Vehicle Rollover Index 

Traditional rollover index posts as most popular technique to 
detect vehicle rollover among many techniques [5-7, 14-18, 28-
33] used nowadays. 

2.1. Traditional Rollover Index 

In order to detect lift-off condition of the wheels [6, 7], the 
rollover index is used as a real-time indicator. Lateral Load 
Transfer Ratio (LTR) is known as another name of the index. The 
standard rollover index is designed for predicting incidents that are 
caused with the lift-off conditions of the wheels for untripped 
accidents. A number of researches use the basic model to derive 
their rollover indices. A scaled lateral acceleration, a function of 
roll angle [12], or a function of lateral acceleration and roll angle 
[9, 18] is considered as a base argument for these rollover indices. 

The rollover index by the conventional definition is portrayed 
by 
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𝑅𝑅 =
𝐹𝐹𝑧𝑧𝑧𝑧 − 𝐹𝐹𝑧𝑧𝑧𝑧
𝐹𝐹𝑧𝑧𝑧𝑧 + 𝐹𝐹𝑧𝑧𝑧𝑧

,       − 1 ≤ 𝑅𝑅 ≤ 1 (1) 

where 𝐹𝐹𝑧𝑧𝑧𝑧 is right normal tire force and 𝐹𝐹𝑧𝑧𝑧𝑧 is left normal tire force. 
𝑅𝑅 = 1  ( 𝐹𝐹𝑧𝑧𝑧𝑧 = 0) or 𝑅𝑅 = −1 (𝐹𝐹𝑧𝑧𝑧𝑧 = 0)  is the value when a 
rollover incident is defined. 𝐹𝐹𝑧𝑧𝑧𝑧  equals to 𝐹𝐹𝑧𝑧𝑧𝑧  and 𝑅𝑅 = 0 is when 
the vehicle travels straight forward. If 𝐹𝐹𝑧𝑧𝑧𝑧 = 0, then 𝑅𝑅 = 1 and 
this will cause the lift-off occurrence of the left wheel. If 𝐹𝐹𝑧𝑧𝑧𝑧 = 0, 
then 𝑅𝑅 = −1 and this will cause the lift-off occurrence of the right 
wheel. 

 Based on the one-degree-of-freedom model, the summation 
and difference of tire forces 𝐹𝐹𝑧𝑧𝑧𝑧 + 𝐹𝐹𝑧𝑧𝑧𝑧 and 𝐹𝐹𝑧𝑧𝑧𝑧 − 𝐹𝐹𝑧𝑧𝑧𝑧  can be 
calculated. An implementable rollover index processed with the 
one-degree-of-freedom model is demonstrated by [1, 6] 

𝑅𝑅 =
𝐹𝐹𝑧𝑧𝑧𝑧 − 𝐹𝐹𝑧𝑧𝑧𝑧
𝐹𝐹𝑧𝑧𝑧𝑧 + 𝐹𝐹𝑧𝑧𝑧𝑧

=
2𝑚𝑚𝑠𝑠𝑎𝑎𝑦𝑦ℎ𝑅𝑅
𝑚𝑚𝑚𝑚𝑙𝑙𝑤𝑤

+
2𝑚𝑚𝑠𝑠ℎ𝑅𝑅𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡

𝑚𝑚𝑙𝑙𝑤𝑤
 (2) 

where 𝑚𝑚𝑠𝑠 is Sprung mass, 𝑚𝑚 = 𝑚𝑚𝑠𝑠 + 𝑚𝑚𝑢𝑢, 𝑚𝑚𝑢𝑢 is unsprung mass, 
𝑎𝑎𝑦𝑦  is lateral acceleration, ℎ𝑅𝑅  is Center of gravity (C.G.) height 
from roll center, 𝑚𝑚 is acceleration due to gravity, 𝑙𝑙𝑤𝑤 is track width, 
and 𝑡𝑡 is roll angle. 

 Lacking influence of the vertical road input and other external 
inputs limit the rollover index in (2) with only the untripped 
rollover detection. Lateral acceleration and roll angle influence this 
rollover index. However, the roll angle, which is complicated to 
measure, is removed in some published paper’s rollover index 
calculation. 

2.2. Rollover Index for Tripped and Untripped Rollover 

 The influence of road inputs and other external forces are 
considered in rollover index both for tripped and untripped 
rollovers in order to indicate the tripped rollovers caused by 
external input tripping. Figure 1. shows a vehicle rollover model 
where the influence of right road inputs,  𝑧𝑧𝑧𝑧𝑧𝑧, left road input, 𝑧𝑧𝑧𝑧𝑧𝑧, 
and an unknown lateral force input, 𝐹𝐹𝑧𝑧𝑙𝑙𝑙𝑙 , at an arbitrary height, 
ℎ𝑧𝑧𝑙𝑙𝑙𝑙 , from the roll center are presented. It also demonstrates the 
normal tires forces, 𝐹𝐹𝑧𝑧𝑧𝑧 and 𝐹𝐹𝑧𝑧𝑧𝑧. 

 
Figure 1: Tripped and Untripped Rollover Model 

 The four-degree-of-freedom vehicle model provides the  
derivation of the rollover index in the case of tripped rollover and 
the derivation is presented in [6]. Equation (3) shows the rollover 
index for tripped and untripped rollover which is shown in [6]. 

𝑅𝑅 =
𝑚𝑚𝑢𝑢(�̈�𝑧𝑢𝑢𝑧𝑧 − �̈�𝑧𝑢𝑢𝑧𝑧) −

2
𝑙𝑙𝑠𝑠2

(𝐼𝐼𝑥𝑥𝑥𝑥 + 𝑚𝑚𝑠𝑠ℎ𝑅𝑅2)(𝑎𝑎𝑧𝑧𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑧𝑧)

𝑚𝑚𝑢𝑢(�̈�𝑧𝑢𝑢𝑧𝑧 + �̈�𝑧𝑢𝑢𝑧𝑧) + 𝑚𝑚𝑠𝑠�̈�𝑧𝑠𝑠 + 𝑚𝑚𝑚𝑚

+

2
𝑙𝑙𝑠𝑠
𝑚𝑚𝑠𝑠𝑎𝑎𝑦𝑦ℎ𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 + 2

𝑙𝑙𝑠𝑠
𝑚𝑚𝑠𝑠𝑚𝑚ℎ𝑅𝑅𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡

𝑚𝑚𝑢𝑢(�̈�𝑧𝑢𝑢𝑧𝑧 + �̈�𝑧𝑢𝑢𝑧𝑧) + 𝑚𝑚𝑠𝑠�̈�𝑧𝑠𝑠 + 𝑚𝑚𝑚𝑚
 

(3) 

where �̈�𝑧𝑢𝑢𝑧𝑧 is right unsprung mass acceleration, �̈�𝑧𝑢𝑢𝑧𝑧 is left unsprung 
mass acceleration, �̈�𝑧𝑠𝑠  is sprung mass acceleration,  𝑙𝑙𝑠𝑠  is length 
between the left and right suspensions, 𝐼𝐼𝑥𝑥𝑥𝑥  is roll moment of 
inertia, 𝑎𝑎𝑧𝑧𝑧𝑧 is right vertical accelerometer measurement, 𝑎𝑎𝑧𝑧𝑧𝑧 is  left 
vertical accelerometer measurement, and 𝑚𝑚 = 𝑚𝑚𝑠𝑠 + 2𝑚𝑚𝑢𝑢. 

The second term of (3), the function of lateral acceleration and 
roll angle, is similar to (2) when comparing the traditional rollover 
index in (2) and rollover index for tripped and untripped rollovers 
in (3). To be more clarify, the second term of (3) is the traditional 
rollover index for detecting untripped rollover, and the first term 
of (3) is the additional term used for detecting tripped rollover. 

 There are some difficulties in implementing the (3) to 
determine tripped rollover due to the parameters and variables that 
are unable to identify, e.g. the location of roll center, center of 
gravity (C.G.) height or roll angle. The estimations of these 
unknowns are required to complete the estimation algorithms. 
Furthermore, the difference of dynamics between an actual vehicle 
and the four-degree-of-freedom model might lead to errors. The 
recurrent neural network is implemented to detect tripped and 
untripped rollovers in order to optimize the estimation. After 
training the data, the traditional estimation algorithm to estimate 
parameters and detect rollover are not required in the model 
anymore. 

3. Recurrent Neural Networks (RNNs) 

Recurrent neural network is a popular special type of neural 
networks. In this paper, sequential data will be sensor data over a 
period while in other cases it can be, for example frames in video, 
or words in a text. When a new input is introduced to the sequence, 
a hidden state vector, ℎ, which is an added memory of the recurrent 
neural network, is updated. To avoid features losses while training 
neural networks, the crucial data of the previous sequence is 
maintained in this hidden state. The recurrent neural network has 
the ability to work with various lengths of sequence data in 
addition to the benefit in compression of past information. 

 
Figure 2: The Structural of Recurrent neural network a) tanh architecture b) 

LSTM architecture c) GRU architecture d) RNN Connection 
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There are four types of neural networks used to evaluate and 
create the neural network models for detecting tripped and 
untripped rollover. The four types of neural networks are 1) 
feedforward neural network (FNN), 2) Tanh neural network, 3) 
long short-term memory (LSTM) neural network [39], and 4) gates 
recurrent unit (GRU) neural network [40]. The detail of 
implementing these neural networks can be found in [39-46] and 
the short introduction of them is shown in [1]. The structural of 
recurrent neural network is shown on Figure 2. 

4. Methodology 

The data which is not normally determined in a vehicle such 
as the wheel’s forces exerted on the ground by the vehicle wheels 
is mandatory to compute the precise rollover index in (1). 
Moreover, Ref. [6, 28] determine the tripped and untripped 
rollover index based on half vehicle model (4 Degree of 
Freedom). The variables, which are used, are right unsprung mass 
vertical acceleration, �̈�𝑧𝑢𝑢𝑧𝑧 , left unsprung mass vertical 
acceleration, �̈�𝑧𝑢𝑢𝑧𝑧, right vertical accelerometer measurement, 𝑎𝑎𝑧𝑧𝑧𝑧, 
left vertical accelerometer measurement, 𝑎𝑎𝑧𝑧𝑧𝑧, lateral acceleration, 
𝑎𝑎𝑦𝑦 , sprung mass acceleration, �̈�𝑧𝑠𝑠, roll angle, 𝑡𝑡, roll rate, �̇�𝑡, and 
right suspension compression, (𝑧𝑧𝑠𝑠  −  𝑧𝑧𝑢𝑢𝑧𝑧  + 𝑧𝑧𝑠𝑠

2
 𝑐𝑐𝑠𝑠𝑡𝑡𝑡𝑡). They also 

assume that the parameters such as sprung mass, 𝑚𝑚𝑠𝑠, unsprung 
mass, 𝑚𝑚𝑢𝑢, C.G. height from roll center, ℎ𝑅𝑅 are constant and not 
changed. 

 To detect tripped rollover with various conditions, the good 
measurement inputs are needed to verify for recurrent neural 
networks. Also, a feedforward neural network is compared with 
recurrent neural networks in this case to validate the advantages 
of employing recurrent neural networks rather than a static neural 
network. The feedforward neural network uses the same inputs as 
the recurrent neural networks for processing the data and a 
comparable number of parameters. Moreover, the structure of 
neural networks is verified for determining the suitable one. 

There is a reconstruction of the relationship between the inputs 
and the rollover index from a dataset processed in a simulation 
constraint. The next part is presented with the details on the 
dataset used for training, also the structure of the neural networks 
and the training setup will be described 

4.1. Dataset generation for tripped and untripped rollover 

The software CarSim, a standard industry vehicle simulation 
software, is used to process all the data concerned. In a first step, 
22,000 simulations with non-selectively sampled height of the 
center of gravity and sprung mass of the car are simulated with a 
variety of tripped rollover scenarios. The height of the center of 
gravity is uniformly studied between 0.6 and 1.2 meters, based on 
[47] as a background which also take an estimate of additional 
loads into account. The sprung mass is uniformly generated 
between 2100 to 3000 kg, a mass comparable to loaded SUVs. 
Next, a trajectory of the scenarios is generated based on Fig 2. The 
trajectory consists of the 50 meters of straight path and the circular 
arc path of the random radius in the range from 50 to 200 meters 
based on highway data of Bangkok, Thailand. Samples 80 to 180 

km/h uniform distribution will determine the target velocity of the 
vehicle. Then, the CarSim is going to control the real velocity over 
the trajectory in a feedback loop to remain adjacent to the speed 
that is set goal. Also, the steering angle of the vehicle is close-
loop controlled to follow the trajectory. 

 

Figure 3: CarSim Trajectory Setup 

To create tripped rollover scenarios, the bumper and pothole 
are randomly generated along the circular arc path of the 
trajectory as shown in Figure 3. The shape of the bumper and 
pothole is randomly created from the sine function with the 
amplitude between -0.15 to 0.15 m and the frequency between 
0.625 to 1.25 Hz. Only one bumper or pothole is created for each 
trajectory. Also, it is created only half lane of the trajectory to 
make only half side of the vehicle strike the bumper or pothole. 
For the left turn trajectory, if the bumper is generated, the bumper 
is created on the left side of the vehicle and if the pothole is 
generated, the pothole is created on the right side of the vehicle. 
Then, for the right turn trajectory, if the bumper is generated, the 
bumper is created on the right side of the vehicle and if the pothole 
is generated, the pothole is created on the left side of the vehicle. 
These increase the chance for tripped rollover. 

The normal forces on the left and right wheel, 𝐹𝐹𝑧𝑧𝑧𝑧 , 𝐹𝐹𝑧𝑧𝑧𝑧 , are 
provided by a simulation, so each estimation is able to process to 
determine its rollover index. The rear wheel vertical forces are 
used to identify the rollover index. However, the front wheels, 
employing the said methodology together with a small variation 
from elastic deformations in the wheels and wheel suspensions, 
can also specify the rollover index as well. The rollover index 
computed with (1) is the neural networks’ training target, 
calculated according to (1). From there, when two wheels are 
lifted off road, the sequences stop. That is because the rollover 
index is defined only for the case of at least one wheel lifting the 
ground. And it will contribute to a sequence range of length 
between 0.325 to 19.925 seconds. In every simulation case, there 
will be a collection of data of the vehicle variables at the sample 
rate of 40 Hz. However, each simulation dataset also possesses 
insignificant and irrelevant information of the subject vehicle or 
those that are unable to be scaled in an actual subject. So, the 
unnecessary data are needed to be discarded. Then, for the 22,000 
files of h5 files (1.64 GB), they are splitted into 3 groups. There 
are a training set of 16,000 files, a validation set of 4000 files, and 
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a test set of 2,000 files. The training set is used for training. Other 
than that, it is mandatory for the validation set to detect possible 
overfitting of the model while the test set is used to evaluate the 
error of the neural networks.   

4.2. Training of the recurrent neural networks for tripped rollover 

There are three major factors of neural networks for detecting 
tripped and untripped rollover needed to be verified. The first 
factor is which neural network should be suitable, the second 
factor is which inputs should be good for neural networks, and the 
last one is which structure of the neural networks should be 
implemented. To verify these three factors, three training sets are 
simulated. Then, future tripped and untripped rollover prediction 
also is verified with simulation. 

4.2.1 Training for determining a suitable neural network type 

For this task, four types of neural networks will be compared 
and given information. Table 1 is presented with the detail of the 
neural networks which are constructed to take into account 
approximately the same quantity of parameters. About 5,000 
parameters are to be taken to comparison between each neural 
network. In Table 1, “𝑁𝑁° neurons” shows the number of neurons 
in each layer in the horizontal axis, and also takes into account the 
input layer (n inputs) and output layer (1 output). The recurrent 
neural networks, the second entry in “𝑁𝑁° neurons” represents the 
number of hidden states. “𝑁𝑁° params” specifies the number of 
parameters in the neural network. In this column, the added 
number will be those of all elements in its weight matrices and 
bias vectors. 

Firstly, a feedforward neural network (FNN) will be 
introduced. FNN is made up of three hidden layers using the 𝑡𝑡𝑎𝑎𝑡𝑡ℎ 
activation function and a linear output layer as shown within [1]. 
Secondly introduced is a neural network (Tanh) which is a 
recurrent neural network, that employs a 𝑡𝑡𝑎𝑎𝑡𝑡ℎ  recurrent layer. 
And followed the recurrent layer aforementioned are a 𝑡𝑡𝑎𝑎𝑡𝑡ℎ 
hidden layer and an output layer. Thirdly, LSTM neural network 
which utilizes a long short-term memory layer, again followed by 
a 𝑡𝑡𝑎𝑎𝑡𝑡ℎ layer and linear output layer. And for the fourth one, GRU 
neural network that adopts a static Tanh layer and a linear output 
layer, works with the gated recurrent unit. Then, the neural 
networks training diagram is shown on Figure 4. 
 

 
Figure 4: The Neural Networks Training Diagram 

Table 1: Summary of The Neural Networks’ Structure 

NN Type 𝑵𝑵° neurons 𝑵𝑵° param 
FNN n 48 48 42 1 48n+4501 
Tanh n 46 46      1 46n+4417 

LSTM n 30 16      1 120n+4353 
GRU n 32 32      1 96n+4353 

 

Table 2: Input Variables for Neural Networks 

Symbolic Descriptions 

𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤: [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿1 ;𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿2 ; 
𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅1 :𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅2] 

Vertical speed of each wheel:  
Left front, 𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿1 , 
Left rear, 𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿2 ,  
Right front, 𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅1 ,  
Right rear, 𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅2 , (𝑘𝑘𝑚𝑚/ℎ) 

𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧: [𝐴𝐴𝑥𝑥;𝐴𝐴𝑦𝑦;𝐴𝐴𝑧𝑧] 
 

Longitude acceleration, 𝐴𝐴𝑥𝑥, 
Lateral acceleration, 𝐴𝐴𝑦𝑦, 
Vertical acceleration, 𝐴𝐴𝑧𝑧, (𝑚𝑚) 

𝐴𝐴𝐴𝐴𝑥𝑥 Roll Acceleration of sprung mass 
body ( 𝑟𝑟𝑎𝑎𝑟𝑟 𝑐𝑐𝑠𝑠𝑐𝑐2 ⁄ ) 

𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧: [𝐴𝐴𝑉𝑉𝑥𝑥;𝐴𝐴𝑉𝑉𝑦𝑦;𝐴𝐴𝑉𝑉𝑧𝑧] 
Roll rate, 𝐴𝐴𝑉𝑉𝑥𝑥, 
Pitch rate, 𝐴𝐴𝑉𝑉𝑦𝑦, 
Yaw rate, 𝐴𝐴𝑉𝑉𝑧𝑧, (𝑟𝑟𝑠𝑠𝑚𝑚/sec ) 

𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 Vertical acceleration of sprung mass 
C.G. (g) 

𝑣𝑣𝑥𝑥 Longitude speed (𝑘𝑘𝑚𝑚/ℎ) 
𝑆𝑆𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟𝐷𝐷𝐷𝐷 Steer angle from driver (deg) 

𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆: [𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿1;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿2; 
𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅1;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅2] 

Compression of spring each wheel: 
Left front, 𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿1, 
Left rear,𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿2, 
Right front, 𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅1,  
Right rear,𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅2, (𝑚𝑚𝑚𝑚) 

Table 3: Input Combination Training for Determining a Suitable Neural Network 
Type 

No. Input Features n FNN Tanh LSTM GRU 
1 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 ;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧] 8 4885 4785 5313 5121 
2 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 ;𝐴𝐴𝐴𝐴𝑥𝑥] 6 4789 4693 5073 4929 
3 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 ;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧] 8 4885 4785 5313 5121 
4 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 ;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝐴𝐴𝑥𝑥] 9 4933 4831 5433 5217 
5 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 ;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧] 11 5029 4923 5673 5409 
6 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 ;𝐴𝐴𝐴𝐴𝑥𝑥;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧] 9 4933 4831 5433 5217 
7 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠 ;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝐴𝐴𝑥𝑥] 12 5077 4969 5793 5505 

For the inputs to the neural networks, it is still unclear to select 
them to predict the tripped rollover. Thus, to initially investigate 
this task, the inputs are selected based on (3) [6] and the full 
vehicle suspension model. In addition, the selected inputs can be 
measured by sensors [6, 28]. The list of the inputs is shown on 
Table 2. The input combinations are also evaluated in this case. 
The input combinations for training in this section is shown on 
Table 3. 

Next, the neural networks are trained over 3000 epochs using 
backpropagation through time. When the process is completed, 
since the result beyond that came out slower on the validation and 
training loss. The mean squared error is used as the loss function: 

𝐿𝐿 =
1

𝑁𝑁𝑙𝑙𝑧𝑧𝑙𝑙𝑡𝑡
�

1
𝑇𝑇𝑖𝑖
��𝑅𝑅𝑧𝑧𝑟𝑟,𝑖𝑖,𝑙𝑙 − 𝑦𝑦𝑖𝑖 ,𝑙𝑙�

2
𝑇𝑇𝑖𝑖

𝑙𝑙=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖=1

 (4) 

with 𝑅𝑅𝑧𝑧𝑟𝑟,𝑖𝑖,𝑙𝑙 the rollover index as calculated using the cases data in 
trajectory 𝑠𝑠 at time step 𝑡𝑡 and 𝑦𝑦𝑖𝑖,𝑙𝑙 the scalar output of one of the 
neural networks for the same trajectory and time step. 

The leading software that is used for computing the neural 
networks is the Knet module [49] by the Julia programming 
language. The program runs on the notebook, Acer Nitro, with 
CPU i7-7700HQ (2.8 GHz), 8 GB Ram, GeForce GTX1050, and 
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Window 10 (64 bits). In the meantime, Training is done on a 
consumer level GPU is used to perform the network training for 
about 1 hour per model by using average quantity of parameters. 
This altogether resulted in more than 240 hours of training time. 
The Ram usage during the training is approximately 6 to 7 GB. 
And there also implemented the Adam optimizer along with the 
suggested settings in [50]. Then, the gradient was computed on 
mini-batches of 2,048 sequences. 

4.2.2 Training for determining suitable inputs for the neural 
network 

Since the performance of the neural network is required and 
the sensor cost is needed to be minimized, the inputs to the neural 
network need to be optimized. The extra inputs, suspension 
compressions as using in [28] for each wheel, are included to the 
list for evaluation. Then, the input combinations are evaluated to 
determine the suitable inputs for predicting rollover. The input 
reduction is also included in this test for reducing number of using 
sensors. The lists of the inputs are shown in Section 5.2 Table 5. 

Next, only the best neural network type from the section 4.2.1 
are trained. The training process and the loss function are 
implemented similar to the section 4.2.1. 

4.2.3 Training for determining suitable neural network structure 

In this task, the neural network improvement is investigated. 
Eight different structures of the best neural network from the 
section 4.2.1 are compared. The neural network structure is 
modified by increasing number of the layers and the neurons. Also, 
the optimized inputs from the section 4.2.2 are used in this task. 
Then the neural network structures are also summarized in Table 
6. Next, the training process and the loss function are 
implemented similar to the section 4.2.1. 

4.2.4 Training for future tripped and untripped rollover 
prediction 

The future tripped and untripped rollover perdition uses the 
vehicle parameter measurement to prediction rollover index of a 
vehicle in the future time based on the training model. It can 
provide an extra time to prevent or warn the danger of the rollover. 

 In this case, the output of each data set is shifted by time while 
the input is reduced to identify with to the length of the output. 
The shifted time varies from 0.1 second up to 1 second. Then, the 
best model from Section 4.2.3 are used and, the training process 
and the loss function are implemented similar to the section 4.2.1 

5. Results 

The training as descript in Section 4 are applied to the data set. 
The final losses on the train, validation and test datasets are 
presented in this section. 

5.1. The suitable neural network type 

The test losses in different neural networks on the different 
input features are shown on Table 4. Also, the example of loss on 

the train dataset and validation dataset over the epochs are 
presented in Figures 5a and 5b, subsequently. The training and 
validation losses of all different neural networks and all input 
features shows that the overfitting does not occur for all cases 
because the validation loss decreases as the training loss decreases 
and the losses from validation dataset are small as the losses from 
training dataset. Also, the underfitting did not occur for all cases 
because the neural network models can detect the rollover index as 
shown in Figures 6 and 7. 

Table 4: Remaining Loss of Different Neural Networks on Test Data Set 

No. Input Features n 
Average RMS error of 2000 

Data Set × 𝟏𝟏𝟏𝟏−𝟒𝟒 
FNN Tanh LSTM GRU 

1 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧] 8 15.9 10.5 11.3 27.2 
2 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝐴𝐴𝑥𝑥] 6 228 33.3 96.3 156 
3 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧] 8 17.7 13.2 14.4 28.9 
4 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝐴𝐴𝑥𝑥] 9 12.5 10.3 11.1 17.4 
5 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧] 11 9.82 7.91 9.98 22.8 
6 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝐴𝐴𝑥𝑥;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧] 9 17.1 22.7 13.3 43.0 
7 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝐴𝐴𝑥𝑥] 12 9.09 7.54 9.47 21.5 

Note: the highlighted cell of the table represents the smallest value 
of the table. 

 
a) Training Loss of No. 7 Table 4 

 
b) Validation of No. 7 Table 4 

Figure 5: The Example of Training and Validation Loss 

By comparing four types of the neural networks on Table 4, 
GRU recurrent neural network and FNN seems have the large test 
losses for all different input features. Since the tripped rollover 
happen in the very short time So, there is few tripped data 
occurred. This makes GRU which has a too long-term memory 
cannot learn the model well. Also, FNN contributes to a large 
outstanding error because the formula only processes the 
valuation with the current input 𝑥𝑥𝑙𝑙. 
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a) Comparison of Rollover Index and Rollover Index from Neural 

Networks 

 
b) Comparison of Rollover Index Error 

Figure 6: The Example of Rollover Index in the Case of (𝑚𝑚𝑠𝑠 = 2722 𝑘𝑘𝑚𝑚, ℎ𝑅𝑅 =
0.847 𝑚𝑚, 𝑣𝑣𝑥𝑥 = 82 𝑘𝑘𝑚𝑚/ℎ) 

 
a) Comparison of Rollover Index in the Bumper Case 

 
b) Comparison of Rollover Index Error in the Bumper Case 

 
c) Comparison of Rollover Index in the Pothole Case 

 
d) Comparison of Rollover Index Error in the Pothole Case 

Figure 7: The Example of Rollover Index in the Bumper Case (𝑚𝑚𝑠𝑠 =
2331 𝑘𝑘𝑚𝑚, ℎ𝑅𝑅 = 0.777 𝑚𝑚, 𝑣𝑣𝑥𝑥 = 118 𝑘𝑘𝑚𝑚/ℎ) and Pothole Case (𝑚𝑚𝑠𝑠 = 2912 𝑘𝑘𝑚𝑚, 

ℎ𝑅𝑅 = 0.730 𝑚𝑚, 𝑣𝑣𝑥𝑥 = 141 𝑘𝑘𝑚𝑚/ℎ)  

However, Tanh recurrent neural network has the lowest final 
loss on test loss excepted for No. 6 Table 4 with the input features, 
[𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝐴𝐴𝑥𝑥;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧]  because it has not too long term 
memory. While the test loss from LSTM recurrent neural network 
is larger than it from Tanh recurrent neural network except for No. 
6 Table 4.  

For an empirical comparison, the rollover index (black solid 
line in Figure 6a) according to (1) and the neural network 
estimation are shown in Figure 6a for the selected section of the 
test trajectory. The vehicle takes a cornering at about 2 seconds 
and during cornering it strikes a bumper at about 6 seconds. This 
caused a rear wheel to leave the road while its counterpart stayed 
intact on the ground. The estimated rollover index for the LSTM, 
Tanh, and FNN are similar and barely distinguishable, whereas 
the estimation of GRU shows a clear offset and a large error at 
around 6 seconds. The absolute value of the estimation error is 
presented subsequently in Figure 6b. As shown, the highest values 
in the estimation error for the rollover index is seen following the 
subject vehicle returns from rollover condition back to its normal 
condition that all of the wheels are on the ground at around 6.1 
seconds in the trajectory. However, situational peaks are more 
prominent, while those of GRU are even more grand. 

Figure 7 shows the rollover index and rollover index error of 
the Tanh recurrent neural network of different vehicle parameters 
on the bumper and pothole trajectories. The Tanh recurrent neural 
network can predict the rollover index even though the vehicle 
parameters are changed because the neural network can handle the 
vehicle parameter changing. It can learn and adapt the parameters 
inside the neural network and then predict the rollover index.  
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Figure 5a shows the case that the vehicle with the parameters, 
𝑚𝑚𝑠𝑠 = 2722 𝑘𝑘𝑚𝑚 , ℎ𝑅𝑅 = 0.847 𝑚𝑚 , 𝑣𝑣𝑥𝑥 = 82 𝑘𝑘𝑚𝑚/ℎ , takes a 
cornering at about 1.8 seconds and during cornering it strikes a 
bumper at about 2.4 seconds. The maximum error of the 
estimation happens at about 2.4 seconds. Next, Figure 5b shows 
the case that the vehicle with the parameters, 𝑚𝑚𝑠𝑠 = 2912 𝑘𝑘𝑚𝑚 , 
ℎ𝑅𝑅 = 0.730 𝑚𝑚, 𝑣𝑣𝑥𝑥 = 141 𝑘𝑘𝑚𝑚/ℎ, takes a cornering at about 1.8 
seconds and during cornering it strikes a pothole at about 4.4 
seconds. Then, the maximum error of the estimation happens at 
about 4.4 seconds. 
 In summary, the suitable neural network for tripped rollover is 
Tanh recurrent neural network since it has ability to retain 
information of the past and handle the vehicle parameter changing. 
Also, the lowest test loss happens when using Tanh recurrent 
neural network with No. 7 Table 4.  with the input features, 
[𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝐴𝐴𝑥𝑥]. 

5.2. The suitable input features for the neural network 

Since the error of the Tanh neural network is needed to be 
improved, the suspension compressions for each wheel, longitude 
speed, and steering angle are added and evaluated. The test losses 
of these cases are shown in Table 5. The results show that the 
suspension compressions for each wheel, longitude speed, and 
steering angle are significant input features for the neural network. 
They can reduce the test losses up to 2.93 × 10−4. Also, once the 
the suspension compressions for each wheel, longitude speed, and 
steering angle have been included in the input features, the input, 
𝐴𝐴𝐴𝐴𝑥𝑥, seems not effect to the test losses. 

In case that the number of suspension compressions is 
reduced to be only front or rear side, the test losses is increased as 
shown in No. 3 and 4 Table 5. No. 3 Table 5. has higher the test 
losses because the actual rollover index is determined from the 
rear wheel vertical forces.  

In summary, the suitable input features for tripped rollover 
for Tanh neural network is 
[𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧;𝑣𝑣𝑥𝑥; 𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟𝐷𝐷𝐷𝐷;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆]  which are agree 
with [28]. The example of rollover index in this case is shown in 
Figure 8. 

Table 5: Remaining Loss of the Tanh Neural Network on Different Input Feature 
on Test Data Set 

No. Input Features n 𝑵𝑵° 
param 

Average 
RMS error 

of 2000 
Data Set ×
𝟏𝟏𝟏𝟏−𝟒𝟒 

1 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤; [𝐴𝐴];𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆] 17 5,199 4.61 
2 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤; [𝐴𝐴];𝐴𝐴𝐴𝐴𝑥𝑥;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆] 18 5,245 4.82 
3 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿1 ;𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅1 ; [𝐴𝐴];𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿1;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅1] 13 5,061 7.41 

4 [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿2 ;𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅2 ; [𝐴𝐴];𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿2;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅2] 13 5,061 6.58 

*[𝐴𝐴] ≔ [𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧; 𝑣𝑣𝑥𝑥; 𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟𝐷𝐷𝐷𝐷] 
Note: the highlighted cell of the table represents the smallest value 
of the table. 

5.3. The suitable neural network structure 
The error of the Tanh neural network is still needed to be 

improved. The different types of neural network as shown in 
Table 6. are evaluated with 3 set of input features, case No. 1, 3, 

and 4 from Section 5.2. 

 
a) Comparison of Rollover Index 

 

b) Comparison of Rollover Index Error 

Figure 8: Example of Rollover Index (𝑚𝑚𝑠𝑠 = 2583 𝑘𝑘𝑚𝑚, ℎ𝑅𝑅 = 0.829 𝑚𝑚, 𝑣𝑣𝑥𝑥 =
101 𝑘𝑘𝑚𝑚/ℎ) 

The results show that the neural networks in the case no. 7 
Table 6 with the input #1 have the lowest test losses of 
3.66 × 10−4. In addition, the neural networks in the case no. 5 
Table 6 with the input #3 has the test losses of 4.33 × 10−4 and 
the neural networks in the case No. 8 Table 6 with the input #2 
has the test losses of 7.30 × 10−4.  

In summary, for the lowest test losses, the suitable Tanh neural 
network structure is the case No. 7 Table 6 which is (n 46 46 50 
30 1). Moreover, for the low test losses and low number of input 
features, the suitable Tanh neural network structure is the case No. 
5 Table 6. The test losses in this case is different from the test loss 
from the best one only 0.67 × 10−4. 

Table 6: Remaining Loss of Different Tanh Neural Network Structure on Test 
Data Set 

No. 
Neural 

Networks’ 
Structure 

Average RMS error of 2000 Data Set × 𝟏𝟏𝟏𝟏−𝟒𝟒 

𝑵𝑵° param 
Inputs 
#1 

Inputs 
#2 

Inputs 
#3 

n=17 n=13 n=13 
1 n 12 12          1 12n+337 7.87 12.30 9.18 
2 n 24 20          1 24n+1145 5.76 9.91 7.11 
3 n 46 46          1 46n+4417 4.61 7.41 6.58 
4 n 46 46 30     1 46n+5811 5.54 7.90 7.35 
5 n 46 46 30 30 1 46n+6741 4.34 10.30 4.33 
6 n 46 46 30 50 1 46n+7381 4.43 7.32 6.14 
7 n 46 46 50 30 1 46n+8281 3.66 7.83 5.71 
8 n 46 46 50 50 1 46n+9321 4.14 7.30 5.43 

* Inputs #1: [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤; [𝐴𝐴];𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆] 
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   Inputs #2: [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿1 ; 𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅1 ; [𝐴𝐴];𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿1;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅1] 
   Inputs #3: [𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝐿𝐿2 ; 𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤𝑅𝑅2 ; [𝐴𝐴];𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝐿𝐿2;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆𝑅𝑅2] 
Note: the highlighted cell of the table represents the smallest value 
of the table. 

5.4. Future tripped and untrippped rollover prediction 

By using the Tanh neural network in No. 7 Table 6, the error 
of the models shown in Table 7. Also, the example of the rollover 
index perdition is shown on Figure 9. The results show that once 
the shift time increases, the error increases. The difference 
between shift time 0.0 and 0.1 second is approximately 
25 × 10−4. The error seems large. However, if consider the future 
tripped rollover prediction plot on Figure 9a, the plot shows that 
they seem correctly predict the trend of rollover index up to 0.5 
seconds in future. The prediction lines look like the actual rollover 
index but it is shelfed by the time. 

In summary, this predict is very useful and can provide an 
extra time prediction for rollover prevention and warning system. 

 
(a) Comparison of Rollover Index 

 
(b) Comparison of Rollover Index 

Figure 9. The Example of the Rollover Index in the Case of (𝑚𝑚𝑠𝑠 = 2722 𝑘𝑘𝑚𝑚, 
ℎ𝑅𝑅 = 0.847 𝑚𝑚, 𝑣𝑣𝑥𝑥 = 82 𝑘𝑘𝑚𝑚/ℎ) 

Altogether, the results exhibit that the Tanh recurrent neural 
network is able to predict the tripped rollover index with a larger 
preciseness than others once it is considered with the undetermined 
parameters, for instance, the height of the center of gravity and 
sprung mass. So, once processing the training data, it is necessary 

to take the said undetermined values into consideration. The 
suitable input features for tripped rollover index should be 
[𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧;𝑣𝑣𝑥𝑥; 𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟𝐷𝐷𝐷𝐷;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆]  with Tanh neural 
network structure of (n 17 46 46 50 30 1). Moreover, the future 
tripped rollover prediction can provide an extra time prediction for 
rollover prevention and warning system. 

Table 7: Remaining Loss of the Tanh Neural Network on Test Data Set 

Future Perdition 
Time (Sec) 

Average RMS error of 2000 Data 
Set × 𝟏𝟏𝟏𝟏−𝟒𝟒 

0.0 3.66 
0.1 29.2 
0.2 35.6 
0.3 43.4 
0.4 55.5 
0.5 83.4 
0.6 133.4 
0.7 214.1 
0.8 328.2 
0.9 464.5 
1.0 616.6 

 

 
Figure 10: Application Diagram of The Neural Network 

The application of the developed neural network is shown on 
Figure 10. The measurement data from a vehicle is sent to the 
recurrent neural network which can compute the estimated rollover 
index within 0.03 ms. Then, the estimated rollover index is sent to 
rollover prevention/warning system to calculation the control law 
to make the vehicle action and reduce the roll risk.  

6. Conclusions 

An essential factor of the carrying out the rollover preventive 
systems and warning ones is the assessment of the rollover risk. 
The rollover risk pointer or the rollover index is estimated by 
employing the feedforward neural network together with three 
other recurrent neural networks. It is seen that when in occurrence 
of any uncertain parameters, for instance, undetermined height of 
the center of gravity of the subject, the Tanh recurrent neural 
network shows higher performance juxtaposed with others. 
Calculations of the loss on a test set and an empirical evaluation 
on test trajectories support in verifying the estimation quality. The 
outcomes of the test are encouraging for further research, and the 
performance assessment of the recurrent neural networks in an 
actual vehicle would be an interesting subject of further research. 

The sensory inputs that are chosen play a crucial part in the 
estimation of the rollover index. The results show that the suitable 
input features for tripped rollover index should be 
[𝑣𝑣𝑧𝑧𝑤𝑤𝑤𝑤;𝐴𝐴𝑧𝑧𝑠𝑠𝑠𝑠;𝐴𝐴𝑥𝑥𝑦𝑦𝑧𝑧;𝐴𝐴𝑉𝑉𝑥𝑥𝑦𝑦𝑧𝑧;𝑣𝑣𝑥𝑥; 𝑐𝑐𝑡𝑡𝑠𝑠𝑠𝑠𝑟𝑟𝐷𝐷𝐷𝐷;𝐶𝐶𝑚𝑚𝐶𝐶𝑆𝑆]  which are agree 
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with the previous research. Also, the suitable Tanh neural network 
structure of is (n 46 46 50 30 1). Moreover, the future tripped 
rollover prediction can correctly predict the trend of rollover 
index up to 0.5 seconds in future. This will be useful for rollover 
prevention and warning system. 
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