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 Android Operating system (OS) has been used much more than all other mobile phone’s 
OS turning android OS to a major point of attack. Android Application installation serves 
as a major avenue through which attacks can be perpetrated. Permissions must be first 
granted by the users seeking to install these third-party applications. Some permissions can 
be subtle escaping the attentions of the users. Some of these permissions can have adverse 
effects like spying on the users, unauthorized retrieval and transference of the data and so 
on. This calls for the need of a heuristic method for the identification and detection of 
malware. In this discourse, testing of classification algorithms including Random forest, 
Naïve Bayes, Random Tree, BayesNet, Decision Table, Multi-layer perceptron (MLP), 
Bagging, Sequential Minimal Optimization (SMO)/Support-Vector Machine (SVM), KStar 
and IBK (also known as K Nearest Neighbours classifier (KNN)) was carried out to decide 
which algorithm performs best in android malware detection. Two dataset was used in this 
study and were gotten from figshare. They were trained and tested in the Waikato 
Environment for Knowledge Analysis (WEKA). The performance metrics used are Root 
Mean Square Error (RMSE), Accuracy, Receiver Operating Curve (ROC), False positive 
rate, F-measure, Precision and recall. It was discovered that the best performance with an 
accuracy of 99.4% was the multi-layer perceptron on the first dataset. Random Forest has 
the best performance with accuracy, 98.9% on the second dataset. The implication of this 
is that MLP or random forest can be used to detect android application malwares. 
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1. Introduction  

This work is an extension of [1] in which this work considers 
another dataset in carrying out the research. This research answers 
the questions from the comments received about the biasness of 
the algorithms used. 

 There has been a considerable increase in the usage of mobile 
phones year on year. Mobile phones have served as a medium of 
communication through calls and short mailing services (SMS) 
[2]. Technological advancement has increased the usage of mobile 
phones for various purposes. The operating system (OS) of mobile 
phones have evolved from java to Symbian with the current ones 
being android OS, windows OS and Apple OS – iOS [3]. The 

usage of mobile phones spans from individuals to organizations as 
well. This study focuses on Android OS. Mobile phones with 
Android OS comprises of some components which are; the 

 Android OS, the middleware and key applications [4]. The 
android OS has the biggest and fastest growing smartphone OS 
market, hence it has become a practical target for cyber criminals 
[5]. Large support to third party applications is also gotten from 
android. These third party applications can easily be downloaded 
on the popular Google Play store [6]. The developers of the 
Android OS do not develop third-party applications; it is done by 
software developers. Hence the name of the third party 
applications [6]. In [7], there are over 2.7 billion mobile users 
globally, and in 2022, 258.2 billion apps are projected to be 
downloaded. Android phones are useful for crucial functions 
ranging from financial transfers to e-commerce transactions 
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(goods payments) and so on [8]. It also allows other features, such 
as photo editing, game play, social media and messaging, internet 
searching, typing, listening, reading, and so on. Any of all these 
procedures are feasible due to the implementation of third-party 
apps. 

The growth of android application malware has been made 
possible by the free application market for the Android OS [9]. The 
most severe and important threat to the Android OS arises as a 
result of malicious applications especially from unauthorized 
applications market that can easily be installed on any phone [9]. 
Android applications depend on users to grant permission to work 
optimally. Such permissions can forewarn users to the applications' 
secrecy and/or security [10]. Android malware can impersonate a 
legitimate program, but with intrusive permissions for which an 
agreement is required from the users before installation can be 
done [10]. The malware executes activity(s) that are malicious 
through these permissions. SMS spy pro is an example, masking 
itself as a tip calculator but forwarding all sent SMS and received 
SMS by the user to a third party [11]. Android malware can access 
and steal user data such as browsing history, SMS, location of 
GPS, phone records, e-mails, other application information (Like 
Facebook log-in details) and more [12]. Tasks such as snapping 
and sending photographs, sending unauthorized e-mails, 
conducting bank transfers without user awareness can also be 
executed [2]. The degree to which both malicious and innocuous 
applications can execute their functions is primarily dependent on 
the form of permissions that users grant them. 

Considering the sensitivity of the data that can be colleted from 
users via the malwares combined with the kind of damage that can 
be done by these malwares (for example, spying, identity theft, 
extortion, logic bomb) [13], these malwares need to be identified 
effectively. Due to zero-day attacks, the conventional malware 
detection techniques that uses the malware signature to store them 
in a repository has proved to be ineffective [9]. Zero-day attacks 
are based on new flaws found by cyber attackers that the creator is 
unaware of and thus has not issued a patch [14]. Therefore, until 
the developers are aware, the attackers make the most of these 
vulnerabilities. Android malware with its corresponding 
permission requests must be found [9]. This study is focused on 
Olorunshola and Oluyomi's recommendations in [1]. An 
evaluation of the classification algorithms with regard to their 
performance in the identification of malicious software based on 
their manifested permission, command signature, API call 
signature and intents, is the aim of this study. This study aims to 
verify the conclusions drawn by Olorunshola and Oluyomi by 
training and testing the algorithms with additional datasets in this 
research. Two android datasets based on manifest permission, 
command signature, API call signature and intent are obtained 
from figshare created by [15] to achieve this aim.  The algorithms 
are trained and tested on the datasets. The remaining portion of this 
work is structured as follows: review of literature, methodology, 
result and discussion, conclusion and future work. 

2. Literature Review 

2.1. History of Android 

 Android was created using the name of Android Inc company 
by Rich Miner, Nick Sears, Chris White, and Andy Rubin in 2003 

[16]. Android began as a camera OS intended to enhance 
connectivity between personal computers (PCs) and cameras, 
allowing communication wireless between cameras and PCs. After 
a couple of months of the company's formation, the OS was 
adapted towards making mobile cell phones smarter [17]. Android 
was purchased by Google in August 2005. Android OS was created 
using the Linux kernel to make it free for mobile phone 
manufacturers [16,18]. The first version of Android OS (version 
1.0) was released in November 2007, and the novel Android 
handset, T-Mobile, was deployed in September 2008. While it has 
a lot of feedback and appraisal, it ran with Android 1.0 OS, and it 
has other Google apps such as play store, charts, YouTube, etc. 
built on it. [16,18]. As the year passes by, android OS has evolved 
into improved models. Android 10 is the latest edition of Android, 
launched in September 2019 [19, 20]. 

The stack layers of Android apps contain applications, 
application framework, libraries and the Linux kernel, with each 
layer closely incorporated to offer stronger smartphone 
applications. Interoperability has also been provided for to make it 
easier for design developers to work and develop their applications 
at a cost-friendly level [4]. It made it possible for anyone to obtain 
due to the open source nature of the Android framework thus 
growing its users over the years. Android sales stood at 115 million 
units in 2011, and Android OS accounted for around 52.5 percent 
of the overall number of mobile phones [21]. The Apple App Store 
reportedly has 2.2 million applications [7]. Recently, about 68.71 
percent of people use android OS while 29.60 percent use iOS, 
0.30 percent use Windows devices, while 0.06 percent use 
Symbian [22]. The heavy use of android OS is attributed to several 
factors that include the reduced price relative to iOS, open source 
enabling third-party software installation unlike iOS. The sum total 
of applications available in the Android store (play store) as of 
2017 was around 2,800,000 [22]. In March 2018, the applications 
in the play store crossed 3.600,000 [23]. 

2.2. Security in Android 

IOS as a closed framework that offers more data protection and 
is more pristine than Android which is an open source. In the play 
store, developers can host the applications they have built giving 
rise to Android vulnerabilities [22]. The security enhancements in 
Android were clarified in [24]. They are public vs. private 
components, components open implicitly, permission for 
broadcast intent, permission for content provision, secure APIs, 
service hooks, pending intents, permission protection level, URIs 
permission. Security refinements such as these, aid the protection 
of the data of users from manipulation and abuse. 

2.3. Android Malware 

 The skill to debone the code used in the development of 
Android applications and the open source nature of the 
applications also enabled the easy encoding of malicious codes and 
increased number of attacks [25]. In [26], Networks recorded that 
mobile malware rose to 155 percent in 2011, with a rise of 614 
percent from March 2012 to March 2013, of which 92 percent of 
the malware is Android. When android devices are upgraded to the 
latest OS, about 77 percent of threats to android can be eliminated. 
Just one threat infected about 5,000 devices in the third quarter of 
2018. This accelerated through phishing using download and 
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installation of a voice message application that is fake thereby 
sends all the user’s data to a server or using text messages [27].  
Report has it that 2,47 million of the latest mobile malware were 
discovered in 2013, indicating a 197 percent increase over 2012 
[28]. 

From a simplistic SMS sending Trojan, Android malware has 
advanced to more futuristic codes that can corrupt other 
applications, encrypt user data, gain root privileges, download and 
install more applications that are malicious bypassing the 
knowledge of the users, and load a payload from a remote server 
to cellular phones [9,29]. In [29], the authors gave a complete 
malware for android analysis looking at the past, observing the 
present and predicting the potential android malware cases into the 
future. In [30], the author gave a thorough analysis of the models 
of mobile malware dissemination and explored potential future 
developments as well. 

2.4. The dangers of android malware 

Users are exposed to multiple attacks and may suffer from 
them if an android OS is compromised with malware. According 
to [25]. Many of the threats they face include but are not restricted 
to: 

• Personal information theft which can lead to theft of identity  

• Loss of privacy 

• Monitoring of the users  

• Financial loss through ransomware 

• Remote operation of the phones  

2.5. Android malware detection 

Detection of Android malware can broadly be divided into; 

• Signature-based: Detection using signature-based detection 
uses the malware’s identity to determine the genuineness of 
the malware. The downside of this method is some form of 
attacks may be eluded. E.g., byte code level transformation 
[28]. 

• Machine-learning focused: The detection based on machine-
learning uses an analytical method that includes extracting 
features from the application's behaviour [28].  These 
behaviours (permission request, API calls) are then developed 
into a dataset and then a machine learning algorithm is used to 
test and train. The measurement metrics used in the evaluation 
include: precision, accuracy, false positive, to mention a few. 

Several approaches to android malware detection have been 
put forward; the use of applications' requested permissions, 
specific application programming interface for detection, the use 
of the applications' fundamental code (since most codes for 
malware are modifications of existent codes), sandboxing, 
components encapsulation, optional access control or signing of 
application [31,32]. 

      This study is aimed at the usage of manifest permission, API 
call signature, intents and command signature for the android 
malware detection. The rights defined by the developer in the 
application to allow system interrelationship: to access system 

components (such as camera and GPS) or modules of other 
applications is permission [33]. There are four types of android 
permission with two classifications, according to [2,34]. These are: 

• Signature permissions: These applications are authorized only 
if it is certified by the creator of the stipulated consents. It is 
used for component access restriction to a limited collection 
of application controlled and trusted only by the creator.  

• System permissions: Once the application satisfies the 
signature criteria, these applications are authorized. 
Applications requesting these permissions are pre-installed by 
an advanced customer or system manufacturer. 

The two permissions (Signature and System) are booked for 
applications that have signatures with keys accessible only to the 
creator of the firmware. This is not available for implementations 
from third party application.  

• Normal permissions: These are software that do not need the 
involvement of the customer. They are immediately accepted.  

• Dangerous permissions: These are software that prompts the 
user what system facility will be used before it can perform its 
function. Prior to installation, they must be issued by the 
consumers. [2, 34]. 

         In [34] and [35], the studies titled “PScout: Analyzing the 
Android Permission Specification” and “Android Permissions 
Demystified” evaluated the different android OS permission 
specification. In [2], the author also examined certain motives for 
some evasive consents. Some are broadcast theft, malicious 
service launch, hijacking of activity, malicious activity launch, 
hijacking of service. 

2.6. Review of Past Works 

Some research has been conducted in the detection of malware, 
part of which includes:  

A Naïve Bayes algorithm model for android malware detection 
system was proposed by Shang, Li, Deng, & He in [36]. By using 
the new permissions for malware and training permissions impact 
as the weight, the detection accuracy was enhanced. In order to 
strengthen the model, a detection model of information theory and 
permissions based on the enhanced Naive Bayes algorithm was 
used also. As a rate of detection for non-malicious applications, the 
proposed model earned 97.59 percent.  

In [37], the authors proposed a hybrid intelligent model which 
evolves and uses support vector support (SVM). Genetic algorithm 
(GA) and particle swarm optimization (PSO) were used to resolve 
the optimization challenge in the SVM. This helped boost the 
classifier's accuracy. With the use of GA, 95.60 percent accuracy 
was obtained as the highest. 

In [38], the authors performed a fixed evaluation of 
applications for android, tested the existence and occurrence of 
words that ae key in the manifest file of the applications, and 
established static feature sets from a dataset of 400 applications to 
yield superior results for malware detection. KNN and SVM 
classification algorithms were applied getting an average accuracy 
of 79.08 percent and 80.50 percent respectively.  
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In order to detect malware, Shohel Rana, Gudla, & Sung in [39] 
improved and analyzed certain algorithms through the 
implementation of a static analysis that is classifier based. When 
random forest was used on the dataset, 94.33 percent was obtained 
as the accuracy.    

In [31], the authors proposed a technique of malware detection 
by first extracting the function call graphs from android 
applications and then embedding the function call graphs with a 
direct map feature. This was inspired by a linear-time graph kernel. 
They used the structural features of 12,158 samples of malware. 
SVM classifier was trained to differentiate between malicious and 
benign applications. 89% of the malware was detectable using this 
technique with minimal false alarms pin-pointing the code 
structures which are malicious within the android applications. 

 In [28], the authors extracted a weighted contextual API 
dependency graphs as program semantics which was used to create 
the feature sets. Authors also introduced graph similarity metrics 
to discover identical application behaviours for the purpose of 
discovering zero-day malware. In their work, a system called 
DroidSIFT was implemented to evaluate 2200 malwares and 
13500 benign samples. It was able to correctly classify 93% 
malware instances while the detection of zero-day malware had a 
low false negative rate of 2% and false positive rate of 5.15%. 

In [25], the authors presented a method of detecting malware 
in android by examining the manifest files of the android 
application since there are differences that are significant in the 
manifest files of benign and legitimate applications. Manifest files 
carry important information of the application like the name of the 
package, the version number of the application, the intent filter 
(action, category and priority), the API level, required permission, 
this approach was discovered to be effective by the use of real 
samples of android malwares. A total of 365 samples were used 
and the total correct detection was 90.0%. 

In [5], the authors presented an automated detection system for 
the android platform (AMDA) where the behaviour analysis of the 
application was utilized. The features of both malicious and benign 
applications were first extracted to form the dataset used. Various 
algorithm in WEKA which include, Navies Bayes, decision tress 
and so on were used for the analysis. 

In [40], the authors proposed a technique of applying the 
Bayesian classifier in a novel way. 1,000 samples each for both 
benign and malicious application was gotten. The accuracy 
obtained was 0.921 and true positive rate of 0.906.  

In [41], the authors proposed a machine learning approach to 
the detection of malware in android using 200 features. These 
features were taken out of both the static and dynamic analysis of 
android applications. The deep learning technique used had an 
accuracy of 96.5%. 

In [42], the authors used 17 supervised learning techniques to 
analyse adware in android devices and compared the result. It was 
discovered that Random Forest was the best classifier with an 
accuracy of 0.9838 and a false positive rate of 0.017.  

This research was inspired by the recommendations in [1]. 
Their research study comprises of commonly and hardly used 

machine learning algorithms and it was found that multilayer 
perceptron (MLP) outperforms the other algorithm having an 
accuracy of 0.994. It was therefore recommended that other dataset 
should be put into consideration to confirm if MLP is dataset-
specific. 

3. Methodology 

3.1. Environment Description  

This research was conducted using the Waikato Environment 
for Information Analysis (WEKA) version 3.8.3 which was 
developed in [43]. Ten algorithms out of the available algorithms 
in WEKA were used in this research. 

3.2. Dataset Description  

From publicly available datasets, two datasets were used in the 
study. The first was gotten from figshare which was developed in 
[15]. The dataset contains a total of 215 characteristics which were 
extracted from 3,799 applications; 1,260, malicious and 2,539, 
benign. The second was also developed by Yerima in [44]. The 
dataset contains 215 attributes with 15,036 instances of which 
5,560 was malware and 9,476 was benign.  

Table 1: Description of the Android Malware Datasets 

Description Dataset 

 First Second 

Instances 3,799 15,036 

Malware 1,260 5,560 

Benign 2,539 9,476 

Attributes 215 215 

Attributes/characteristics are the applications’ features that 
were extracted. The extracted features were gotten from the 
manifest permission, the API call signature, the commands 
signature and the Intents. Some features extracted under the 
manifest permission are SEND_SMS, RECORD_AUDIO, 
READ_PHONE STATE, WRITE_SMS, USE_CREDENTIALS, 
GET_ACCOUNTS, MANAGE_ACCOUNTS, RECEIVE_SMS. 
Some features under the API call signature are IBinder, Binder, 
createSubprocess android.os.IBinder, URLClassLoader. Some 
features under intents are 
android.intent.action.ACTION_POWER_DISCONNECTED,  
android.intent.action.NEW_OUTGOING_CALL, 
android.intent.action.CALL_BUTTON. The command signature 
has only the following features /system/app, mount, /system/bin, 
chmod, chown and remount. 

3.3. Classification Algorithms application  

The training and testing was carried out with the 10 algorithms 
chosen in the WEKA environment. The algorithms are Random 
forest, Naïve Bayes, Random Tree, BayesNet, Multi-layer 
perceptron (MLP), Decision Table, Sequential Minimal 
Optimization (SMO), Bagging, KStar and IBK (also known as K 
Nearest Neighbours classifier (KNN)). The 10-folds cross 
validation and 66% split were used to train and test in the 
condition. In the 10-folds cross-validation, the dataset is divided 
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into 10 folds or parts wherein each fold is divulged in almost equal 
sizes as the full dataset while the 9 remaining is used for training. 
This procedure is repeated for each fold, making it ten times. The 
mean for all the 10 folds is then calculated for each performance 
metric. The 66% split divides the dataset into 66% and 34%. It uses 
the 66% part of the data for training while using the 34% for 
testing. The 66% split was used to validate each algorithm. 

3.4. Graphical Representation of the Methodology  

Figure 1 shows the graphical representation of the how the 
research was carried out. 

3.5. Performance Evaluation  

Below are the performance metrics used in evaluating the 
algorithms.  

• Accuracy: This calculates the rate of applications correctly 
classified, taking into account true positive, false negative, 
true negative and false positive [45]. 

Accuracy  =   
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

 
where   TP  =  True positive 

                   FN  =  False Negative 
    FP  =  False Positive  
    TN  = True Negative 

                    

• False Positive Rate (FPR). This calculates the rate incorrectly 
classified instances as benign. A low FP-rate implies that the 
classifier is good. [46] 

FPR  =   
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇
 

• Precision, Recall and F-measure. Precision is the ratio of 
instances that are positively predicted among the retrieved 
instances. Recall is the ratio of instances which were 
positively predicted among all the instances and F-measure is 
the harmonic mean of recall and precision.  

A high F-measure is essential since both precision and recall 
are desired to be at high levels [47,48]. Therefore  

Precision =   
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹
 

Recall  =   
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

F-Measure  =   2 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

• Receiver Operating Characteristic (ROC) curve. A high ROC 
value means that the algorithms are good. The true positive 
rate is plotted against the false positive rate [46]. 

ROC Curve is Plot of FPR(x)    vs   TPR  

where TPR is True Positive Rate  
• Root mean square error (RMSE). This is the predicted error's 

standard deviation. The error between the training and the 
testing dataset is the predicted error. A low RMSE means that 
the classifier is good [49,50]. 

RMSE  =   √1 − 𝑟𝑟2 𝑥𝑥 𝑆𝑆𝑆𝑆 
where SD = Standard Deviation 

r = Predicted error 

Start

Load the first 
android malware 

dataset to 
WEKA

Test and train the dataset 
with 10 algorithms using 
10-folds cross validation

Compare the 
algorithms’ 

performance metric 

Stop

Determine the 
performance metric of the 
algorithm on first dataset

Load the second 
android malware 

dataset to 
WEKA

Test and train the dataset 
with 10 algorithms using 
10-folds cross validation

Determine the 
performance metric of the 
algorithm on the second 

dataset

Test and train the dataset 
with 10 algorithms using 

66% split

Test and train the dataset 
with 10 algorithms using 

66% split

 
Figure 1: A graphical representation of the methodology 

3.6. Algorithm Evaluated  

Below are the description of two of the algorithms that stood 
during this research work 

• Multilayer perceptron (MLP) is a perceptron that join up with 
extra perceptron, packed in many layers to figure out 
compound problems. Every perceptron in the input layer that 
is first layer to the left sends outputs to all the unseen layers 
that is the second layer perceptrons and all the second layer 
perceptrons send outputs to the output layer to the right that 
is the final layer [51]. 

• Random Forest: An additional dimension of randomness was 
introduced to bagging to create random forest in 2001. The 
algorithm creates tree predictors, and for all the trees in the 
forest, each tree depends on the random vector differently and 
autonomously sampled with the same dispersal. The best of 
these randomly chosen predictors is used in [52, 53]. 

4. Result and Discussion 

This sections discusses the result gotten from the analysis done. 

4.1. Analysis of the result 

The dataset is made up of both malicious and innocuous 
applications. After the 10 algorithms have been trained and tested 
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with the 10 folds cross validation and 66 percent split in the WEKA 
environment, the obtained results is discussed in this section. Table 
2 and table 3 show the performance metrics of dataset 1 and dataset 
2 respectively. The performance metrics used are; accuracy, 
RMSE, false positive, ROC, precision, recall and f-measure. 
Figure 1 shows a display of the best performing algorithm in 
WEKA using the second dataset. 

4.1.1. Discussion on the first dataset 

While performance was optimal for all algorithms when 
trained and tested with the first dataset as seen in table 2, judging 
by accuracy, the top performing algorithm is the multilayer 
perceptron (MLP) having an accuracy of 99.4% when trained and 
tested under 66% split as previously stated in [1]. Under the 66% 
split, the MLP has the lowest false positive rate of 0.006 measured 
and also the highest recall (0.994), f-measure (0.994) and RMSE 
(00764).  

Random Forest performs best measuring with respect to 
precision (0.993), accuracy (0.993), recall (0.993), f-measure 
(0.993) and ROC when trained and tested under the 10 folds cross 
validation [1]. MLP evaluated under the 66% split is, however, the 
best performing algorithm overall. 

4.1.2. Discussion on the second dataset 

In the second dataset, as seen in Table 3, while all algorithms 
perform well when evaluated with the dataset, the random forest 
had an accuracy of 98.9% when trained and tested under 10 folds 
cross validation making it the algorithm that performed best in 
terms of accuracy. The IBK has 0.013 as the lowest false positive 
rate. In comparison, the random forest has a reduced FPR of 0.016 
and has the highest precision (0.989), recall (0.989), f-measure 
(0.989) and ROC (0.998). Kstar had the lowest RMSE of 0.0984. 

 
Table 2: Showing the result of the performance metrics of the algorithms on the first datase 

 
Accuracy False 

Positive 
Precision Recall F-Measure ROC RMSE 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

MLP 0.989 0.994 0.012 0.006 0.989 0.994 0.989 0.994 0.989 0.994 0.999 0.999 0.0938 0.0764 

SMO 0.991 0.991 0.011 0.009 0.991 0.991 0.991 0.991 0.991 0.991 0.99 0.991 0.096 0.0923 

IBK 0.992 0.991 0.008 0.01 0.992 0.991 0.992 0.991 0.992 0.991 0.995 0.996 0.0853 0.0851 

KStar 0.992 0.991 0.01 0.01 0.992 0.991 0.992 0.991 0.992 0.991 0.999   1 0.0811 0.0823 

Random 
forest 

0.993 0.99 0.013 0.018 0.993 0.99 0.993 0.99 0.993 0.99 1   1 0.0913 0.0985 

Bagging 0.986 0.983 0.02 0.023 0.986 0.983 0.986 0.983 0.986 0.983 0.999 0.998 0.1115 0.1186 

Random 
Tree 

0.972 0.972 0.033 0.029 0.972 0.972 0.972 0.972 0.972 0.972 0.97 0.972 0.1662 0.1669 

NaiveBayes 0.958 0.96 0.045 0.039 0.959 0.961 0.958 0.96 0.959 0.96 0.994 0.995 0.1852 0.1821 

Decision 
Table 

0.938 0.947 0.066 0.059 0.939 0.947 0.938 0.947 0.938 0.947 0.977 0.979 0.2074 0.2032 

BayesNet 0.927 0.93 0.046 0.046 0.937 0.938 0.927 0.93 0.929 0.931 0.992 0.993 0.2448 0.2482 

Table 3: Showing the result of the performance metrics of the algorithms on the second dataset 
 

Accuracy False 
Positive 

Precision Recall F-Measure ROC RMSE 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

10 
Folds 

66% 
Split 

MLP 0.972 0.97 0.037 0.034 0.972 0.97 0.972 0.97 0.972 0.97 0.992 0.992 0.1621 0.1676 

IBK 0.988 0.985 0.013 0.018 0.988 0.985 0.988 0.985 0.988 0.985 0.994 0.99 0.1032 0.1167 

KStar 0.988 0.985 0.014 0.018 0.988 0.985 0.988 0.985 0.988 0.985 0.998 0.998 0.0984 0.1113 

SMO 0.978 0.972 0.027 0.035 0.978 0.972 0.978 0.972 0.978 0.972 0.976 0.969 0.147 0.1673 
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Random 
forest 

0.989 0.984 0.016 0.024 0.989 0.984 0.989 0.984 0.989 0.984 0.998 0.997 0.1058 0.121 

Bagging 0.978 0.973 0.029 0.034 0.978 0.973 0.978 0.973 0.978 0.973 0.996 0.995 0.1333 0.1465 

Random 
Tree 

0.973 0.968 0.03 0.037 0.973 0.968 0.973 0.968 0.973 0.968 0.972 0.965 0.164 0.1791 

NaiveBayes 0.834 0.836 0.122 0.126 0.865 0.863 0.834 0.836 0.834 0.839 0.949 0.839 0.3972 0.3957 

Decision 
Table 

0.922 0.907 0.077 0.093 0.924 0.909 0.922 0.907 0.922 0.908 0.976 0.962 0.2322 0.2524 

BayesNet 0.828 0.829 0.124 0.128 0.862 0.861 0.828 0.829 0.831 0.831 0.928 0.925 0.4082 0.4081 

 

 
Figure 2: A display of Random forest in the environment using the second dataset.

 Under the 66% split, KStar and IBK performs best with the 
same accuracy (98.5%), false negative (0.018), precision (0.985), 
recall (0.985) and f-measure (0.985). Kstar performs best in terms 
of ROC and RMSE with values of 0.998 and 0.1113 respectively. 
However, the overall best performing algorithm is Random forest 
tested under the 10 folds cross validation. 

 Although MLP was found to have the best performance under 
the 66% split when tested with the first dataset, it is seen that it was 
not able to maintain this performance when tested on the second 
dataset, this shows that MLP is data-set specific. This is as a result 
of the increased instances in the second dataset. The performance 
metrics of MLP was not maintained as a result of the increase in 
the instances. It is noteworthy in the classification of the first 
dataset that the analysis done under the 10 folds cross validation 
shows that random forest performs best with an accuracy of 99.3% 
having a difference of 0.001 when compared to MLP. The 
performance metric of random forest was further confirmed when 
analysis was done on the second dataset. It was observed that 

random forest performs best when trained and tested under the 10 
folds cross validation. This therefore backs up the result of the first 
dataset analysis proving that random forest is not data specific. 

5. Conclusion and Recommendations 

Malicious applications has increasingly become 
sophisticated and complex with advancement in technological 
innovation. Models and methods for improved detection of such 
malware have been actively developed by various researchers in 
the field. The goal of this research study was to evaluate/appraise 
classification algorithms for malware in android detection. After 
the analysis in the WEKA domain, it was found that the 
performance metric of MLP was diminished with increased 
instances, making it dataset-specific. Random forest was found to 
perform better than the other algorithms with the first and second 
dataset when trained and tested under the 10 folds cross validation, 
having an accuracy of 99.3% and 98.9% respectively. Therefore, 
the contribution of this research is to determine that random forest 
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is the best performing algorithm in the detection of Android 
malware. Random forest is being proposed for use as the 
classification algorithm when building an android application for 
the purpose of android malware detection. 

Further studies can consider selecting the best features of the 
dataset through feature selection or optimization for better 
performance. Other classification techniques under the 
reinforcement and unsupervised learning can be trained and tested. 
The studies should consider using Random forest as the 
classification and detection algorithm when developing anti-
malwares, so as to provide a safe space for android users. 
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