

www.astesj.com
 1741

An Evaluation of some Machine Learning Algorithms for the detection of Android Applications Malware

Olorunshola Oluwaseyi Ezekiel*,1, Oluyomi Ayanfeoluwa Oluwasola2, Irhebhude Martins3

1Cyber Security Department, Faculty of Computing, Air Force Institute of Technology, Kaduna, 800283, Nigeria

2Electrical Electronics Engineering Department, Air Force Institute of Technology, Kaduna, 800283, Nigeria

3Computer Science Department, Nigerian Defence Academy, Kaduna, 800283, Nigeria

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 08 October, 2020
Accepted: 25 December, 2020
Online: 30 December, 2020

 Android Operating system (OS) has been used much more than all other mobile phone’s
OS turning android OS to a major point of attack. Android Application installation serves
as a major avenue through which attacks can be perpetrated. Permissions must be first
granted by the users seeking to install these third-party applications. Some permissions can
be subtle escaping the attentions of the users. Some of these permissions can have adverse
effects like spying on the users, unauthorized retrieval and transference of the data and so
on. This calls for the need of a heuristic method for the identification and detection of
malware. In this discourse, testing of classification algorithms including Random forest,
Naïve Bayes, Random Tree, BayesNet, Decision Table, Multi-layer perceptron (MLP),
Bagging, Sequential Minimal Optimization (SMO)/Support-Vector Machine (SVM), KStar
and IBK (also known as K Nearest Neighbours classifier (KNN)) was carried out to decide
which algorithm performs best in android malware detection. Two dataset was used in this
study and were gotten from figshare. They were trained and tested in the Waikato
Environment for Knowledge Analysis (WEKA). The performance metrics used are Root
Mean Square Error (RMSE), Accuracy, Receiver Operating Curve (ROC), False positive
rate, F-measure, Precision and recall. It was discovered that the best performance with an
accuracy of 99.4% was the multi-layer perceptron on the first dataset. Random Forest has
the best performance with accuracy, 98.9% on the second dataset. The implication of this
is that MLP or random forest can be used to detect android application malwares.

Keywords:
Mobile phone
Malware
Algorithms
Operating System
Benign

1. Introduction

This work is an extension of [1] in which this work considers
another dataset in carrying out the research. This research answers
the questions from the comments received about the biasness of
the algorithms used.

 There has been a considerable increase in the usage of mobile
phones year on year. Mobile phones have served as a medium of
communication through calls and short mailing services (SMS)
[2]. Technological advancement has increased the usage of mobile
phones for various purposes. The operating system (OS) of mobile
phones have evolved from java to Symbian with the current ones
being android OS, windows OS and Apple OS – iOS [3]. The

usage of mobile phones spans from individuals to organizations as
well. This study focuses on Android OS. Mobile phones with
Android OS comprises of some components which are; the

 Android OS, the middleware and key applications [4]. The
android OS has the biggest and fastest growing smartphone OS
market, hence it has become a practical target for cyber criminals
[5]. Large support to third party applications is also gotten from
android. These third party applications can easily be downloaded
on the popular Google Play store [6]. The developers of the
Android OS do not develop third-party applications; it is done by
software developers. Hence the name of the third party
applications [6]. In [7], there are over 2.7 billion mobile users
globally, and in 2022, 258.2 billion apps are projected to be
downloaded. Android phones are useful for crucial functions
ranging from financial transfers to e-commerce transactions

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Oluwaseyi Ezekiel Olorunshola, Electrical Electronics
Engineering Department, Air Force Institute of Technology, Kaduna, 800283,
Nigeria, +2348068341127 & seyisola25@yahoo.com

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

https://dx.doi.org/10.25046/aj0506208

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0506208

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1742

(goods payments) and so on [8]. It also allows other features, such
as photo editing, game play, social media and messaging, internet
searching, typing, listening, reading, and so on. Any of all these
procedures are feasible due to the implementation of third-party
apps.

The growth of android application malware has been made
possible by the free application market for the Android OS [9]. The
most severe and important threat to the Android OS arises as a
result of malicious applications especially from unauthorized
applications market that can easily be installed on any phone [9].
Android applications depend on users to grant permission to work
optimally. Such permissions can forewarn users to the applications'
secrecy and/or security [10]. Android malware can impersonate a
legitimate program, but with intrusive permissions for which an
agreement is required from the users before installation can be
done [10]. The malware executes activity(s) that are malicious
through these permissions. SMS spy pro is an example, masking
itself as a tip calculator but forwarding all sent SMS and received
SMS by the user to a third party [11]. Android malware can access
and steal user data such as browsing history, SMS, location of
GPS, phone records, e-mails, other application information (Like
Facebook log-in details) and more [12]. Tasks such as snapping
and sending photographs, sending unauthorized e-mails,
conducting bank transfers without user awareness can also be
executed [2]. The degree to which both malicious and innocuous
applications can execute their functions is primarily dependent on
the form of permissions that users grant them.

Considering the sensitivity of the data that can be colleted from
users via the malwares combined with the kind of damage that can
be done by these malwares (for example, spying, identity theft,
extortion, logic bomb) [13], these malwares need to be identified
effectively. Due to zero-day attacks, the conventional malware
detection techniques that uses the malware signature to store them
in a repository has proved to be ineffective [9]. Zero-day attacks
are based on new flaws found by cyber attackers that the creator is
unaware of and thus has not issued a patch [14]. Therefore, until
the developers are aware, the attackers make the most of these
vulnerabilities. Android malware with its corresponding
permission requests must be found [9]. This study is focused on
Olorunshola and Oluyomi's recommendations in [1]. An
evaluation of the classification algorithms with regard to their
performance in the identification of malicious software based on
their manifested permission, command signature, API call
signature and intents, is the aim of this study. This study aims to
verify the conclusions drawn by Olorunshola and Oluyomi by
training and testing the algorithms with additional datasets in this
research. Two android datasets based on manifest permission,
command signature, API call signature and intent are obtained
from figshare created by [15] to achieve this aim. The algorithms
are trained and tested on the datasets. The remaining portion of this
work is structured as follows: review of literature, methodology,
result and discussion, conclusion and future work.

2. Literature Review

2.1. History of Android

 Android was created using the name of Android Inc company
by Rich Miner, Nick Sears, Chris White, and Andy Rubin in 2003

[16]. Android began as a camera OS intended to enhance
connectivity between personal computers (PCs) and cameras,
allowing communication wireless between cameras and PCs. After
a couple of months of the company's formation, the OS was
adapted towards making mobile cell phones smarter [17]. Android
was purchased by Google in August 2005. Android OS was created
using the Linux kernel to make it free for mobile phone
manufacturers [16,18]. The first version of Android OS (version
1.0) was released in November 2007, and the novel Android
handset, T-Mobile, was deployed in September 2008. While it has
a lot of feedback and appraisal, it ran with Android 1.0 OS, and it
has other Google apps such as play store, charts, YouTube, etc.
built on it. [16,18]. As the year passes by, android OS has evolved
into improved models. Android 10 is the latest edition of Android,
launched in September 2019 [19, 20].

The stack layers of Android apps contain applications,
application framework, libraries and the Linux kernel, with each
layer closely incorporated to offer stronger smartphone
applications. Interoperability has also been provided for to make it
easier for design developers to work and develop their applications
at a cost-friendly level [4]. It made it possible for anyone to obtain
due to the open source nature of the Android framework thus
growing its users over the years. Android sales stood at 115 million
units in 2011, and Android OS accounted for around 52.5 percent
of the overall number of mobile phones [21]. The Apple App Store
reportedly has 2.2 million applications [7]. Recently, about 68.71
percent of people use android OS while 29.60 percent use iOS,
0.30 percent use Windows devices, while 0.06 percent use
Symbian [22]. The heavy use of android OS is attributed to several
factors that include the reduced price relative to iOS, open source
enabling third-party software installation unlike iOS. The sum total
of applications available in the Android store (play store) as of
2017 was around 2,800,000 [22]. In March 2018, the applications
in the play store crossed 3.600,000 [23].

2.2. Security in Android

IOS as a closed framework that offers more data protection and
is more pristine than Android which is an open source. In the play
store, developers can host the applications they have built giving
rise to Android vulnerabilities [22]. The security enhancements in
Android were clarified in [24]. They are public vs. private
components, components open implicitly, permission for
broadcast intent, permission for content provision, secure APIs,
service hooks, pending intents, permission protection level, URIs
permission. Security refinements such as these, aid the protection
of the data of users from manipulation and abuse.

2.3. Android Malware

 The skill to debone the code used in the development of
Android applications and the open source nature of the
applications also enabled the easy encoding of malicious codes and
increased number of attacks [25]. In [26], Networks recorded that
mobile malware rose to 155 percent in 2011, with a rise of 614
percent from March 2012 to March 2013, of which 92 percent of
the malware is Android. When android devices are upgraded to the
latest OS, about 77 percent of threats to android can be eliminated.
Just one threat infected about 5,000 devices in the third quarter of
2018. This accelerated through phishing using download and

http://www.astesj.com/

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1743

installation of a voice message application that is fake thereby
sends all the user’s data to a server or using text messages [27].
Report has it that 2,47 million of the latest mobile malware were
discovered in 2013, indicating a 197 percent increase over 2012
[28].

From a simplistic SMS sending Trojan, Android malware has
advanced to more futuristic codes that can corrupt other
applications, encrypt user data, gain root privileges, download and
install more applications that are malicious bypassing the
knowledge of the users, and load a payload from a remote server
to cellular phones [9,29]. In [29], the authors gave a complete
malware for android analysis looking at the past, observing the
present and predicting the potential android malware cases into the
future. In [30], the author gave a thorough analysis of the models
of mobile malware dissemination and explored potential future
developments as well.

2.4. The dangers of android malware

Users are exposed to multiple attacks and may suffer from
them if an android OS is compromised with malware. According
to [25]. Many of the threats they face include but are not restricted
to:

• Personal information theft which can lead to theft of identity

• Loss of privacy

• Monitoring of the users

• Financial loss through ransomware

• Remote operation of the phones

2.5. Android malware detection

Detection of Android malware can broadly be divided into;

• Signature-based: Detection using signature-based detection
uses the malware’s identity to determine the genuineness of
the malware. The downside of this method is some form of
attacks may be eluded. E.g., byte code level transformation
[28].

• Machine-learning focused: The detection based on machine-
learning uses an analytical method that includes extracting
features from the application's behaviour [28]. These
behaviours (permission request, API calls) are then developed
into a dataset and then a machine learning algorithm is used to
test and train. The measurement metrics used in the evaluation
include: precision, accuracy, false positive, to mention a few.

Several approaches to android malware detection have been
put forward; the use of applications' requested permissions,
specific application programming interface for detection, the use
of the applications' fundamental code (since most codes for
malware are modifications of existent codes), sandboxing,
components encapsulation, optional access control or signing of
application [31,32].

 This study is aimed at the usage of manifest permission, API
call signature, intents and command signature for the android
malware detection. The rights defined by the developer in the
application to allow system interrelationship: to access system

components (such as camera and GPS) or modules of other
applications is permission [33]. There are four types of android
permission with two classifications, according to [2,34]. These are:

• Signature permissions: These applications are authorized only
if it is certified by the creator of the stipulated consents. It is
used for component access restriction to a limited collection
of application controlled and trusted only by the creator.

• System permissions: Once the application satisfies the
signature criteria, these applications are authorized.
Applications requesting these permissions are pre-installed by
an advanced customer or system manufacturer.

The two permissions (Signature and System) are booked for
applications that have signatures with keys accessible only to the
creator of the firmware. This is not available for implementations
from third party application.

• Normal permissions: These are software that do not need the
involvement of the customer. They are immediately accepted.

• Dangerous permissions: These are software that prompts the
user what system facility will be used before it can perform its
function. Prior to installation, they must be issued by the
consumers. [2, 34].

 In [34] and [35], the studies titled “PScout: Analyzing the
Android Permission Specification” and “Android Permissions
Demystified” evaluated the different android OS permission
specification. In [2], the author also examined certain motives for
some evasive consents. Some are broadcast theft, malicious
service launch, hijacking of activity, malicious activity launch,
hijacking of service.

2.6. Review of Past Works

Some research has been conducted in the detection of malware,
part of which includes:

A Naïve Bayes algorithm model for android malware detection
system was proposed by Shang, Li, Deng, & He in [36]. By using
the new permissions for malware and training permissions impact
as the weight, the detection accuracy was enhanced. In order to
strengthen the model, a detection model of information theory and
permissions based on the enhanced Naive Bayes algorithm was
used also. As a rate of detection for non-malicious applications, the
proposed model earned 97.59 percent.

In [37], the authors proposed a hybrid intelligent model which
evolves and uses support vector support (SVM). Genetic algorithm
(GA) and particle swarm optimization (PSO) were used to resolve
the optimization challenge in the SVM. This helped boost the
classifier's accuracy. With the use of GA, 95.60 percent accuracy
was obtained as the highest.

In [38], the authors performed a fixed evaluation of
applications for android, tested the existence and occurrence of
words that ae key in the manifest file of the applications, and
established static feature sets from a dataset of 400 applications to
yield superior results for malware detection. KNN and SVM
classification algorithms were applied getting an average accuracy
of 79.08 percent and 80.50 percent respectively.

http://www.astesj.com/

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1744

In order to detect malware, Shohel Rana, Gudla, & Sung in [39]
improved and analyzed certain algorithms through the
implementation of a static analysis that is classifier based. When
random forest was used on the dataset, 94.33 percent was obtained
as the accuracy.

In [31], the authors proposed a technique of malware detection
by first extracting the function call graphs from android
applications and then embedding the function call graphs with a
direct map feature. This was inspired by a linear-time graph kernel.
They used the structural features of 12,158 samples of malware.
SVM classifier was trained to differentiate between malicious and
benign applications. 89% of the malware was detectable using this
technique with minimal false alarms pin-pointing the code
structures which are malicious within the android applications.

 In [28], the authors extracted a weighted contextual API
dependency graphs as program semantics which was used to create
the feature sets. Authors also introduced graph similarity metrics
to discover identical application behaviours for the purpose of
discovering zero-day malware. In their work, a system called
DroidSIFT was implemented to evaluate 2200 malwares and
13500 benign samples. It was able to correctly classify 93%
malware instances while the detection of zero-day malware had a
low false negative rate of 2% and false positive rate of 5.15%.

In [25], the authors presented a method of detecting malware
in android by examining the manifest files of the android
application since there are differences that are significant in the
manifest files of benign and legitimate applications. Manifest files
carry important information of the application like the name of the
package, the version number of the application, the intent filter
(action, category and priority), the API level, required permission,
this approach was discovered to be effective by the use of real
samples of android malwares. A total of 365 samples were used
and the total correct detection was 90.0%.

In [5], the authors presented an automated detection system for
the android platform (AMDA) where the behaviour analysis of the
application was utilized. The features of both malicious and benign
applications were first extracted to form the dataset used. Various
algorithm in WEKA which include, Navies Bayes, decision tress
and so on were used for the analysis.

In [40], the authors proposed a technique of applying the
Bayesian classifier in a novel way. 1,000 samples each for both
benign and malicious application was gotten. The accuracy
obtained was 0.921 and true positive rate of 0.906.

In [41], the authors proposed a machine learning approach to
the detection of malware in android using 200 features. These
features were taken out of both the static and dynamic analysis of
android applications. The deep learning technique used had an
accuracy of 96.5%.

In [42], the authors used 17 supervised learning techniques to
analyse adware in android devices and compared the result. It was
discovered that Random Forest was the best classifier with an
accuracy of 0.9838 and a false positive rate of 0.017.

This research was inspired by the recommendations in [1].
Their research study comprises of commonly and hardly used

machine learning algorithms and it was found that multilayer
perceptron (MLP) outperforms the other algorithm having an
accuracy of 0.994. It was therefore recommended that other dataset
should be put into consideration to confirm if MLP is dataset-
specific.

3. Methodology

3.1. Environment Description

This research was conducted using the Waikato Environment
for Information Analysis (WEKA) version 3.8.3 which was
developed in [43]. Ten algorithms out of the available algorithms
in WEKA were used in this research.

3.2. Dataset Description

From publicly available datasets, two datasets were used in the
study. The first was gotten from figshare which was developed in
[15]. The dataset contains a total of 215 characteristics which were
extracted from 3,799 applications; 1,260, malicious and 2,539,
benign. The second was also developed by Yerima in [44]. The
dataset contains 215 attributes with 15,036 instances of which
5,560 was malware and 9,476 was benign.

Table 1: Description of the Android Malware Datasets

Description Dataset

 First Second

Instances 3,799 15,036

Malware 1,260 5,560

Benign 2,539 9,476

Attributes 215 215

Attributes/characteristics are the applications’ features that
were extracted. The extracted features were gotten from the
manifest permission, the API call signature, the commands
signature and the Intents. Some features extracted under the
manifest permission are SEND_SMS, RECORD_AUDIO,
READ_PHONE STATE, WRITE_SMS, USE_CREDENTIALS,
GET_ACCOUNTS, MANAGE_ACCOUNTS, RECEIVE_SMS.
Some features under the API call signature are IBinder, Binder,
createSubprocess android.os.IBinder, URLClassLoader. Some
features under intents are
android.intent.action.ACTION_POWER_DISCONNECTED,
android.intent.action.NEW_OUTGOING_CALL,
android.intent.action.CALL_BUTTON. The command signature
has only the following features /system/app, mount, /system/bin,
chmod, chown and remount.

3.3. Classification Algorithms application

The training and testing was carried out with the 10 algorithms
chosen in the WEKA environment. The algorithms are Random
forest, Naïve Bayes, Random Tree, BayesNet, Multi-layer
perceptron (MLP), Decision Table, Sequential Minimal
Optimization (SMO), Bagging, KStar and IBK (also known as K
Nearest Neighbours classifier (KNN)). The 10-folds cross
validation and 66% split were used to train and test in the
condition. In the 10-folds cross-validation, the dataset is divided

http://www.astesj.com/

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1745

into 10 folds or parts wherein each fold is divulged in almost equal
sizes as the full dataset while the 9 remaining is used for training.
This procedure is repeated for each fold, making it ten times. The
mean for all the 10 folds is then calculated for each performance
metric. The 66% split divides the dataset into 66% and 34%. It uses
the 66% part of the data for training while using the 34% for
testing. The 66% split was used to validate each algorithm.

3.4. Graphical Representation of the Methodology

Figure 1 shows the graphical representation of the how the
research was carried out.

3.5. Performance Evaluation

Below are the performance metrics used in evaluating the
algorithms.

• Accuracy: This calculates the rate of applications correctly
classified, taking into account true positive, false negative,
true negative and false positive [45].

Accuracy =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

where TP = True positive

 FN = False Negative
 FP = False Positive
 TN = True Negative

• False Positive Rate (FPR). This calculates the rate incorrectly
classified instances as benign. A low FP-rate implies that the
classifier is good. [46]

FPR =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

• Precision, Recall and F-measure. Precision is the ratio of
instances that are positively predicted among the retrieved
instances. Recall is the ratio of instances which were
positively predicted among all the instances and F-measure is
the harmonic mean of recall and precision.

A high F-measure is essential since both precision and recall
are desired to be at high levels [47,48]. Therefore

Precision =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 +𝐹𝐹𝐹𝐹

Recall =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

F-Measure = 2 𝑥𝑥 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

• Receiver Operating Characteristic (ROC) curve. A high ROC
value means that the algorithms are good. The true positive
rate is plotted against the false positive rate [46].

ROC Curve is Plot of FPR(x) vs TPR

where TPR is True Positive Rate
• Root mean square error (RMSE). This is the predicted error's

standard deviation. The error between the training and the
testing dataset is the predicted error. A low RMSE means that
the classifier is good [49,50].

RMSE = √1 − 𝑟𝑟2 𝑥𝑥 𝑆𝑆𝑆𝑆
where SD = Standard Deviation

r = Predicted error

Start

Load the first
android malware

dataset to
WEKA

Test and train the dataset
with 10 algorithms using
10-folds cross validation

Compare the
algorithms’

performance metric

Stop

Determine the
performance metric of the
algorithm on first dataset

Load the second
android malware

dataset to
WEKA

Test and train the dataset
with 10 algorithms using
10-folds cross validation

Determine the
performance metric of the
algorithm on the second

dataset

Test and train the dataset
with 10 algorithms using

66% split

Test and train the dataset
with 10 algorithms using

66% split

Figure 1: A graphical representation of the methodology

3.6. Algorithm Evaluated

Below are the description of two of the algorithms that stood
during this research work

• Multilayer perceptron (MLP) is a perceptron that join up with
extra perceptron, packed in many layers to figure out
compound problems. Every perceptron in the input layer that
is first layer to the left sends outputs to all the unseen layers
that is the second layer perceptrons and all the second layer
perceptrons send outputs to the output layer to the right that
is the final layer [51].

• Random Forest: An additional dimension of randomness was
introduced to bagging to create random forest in 2001. The
algorithm creates tree predictors, and for all the trees in the
forest, each tree depends on the random vector differently and
autonomously sampled with the same dispersal. The best of
these randomly chosen predictors is used in [52, 53].

4. Result and Discussion

This sections discusses the result gotten from the analysis done.

4.1. Analysis of the result

The dataset is made up of both malicious and innocuous
applications. After the 10 algorithms have been trained and tested

http://www.astesj.com/

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1746

with the 10 folds cross validation and 66 percent split in the WEKA
environment, the obtained results is discussed in this section. Table
2 and table 3 show the performance metrics of dataset 1 and dataset
2 respectively. The performance metrics used are; accuracy,
RMSE, false positive, ROC, precision, recall and f-measure.
Figure 1 shows a display of the best performing algorithm in
WEKA using the second dataset.

4.1.1. Discussion on the first dataset

While performance was optimal for all algorithms when
trained and tested with the first dataset as seen in table 2, judging
by accuracy, the top performing algorithm is the multilayer
perceptron (MLP) having an accuracy of 99.4% when trained and
tested under 66% split as previously stated in [1]. Under the 66%
split, the MLP has the lowest false positive rate of 0.006 measured
and also the highest recall (0.994), f-measure (0.994) and RMSE
(00764).

Random Forest performs best measuring with respect to
precision (0.993), accuracy (0.993), recall (0.993), f-measure
(0.993) and ROC when trained and tested under the 10 folds cross
validation [1]. MLP evaluated under the 66% split is, however, the
best performing algorithm overall.

4.1.2. Discussion on the second dataset

In the second dataset, as seen in Table 3, while all algorithms
perform well when evaluated with the dataset, the random forest
had an accuracy of 98.9% when trained and tested under 10 folds
cross validation making it the algorithm that performed best in
terms of accuracy. The IBK has 0.013 as the lowest false positive
rate. In comparison, the random forest has a reduced FPR of 0.016
and has the highest precision (0.989), recall (0.989), f-measure
(0.989) and ROC (0.998). Kstar had the lowest RMSE of 0.0984.

Table 2: Showing the result of the performance metrics of the algorithms on the first datase

Accuracy False

Positive
Precision Recall F-Measure ROC RMSE

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

MLP 0.989 0.994 0.012 0.006 0.989 0.994 0.989 0.994 0.989 0.994 0.999 0.999 0.0938 0.0764

SMO 0.991 0.991 0.011 0.009 0.991 0.991 0.991 0.991 0.991 0.991 0.99 0.991 0.096 0.0923

IBK 0.992 0.991 0.008 0.01 0.992 0.991 0.992 0.991 0.992 0.991 0.995 0.996 0.0853 0.0851

KStar 0.992 0.991 0.01 0.01 0.992 0.991 0.992 0.991 0.992 0.991 0.999 1 0.0811 0.0823

Random
forest

0.993 0.99 0.013 0.018 0.993 0.99 0.993 0.99 0.993 0.99 1 1 0.0913 0.0985

Bagging 0.986 0.983 0.02 0.023 0.986 0.983 0.986 0.983 0.986 0.983 0.999 0.998 0.1115 0.1186

Random
Tree

0.972 0.972 0.033 0.029 0.972 0.972 0.972 0.972 0.972 0.972 0.97 0.972 0.1662 0.1669

NaiveBayes 0.958 0.96 0.045 0.039 0.959 0.961 0.958 0.96 0.959 0.96 0.994 0.995 0.1852 0.1821

Decision
Table

0.938 0.947 0.066 0.059 0.939 0.947 0.938 0.947 0.938 0.947 0.977 0.979 0.2074 0.2032

BayesNet 0.927 0.93 0.046 0.046 0.937 0.938 0.927 0.93 0.929 0.931 0.992 0.993 0.2448 0.2482

Table 3: Showing the result of the performance metrics of the algorithms on the second dataset

Accuracy False
Positive

Precision Recall F-Measure ROC RMSE

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

10
Folds

66%
Split

MLP 0.972 0.97 0.037 0.034 0.972 0.97 0.972 0.97 0.972 0.97 0.992 0.992 0.1621 0.1676

IBK 0.988 0.985 0.013 0.018 0.988 0.985 0.988 0.985 0.988 0.985 0.994 0.99 0.1032 0.1167

KStar 0.988 0.985 0.014 0.018 0.988 0.985 0.988 0.985 0.988 0.985 0.998 0.998 0.0984 0.1113

SMO 0.978 0.972 0.027 0.035 0.978 0.972 0.978 0.972 0.978 0.972 0.976 0.969 0.147 0.1673

http://www.astesj.com/

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1747

Random
forest

0.989 0.984 0.016 0.024 0.989 0.984 0.989 0.984 0.989 0.984 0.998 0.997 0.1058 0.121

Bagging 0.978 0.973 0.029 0.034 0.978 0.973 0.978 0.973 0.978 0.973 0.996 0.995 0.1333 0.1465

Random
Tree

0.973 0.968 0.03 0.037 0.973 0.968 0.973 0.968 0.973 0.968 0.972 0.965 0.164 0.1791

NaiveBayes 0.834 0.836 0.122 0.126 0.865 0.863 0.834 0.836 0.834 0.839 0.949 0.839 0.3972 0.3957

Decision
Table

0.922 0.907 0.077 0.093 0.924 0.909 0.922 0.907 0.922 0.908 0.976 0.962 0.2322 0.2524

BayesNet 0.828 0.829 0.124 0.128 0.862 0.861 0.828 0.829 0.831 0.831 0.928 0.925 0.4082 0.4081

Figure 2: A display of Random forest in the environment using the second dataset.

 Under the 66% split, KStar and IBK performs best with the
same accuracy (98.5%), false negative (0.018), precision (0.985),
recall (0.985) and f-measure (0.985). Kstar performs best in terms
of ROC and RMSE with values of 0.998 and 0.1113 respectively.
However, the overall best performing algorithm is Random forest
tested under the 10 folds cross validation.

 Although MLP was found to have the best performance under
the 66% split when tested with the first dataset, it is seen that it was
not able to maintain this performance when tested on the second
dataset, this shows that MLP is data-set specific. This is as a result
of the increased instances in the second dataset. The performance
metrics of MLP was not maintained as a result of the increase in
the instances. It is noteworthy in the classification of the first
dataset that the analysis done under the 10 folds cross validation
shows that random forest performs best with an accuracy of 99.3%
having a difference of 0.001 when compared to MLP. The
performance metric of random forest was further confirmed when
analysis was done on the second dataset. It was observed that

random forest performs best when trained and tested under the 10
folds cross validation. This therefore backs up the result of the first
dataset analysis proving that random forest is not data specific.

5. Conclusion and Recommendations

Malicious applications has increasingly become
sophisticated and complex with advancement in technological
innovation. Models and methods for improved detection of such
malware have been actively developed by various researchers in
the field. The goal of this research study was to evaluate/appraise
classification algorithms for malware in android detection. After
the analysis in the WEKA domain, it was found that the
performance metric of MLP was diminished with increased
instances, making it dataset-specific. Random forest was found to
perform better than the other algorithms with the first and second
dataset when trained and tested under the 10 folds cross validation,
having an accuracy of 99.3% and 98.9% respectively. Therefore,
the contribution of this research is to determine that random forest

http://www.astesj.com/

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1748

is the best performing algorithm in the detection of Android
malware. Random forest is being proposed for use as the
classification algorithm when building an android application for
the purpose of android malware detection.

Further studies can consider selecting the best features of the
dataset through feature selection or optimization for better
performance. Other classification techniques under the
reinforcement and unsupervised learning can be trained and tested.
The studies should consider using Random forest as the
classification and detection algorithm when developing anti-
malwares, so as to provide a safe space for android users.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] O.E. Olorunshola, A.O. Oluyomi, “ANDROID APPLICATIONS
MALWARE DETECTION: A Comparative Analysis of some Classification
Algorithms,” in 2019 15th International Conference on Electronics,
Computer and Computation, ICECCO 2019, Institute of Electrical and
Electronics Engineers Inc., 2019,
doi:10.1109/ICECCO48375.2019.9043284.

[2] E. Chin, A.P. Felt, K. Greenwood, D. Wagner, “Analyzing Inter-Application
Communication in Android,” in Proceedings of the 9th international
conference on Mobile systems, applications, and services, ACM: 239–252,
2011, https://doi.org/10.1145/1999995.2000018

[3] OS Timeline, Mobile operating system - Wikipedia, 2020.
[4] A. Developers, “What is android,” 2011,
[5] K.J. Abela, D.K. Angeles, J.R.D. Alas, R.J. Tolentino, M.A. Gomez, “An

Automated Malware Detection System for Android using Behavior-based
Analysis AMDA,” in International Journal of Cyber-Security and Digital
Forensics (IJCSDF), Citeseer: 1–11, 2013.

[6] K. Nadia, The risks of third-party app stores, 2020.
[7] Ian Blair, Mobile App Download and Usage Statistics (2020) - BuildFire,

2020.
[8] P. Tracy, Smartphone Banking Definition & Example | InvestingAnswers,

2020.
[9] S. Verma, S.K. Muttoo, “An Android Malware Detection Framework-based

on Permissions and Intents,” Defence Science Journal, 66(6), 618–623, 2016,
DOI : 10.14429/dsj.66.10803.

[10] A.P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, D. Wagner, “Android
Permissions : User Attention , Comprehension , and Behavior,” in
Proceedings of the eighth symposium on usable privacy and security, ACM:
3, 2012, https://doi.org/10.1145/2335356.2335360.

[11] M. Vennon, “Android malware: Spyware in the Android Market,” Technical
Report, SMobile Systems, 2010.

[12] G. Thompson, Android Malware Steals Data From Apps, Records Audio,
Captures Screenshots - Binary Defense, 2020.

[13] Webroot, The Dangers of Hacking and What a Hacker Can Do to Your
Computer | Webroot, 2020.

[14] Norton, Zero-day vulnerability: What it is, and how it works, 2020.
[15] S.Y. Yerima, Android malware dataset for machine learning 1 (Version 1),

2018, doi:https://doi.org/10.6084/m9.figshare.5854590.v1.
[16] J. Callaham, The history of Android OS: its name, origin and more, 2019.
[17] J. Alabaster, Android founder: We aimed to make a camera OS | PCWorld,

IDG News Service, 2013.
[18] W. Bellevue, T-Mobile Unveils the T-Mobile G1 — the First Phone Powered

by Android | T-Mobile Newsroom, 2008.
[19] Android version history, Android version history, Wikipedia, 2019.
[20] Android 10 | Android, 2019.
[21] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, “RiskRanker : Scalable and

Accurate Zero-day Android Malware Detection Categories and Subject
Descriptors,” in Proceedings of the 10th international conference on Mobile
systems, applications, and services, ACM: 281–294, 2012,
https://doi.org/10.1145/2307636.2307663

[22] D. Kavinya, R.S. Priya, R. Deebika, “Vulnerabilities attacks on mobile
operating systems (Android versus iOS): A review,” International Journal
of Advance Research, Ideas and Innovations in Technology, 4(5), 214–216,

2018.
[23] Statista, Number of available applications in the Google Play Store from

December 2009 to June 2019, Google Play Store: Number of Available Apps
2009-2019, 2019.

[24] W. Enck, M. Ongtang, P. McDaniel, “Understanding Android Security,”
IEEE Security & Privacy, 7(1), 50–57, 2009,
https://doi.org/10.1109/MSP.2009.26

[25] R. Sato, D. Chiba, S. Goto, “Detecting Android Malware by Analyzing
Manifest Files,” Proceedings of the Asia-Pacific Advanced Network, 36(17),
23–31, 2013, http://dx.doi.org/10.7125/APAN.36.4.

[26] J. Networks, Juniper networks third annual Mobile threats report, 2013.
[27] Alexandre Mundo Alguacil, C. Beek, C. Castillo, T. Dunton, J. Fokker, S.

Grobman, T. Hux, N. Minihane, L. Munson, E. Peterson, M. Rivero, T.
Roccia, C. Schmugar, R. Samani, R. Sims, D. Sommer, B. Sun, McAfee
Labs Threats Report: December 2018, 2018, doi:10.1016/s1361-
3723(19)30004-1.

[28] M. Zhang, Y. Duan, H. Yin, Z. Zhao, “Semantics-Aware Android Malware
Classification Using Weighted Contextual API Dependency Graphs,” in
Proceedings of the 2014 ACM SIGSAC conference on computer and
communications security, ACM: 1105–1116, 2014,
https://doi.org/10.1145/2660267.2660359.

[29] C. Castillo, Android Malware Past , Present , and Future, 2011.
[30] S. Peng, S. Yu, A. Yang, “Smartphone malware and its propagation

modeling: A survey,” IEEE Communications Surveys and Tutorials, 16(2),
925–941, 2014, doi:10.1109/SURV.2013.070813.00214.

[31] H. Gascon, F. Yamaguchi, D. Arp, K. Rieck, “Structural Detection of
Android Malware using Embedded Call Graphs Categories and Subject
Descriptors,” in Proceedings of the 2013 ACM workshop on Artificial
intelligence and security, 45–54, 2013,
https://doi.org/10.1145/2517312.2517315.

[32] L. Davi, A. Dmitrienko, A. Sadeghi, M. Winandy, “Privilege Escalation
Attacks on Android,” in International conference on Information security,
Springer, Berlin, Heidelberg: 346–360, 2010, https://doi.org/10.1007/978-3-
642-18178-8_30

[33] F. Di Cerbo, A. Girardello, F. Michahelles, S. Voronkova, “Detection of
malicious applications on android OS,” Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 6540 LNCS(January 2010), 138–149, 2011,
doi:10.1007/978-3-642-19376-7_12.

[34] K.W.Y. Au, Y.F. Zhou, Z. Huang, D. Lie, “PScout: Analyzing the Android
Permission Specification,” in Proceedings of the 2012 ACM conference on
Computer and communications security, ACM: 217–228, 2012,
https://doi.org/10.1145/2382196.2382222.

[35] A.P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, “Android Permissions
Demystified,” in Proceedings of the 18th ACM conference on Computer and
communications security, ACM: 627–637, 2011,
https://doi.org/10.1145/2046707.2046779.

[36] F. Shang, Y. Li, X. Deng, D. He, “Android malware detection method based
on naive bayes and permission correlation algorithm,” Cluster Computing,
21(1), 955–966, 2017, doi:10.1007/s10586-017-0981-6.

[37] W. Ali, “Hybrid Intelligent Android Malware Detection Using Evolving
Support Vector Machine Based on Genetic Algorithm and Particle Swarm
Optimization,” IJCSNS International Journal of Computer Science and
Network Security, 19(9), September 2019.

[38] M. Kakavand, M. Dabbagh, A. Dehghantanha, “Application of machine
learning algorithms for android malware detection,” ACM International
Conference Proceeding Series, (February 2019), 2018,
doi:10.1145/3293475.3293489.

[39] M. Shohel Rana, C. Gudla, A.H. Sung, “Evaluating machine learning models
for android malware detection - A comparison study,” ACM International
Conference Proceeding Series, (March 2019), 17–21, 2018,
doi:10.1145/3301326.3301390.

[40] S.Y. Yerima, S. Sezer, G. Mcwilliams, I. Muttik, “A New Android Malware
Detection Approach Using Bayesian Classification,” in 2013 IEEE 27th
international conference on advanced information networking and
applications (AINA), IEEE: 121–128, 2013.

[41] Z. Yuan, Y. Lu, Z. Wang, Y. Xue, “Droid-Sec : Deep Learning in Android
Malware Detection,” in ACM SIGCOMM Computer Communication
Review, ACM: 371–372, 2014, https://doi.org/10.1145/2619239.2631434.

[42] J.Y. Ndagi, J.K. Alhassan, “Machine learning classification algorithms for
adware in android devices: A comparative evaluation and analysis,” in 2019
15th International Conference on Electronics, Computer and Computation,
ICECCO 2019, Institute of Electrical and Electronics Engineers Inc., 2019,

http://www.astesj.com/

O.O. Ezekiel et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1741-1749 (2020)

www.astesj.com
 1749

doi:10.1109/ICECCO48375.2019.9043288.
[43] G. Holmes, A. Donkin, I.H. Witten, “Weka: A machine learning workbench,”

357–361, 1994.
[44] S. Yerima, Android malware dataset for machine learning 2, 2018.
[45] J. Brownlee, Failure of Classification Accuracy for Imbalanced Class

Distributions, 2020.
[46] J. Brownlee, ROC Curves and Precision-Recall Curves for Imbalanced

Classification, 2020.
[47] Metacademy, F measure, 2020, Jun. 2020.
[48] Metacademy, Precision and recall, 2020.
[49] S. Glen, RMSE: Root Mean Square Error, StatisticsHowTo.com, 2020.
[50] S. Holmes, RMS Error, 2000.
[51] Y. Taguri, N. Gilboa, S. Gigi, I. Kober, A. Farhi, S. Awrabi, J. Freeman,

Perceptrons & Multi-Layer Perceptrons: the Artificial Neuron - MissingLink,
Dec. 2020.

[52] L. Breiman, “Random Forests,” Machine Learning, 45(1), 5–32, 2001.
[53] A. Liaw, M. Wiener, “Classification and Regression by randomForest,” R

News, 2(3), 18–22, 2002.

http://www.astesj.com/

	2. Literature Review
	2.1. History of Android
	2.2. Security in Android
	2.3. Android Malware
	2.4. The dangers of android malware
	2.5. Android malware detection
	2.6. Review of Past Works

	3. Methodology
	3.1. Environment Description
	3.2. Dataset Description
	3.3. Classification Algorithms application
	3.4. Graphical Representation of the Methodology
	3.5. Performance Evaluation
	Accuracy = ,𝑇𝑃 + 𝑇𝑁-𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁.
	where TP = True positive
	FN = False Negative
	FP = False Positive
	TN = True Negative
	FPR = ,𝐹𝑃-𝐹𝑃 + 𝑇𝑁.
	Precision = ,𝑇𝑃-𝑇𝑃 +𝐹𝑃.
	Recall = ,𝑇𝑃-𝑇𝑃 + 𝐹𝑃.
	F-Measure = 2 𝑥 ,𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛-𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙.
	RMSE = ,1−,𝑟-2.. 𝑥 𝑆𝐷
	3.6. Algorithm Evaluated

	4. Result and Discussion
	4.1. Analysis of the result

	5. Conclusion and Recommendations
	Conflict of Interest

	References

