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COVID-19 is a viral disease that became a pandemic representing a very great challenge
worldwide. The purpose of this article is to analyze COVID-19 patients’ data based on time-
to-event analysis and identify the factors that affect the recovery time from COVID-19. The
datasets that are used in this study are for cases that are clinically diagnosed and confirmed
where the date of onset is recorded in Wuhan and elsewhere in China from Jan 1 to Feb 11, 2020.
We used the regression imputation technique to replace the missing dates in the onset-symptoms
based on the dates of the report. We fitted the Kaplan-Meier estimator and Cox regression
model to our data. The predictor variables (factors) that we used are age, sex, and onset time to
hospitalization. The results show that the young age group is better than the old age group in
recovering from COVID-19 (the p-value of the log-rank is 0.00012) and at any time 1.9 as many
patients in the young age group are having an event (recovery) proportionally to the old age
group. Also, the results show that there is a non-significant difference between male and female
groups in recovering from COVID-19 (the p-value of the log-rank is 0.63). The results also show
that the early time to hospitalization group can recover from COVID-19 better than the late
time to hospitalization group (the p-value of the log-rank is 0.0052). This study demonstrates
the association of recovery time from COVID-19 with age, sex, and time to hospitalization.

1 Introduction

The novel coronavirus disease also known as COVID-19 is a viral
disease that became a pandemic and turn out to be a great challenge
that the world faced since world war two. This virus is originated
in Wuhan city, which located in the Hubei province of China and
it is spreading at a fast rate around the globe. The diseases caused
by viral infection continue to emerge and raise a serious issue in
public health worldwide. Several viral epidemics appeared in the
last twenty years [1]. In 2002 the severe acute respiratory syndrome
coronavirus, which is known as SARS-CoV, which is still circulat-
ing in China [2]–[4] has appeared followed by H1N1 influenza in
2009. Most recently in 2012, the Middle East respiratory syndrome
coronavirus, which is known as MERS-CoV have been recorded.
The main component of the viral genome is a positive-stranded
RNA and it has a different structure [5]. There are four genera of
Coronavirinae family: α, β, γ, and δ. it is believed that there is a

viral gene in wild animals since it has been isolated from bats and
other animals [6]. The novel COVID-19 causes mild to moderate
respiratory illness, but some people and people with health problems
can develop serious illness. Worldwide this disease affected more
than five billion people and the number of people who died due
to the infection with it exceeds five hundred thousand according
to the World Health Organization (WHO) report on the time of
writing this research. According to WHO the mild or asymptomatic
COVID-19 infections represent 80% of the cases while the severe
infections, which require oxygen and critical infections, which re-
quire ventilation represents 15% and 5% of the cases respectively.
So far, the mortality for COVID-19, which is the total number of
deaths divided by the total cases is 5% (this percentage is calculated
according to figures that are taken from the WHO web site on 09
July 2020, which shows a total infection of (12,196,982) and total
deaths of (552,781)). This mortality is higher than that of seasonal
influenza, which is below 1% according to WHO.
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Normally, data mining and machine learning methods can be
used to analyze datasets of biomedical data [7]. When data include
survival data, it requires a different analysis approach. This ap-
proach or the study of the time from the entry of a study until a
subsequent event occurs is known as survival analysis. Survival
analysis is applied in different disciplines such as medicine, engi-
neering, social sciences or behavioral sciences and biology [8]–[16].
When it is applied to medicine, survival analysis is used to study
people at risk of experiencing a negative event such as death, where
the name survival analysis comes from. Survival analysis is also
applicable to areas other than mortality such as analyzing the time
taken to recover from certain diseases or the time taken to practice
certain exercises to maximum tolerance [17]–[20]. Normally we
compare two or more groups of patients with respect to the time of
event. More than one event can be considered in the same analysis,
but we normally take one event at a time as the event of interest in
the study and it can be death or recovery [21].

Many methods can be used for survival analysis, these methods
include Kaplan-Meier method which is an estimator of survival
probabilities [19, 22] and the Cox regression model, which is now
known as the Cox Proportional Hazard Model (CPHM) [23]. These
two methods are considered among the methods that contribute
significantly to the development of the survival analysis field.

Many studies were conducted to model the survival time and
to predict the mortality risk for COVID-19. Guillermo Salinas-
Escudero et al. applied survival analysis to study the effect of
COVID-19 in the Mexican [24]. The factors they used include age,
sex, comorbidities, hospitalization, and admission to the intensive
care unit. They applied the Kaplan-Meier and Cox regression mod-
els to their data. Their results show that men and older people have
higher mortality than women and young people respectively. Monira
Mollazehi et al. modeled survival time to recover from COVID-19
[25]. They used data from Singapore in the period between January
23 and March 13, 2020. Their purpose is to identify the factors af-
fecting the recovery time from COVID-19. They used patient’s age
and nationality as predictors and they found that younger patients
can recover from COVID-19 faster than old patients and Singa-
porean patients can recover faster than non- Singaporean. They
compared the results of different models and they found that the
Weibull model is the best in fitting their data. Using the Weibull
model, they obtained a Hazard rate of 1.01 and 0.76 for age and na-
tionality respectively. Qinxia Wang et al. used survival-convolution
models to model the duration of the patient remaining infectious to
others [26]. Noam Barda et al proposed a hybrid methodology to
construct a multivariable prediction model. In their hybrid method,
they used a baseline model which they trained on population data to
discriminate the risk then they used a multicalibration algorithm for
the risk predation [27]

Different factors may have an influence on the mortality or
the recovery time from COVID-19. These factors can be used
to divide the patients into two or more groups and they include
age, gender, and time from acquiring the illness to hospitaliza-
tion. This study aims to investigate whether these factors affect
recovery time. The datasets that are used in this study are down-
loaded from Github (https://github.com/mrc-ide/COVID19_
CFR_submission). From these datasets, we used two datasets. The
first one is for cases that died from COVID-19 in Hubei and the sec-

ond dataset is for patients returning to their home, which obtained
from six flights that departed between Jan 30 and Feb 1, 2020.

The rest of the paper is organized as follows: The next section
describes the materials and methods. The material and methods
section starts by showing how we prepared the dataset that we used
followed by describing the imputation technique we used to replace
the missing data. Kaplan–Meier survival curve, Log-rank test, and
Cox proportional hazards (PH) model also are explained in the mate-
rials and methods section. we present the results and the discussion
in the third section and the conclusion in the last section.

2 Material and Methods

2.1 Dataset

The datasets that we used in this study are for cases that are clini-
cally diagnosed and confirmed where the date of onset is recorded
in Wuhan and elsewhere in China from Jan 1 to Feb 11, 2020.
From these datasets, we used two datasets. The first one is for
cases that died from COVID-19 in Hubei. It contains the features:
sex, age, date of symptom onset, date of hospitalization, and date
of death or recovery from COVID-19. Some of the data for the
date of symptom onset are not available for some cases so used
imputation based on regression to replace the missing data. The
second dataset is for patients returning to their home, which ob-
tained from six flights that departed between Jan 30 and Feb 1,
2020. Also, the cases with incomplete date of symptom onset were
replaced using regression imputation and then we merged the two
datasets. We removed the cases where the sex or the age or date
of hospitalization are not available and we end up with 693 cases,
which represent recovered and died patients. The used datasets
were downloaded from Github (https://github.com/mrc-ide/
COVID19_CFR_submission). They were used by [28], which ex-
tracted it from WHO–China Joint Mission report to estimates the
severity of COVID-19 based on the model-based analysis.

2.2 Regression imputation

The datasets that we downloaded has missing data on the date on-
set symptoms, therefore, instead of deleting all the cases that have
missing data, we need imputation to replace these missing data with
estimated values, because it is important to have the timing of the
onset-symptoms to study the recovery time. We used regression
imputation to preserves all cases by replacing the missing date onset
symptoms with a probable value estimated by the date of the report
because it is clear from Figure 1 that there is a strong correlation
between these two dates. In Figure 2, the scatter plot shows the
relationship between these two dates, and the value of R2 (0.7266)
emphasizes the strength of this relationship. The model that is
used to estimate the missing data in the date onset symptoms is
y = 0.8227x − 0.5428 also shown in Figure 2, where x and y repre-
sent the report date and the onset symptoms respectively. Preserving
the cases with missing data using regression imputation has several
advantages. In addition to avoiding the deletion of the cases with
missing data that can alter the variance of the shape distribution,
it can also substitute the missing value based on another variable
and no novel information will be added therefore we will be having
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an increased sample size and therefore a reduced standard error
[29]–[31].

Figure 1: The correlation between date report and date onset symptoms.

Figure 2: Regression prediction for date onset symptoms.

2.3 Kaplan–Meier survival curve

In Kaplan–Meier survival curve, the survival times that include the
censored data (the observation that does not get the event) is as-
sumed to be t1, t2, ..., tn. These times are entered to the study ordered
by increasing duration of a group of n subjects, We can estimate
the proportion (survival rate) of subjects S (t) surviving beyond any
follow-up time tp as [17]:

S (t) =
(r1 − d1)

r1
×

(r2 − d2)
r2

... × ...
(rp − dp)

rp
(1)

Here ri represents the number of subjects alive just before time
ti given that tp is the largest survival time and i is any value between
1 and p, di represents the number of subjects who died at the time ti,
therefore di = 0 for censored observations. Before the occurrence
of the first event all the patients are alive, therefore, S (t) = 1. Con-
sidering time ti, where the number of events(deaths) is di and the
number of alive is ri just before ti then S (ti) can be calculated as:

S (ti) =
(ri − di)

ri
× S (ti−1) (2)

In the censored data we will not have information about the
survival time, therefore, S (ti) will not be calculated for censored
observations since the survival curve will not change at the time of
a censored observation. At the next event, the number of patients at
risk is reduced by the number of censored observations between the
two events [32].

2.4 Log-rank test

Normally, we need to compare two survival curves of two groups.
For this sake, we use Log-rank test, which is related to a test that
uses the logarithms of the ranks of the data and it is used under the
assumptions: i) the survival times are continuous or ordinal, ii) one
group’s risk of an event relative to the other does not change with
time. When the death event occurs at time ti then we will consider
the total number alive (ri) and the total number still alive up to the
time ti in a specific group (say group A) rAi. Consider that di is the
total number of deaths i.e event at the time ti. Then the expected
number of deaths in group A at time ti can be calculated as

EAi =
rAi

ri
× di (3)

Then the total number of expected deaths for group A can be
calculated as:

EA =
∑

EAi (4)

The total number of the expected deaths in group B can be cal-
culated based on the total number of expected deaths for group A
given that the total number of events is n as follows:

EB = n − EA (5)

In the Log-rank test, the data for the two groups combined are
ordered and then each event, in turn, is considered starting at time
t = 0. Then the log-rank statistics is calculated for two groups based
on the summed observed minus expected score for a given group
and its variance estimate and it is given as follows:

χ2 =
(OA − EA)2

EA
+

(OB − EB)2

EB
(6)

Here OA and OB represent the total number of events in groups
A and B respectively and EA and EB represent the total number of
expected events in group A and group B respectively. This statistic
is compared with χ2 statistics to decide whether there is a significant
difference between the two groups or not using a specific confidence
interval or level of significance.

2.5 Cox regression model

The Cox regression model also known as the Cox proportional haz-
ards model (CPHM) is used to investigate the association between
the survival time of patients and one or more predictor variables.
CPHM is a regression model that has a dependent variable and
independent variables and it is used to know the effect of specific
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variables on the event. Its formula is written as shown in the follow-
ing equation:

h(t, X) = h0(t)e(
∑p

i=1 Bi xi) (7)

where h0(t) is the baseline hazard, X′s here are time-
independent, and Bi are the regression coefficients. It is important to
note that Kaplan-Meier curves and log-rank tests work with categor-
ical predictor variable and they can describe the survival according
to only one factor under investigation. CPHM model can work
for quantitative predictor variables as well as categorical predictor
variables and it can assess at the same time the effect of several
factors on the survival time of patients.

Figure 3: Histogram shows the distribution of age values.

3 Results and discussion
To analyze COVID-19 data, we used survival and survminer func-
tions under R software. In this COVID-19 patients’ data, the event
of interest is the recovery of the patients and the outcome is time in
days until the recovery. We must consider an important analytical
problem called censoring, which occurs when we have sick people
at risk who have died or the recovery time for them is not known due
to losing their follow up, therefore the patients’ exact recovery time
will not be known at least in the period of the study so the patient
survival time is considered censored. In other words, in this study,
we will consider censoring if the patient is died or lost follow-up
in the determined period given that the period of the study is from
Jan 1 to Feb 11, 2020, as shown in the dataset subsection. After
extracting the data and preparing it we read it in R software. We
consider three predictive variables (patient gender, age, and time to
hospitalization). The gender variable is a categorical variable and
it can be easily analyzed using Kaplan–Meier survival curve and
log-rank since we have two groups male and female. The patient
age is a continuous variable, therefore, we need to convert it into
categorical to be able to use it as a predictive variable. To do so we
need to use a cutoff, where we will consider the age greater than this
cutoff as old and the age less than the cutoff as young. To determine
the cutoff, we should look at the overall distribution of age values
using the histogram shown in Figure 3, where the cutoff of 50 is

obviously suggested to be used. Also, we converted time to hospi-
talization to a categorical variable by considering hospitalization
within 6 days as ‘Early’ and hospitalization in a time greater than 6
days as ‘Late’.

Table 1: summary of the Kaplan-Meier estimates for the age groups up to day 16.

Old age group

time
n.
risk

n.
event

non-recovery
probability

std.
err.

Lower.
95% CI

Upper.
95% CI

4 343 1 0.997 0.003 0.991 1.000
5 321 1 0.994 0.004 0.986 1.000
6 302 1 0.991 0.005 0.980 1.000
7 280 4 0.977 0.009 0.959 0.994
9 261 1 0.973 0.010 0.954 0.992
10 250 1 0.969 0.010 0.949 0.989
11 240 5 0.949 0.013 0.923 0.975
13 216 3 0.936 0.015 0.906 0.966
14 205 2 0.926 0.016 0.895 0.959
15 197 4 0.908 0.019 0.872 0.945
16 183 4 0.888 0.021 0.848 0.929

Young age group
4 270 1 0.996 0.004 0.989 1.000
5 240 1 0.992 0.006 0.981 1.000
6 219 2 0.983 0.008 0.967 1.000
7 207 3 0.969 0.012 0.946 0.992
8 198 2 0.959 0.013 0.933 0.986
9 195 5 0.934 0.017 0.902 0.968
10 185 3 0.919 0.019 0.883 0.957
11 177 4 0.899 0.021 0.858 0.941
12 169 1 0.893 0.022 0.852 0.937
13 167 3 0.877 0.023 0.833 0.924
14 158 1 0.872 0.024 0.826 0.919
15 156 5 0.844 0.026 0.794 0.896
16 148 12 0.775 0.030 0.718 0.837

To analyze the data based on the age group, we created a survival
object and we fit the Kaplan-Meier curves by passing the created
survival object to survfit function. We obtained the results given
in Table 1. Normally, the results obtained from the survfit func-
tion are the probability of non-recovery as shown in the 4th column
of Table 1 i.e. death or negative event (Table 1 shows the results
up to day 16). In this study, we are looking for a positive event
(recovery) therefore we can calculate the recovery rate as (1- the
probability of non-recovery). The results show that in the old age
group over the four days period 1 recovered out of 343, therefore,
the probability of non-recovery is (343-1)/343=0.997 (see Table 1
the first row) so the recovery rate is (1- 0.997) =0.003. Over the
five days period as shown in the table (see Table 1 the second row),
21 patients of the remaining 342 patients lost follow-up (censored)
so the number of remaining patients on the 5th day is 321. One
of the remaining patients is recovered in the 5th day therefore, the
proportion not recovered is 0.994. We could calculate the survival
at a specific time t as the product of the observed survival rates
until t i.e S (t) = p.1 ∗ p.2 ∗ . . . . ∗ p.t, where p.1 is the rate of the
surviving patients who past the first time point and p.2 is the rate of
the surviving patients who past the second time point, and so forth.
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It is very important to take into account that starting from p.2 we
should consider only those patients who survived past the previous
time point to calculate the survival rate for the following time point,
in other words, p.2, p.3. . . , p.t are survival rates that are conditional
on the previous survival rates. Given the assumption of independent
and random censoring, we assume that the 21 patients who were
censored were similar to the 321 who remain at risk regarding their
survival experience. Since 1 of the 321 who remained and survived
on the 5th day recovered and we have 1 recovered on the 4th day
then the total number of patients who recovered on the course of 5
days is 2. Subtracting 2 from the original number, which is 343 will
yield 341. Then the recovery rate in the 5th day will be (1-341/343)
= 0.006. The same analysis for the old age group is applied to the
young age group (the results up to day 16 out of 30 days are shown
in Table 1). The lower 95% confidence interval and upper 95%
confidence interval tell us how accurate the estimate of the mean
is [33]. In the first row in Table 1 the lower 95%CI and the upper
95%CI show us that we are 95% confident that the interval (0.991,
1.000) contains the true value of the parameter. Also, we can see
that this interval is very narrow, which means that the certainty of
the results is very high. In other words, we are 95% certain about
the results. This narrow interval is associated with a very small
standard error (0.003).

The corresponding survival curve can be obtained using the
function ggsurvplot on the survival object. The obtained curves (see
Figure 4) are step functions that allow us to compare the survival
time of two age groups. Typically, the curve starts at 1 representing
the fact that all of the patients are not having the event at entry
into the study (see Figure 4 A). Over time the curve represents
the probability of remaining non-recovered patients. Since we are
interested in the probability of the recovered patients, we drew the
survival curve starting from 0 to represent the portion of the re-
covered patients as shown in Figure 4 B. It is clear from Figure 4
B that the survival function of the young age group consistently
lies above that for the old age group. This indicates that the young
age group is better in recovering from COVID-19 than the old age
group. We note that the two functions are somewhat close to each
other in the first few days. This indicates that the young age group
can survive COVID-19 later after infection than its early one. The
estimate of the median recovery time for the young age group can
be obtained from Figure 4 by selecting the value in the time axis
that corresponds to the survival probability of 0.5. From the figure,
it is clear that the median recovery time is greater than 20 days.
The p-value of the log-rank is 0.00012, which indicates that the
results are significant considering p < 0.05 indicates statistical sig-
nificance, in other words the results show that there is a significant
difference between young and old patients regarding the recovery
from COVID-19.

To analyze the data based on the gender (Male, Female), we
directly created a survival object since we don’t need to convert the
gender of the patient to a categorical variable (it is already a categor-
ical variable). Then we fit the Kaplan-Meier curves by passing the
created survival object to survfit function. We obtained the results
given in Table 2 (we showed the results for the first 15 days). The
results show that in the Female group over the four days period 1
recovered out of 295 therefore the probability of non-recovery is
294/295=0.997 (see the first row). Then the recovery rate in the 4th

day will be (1-0.997) = 0.003. The rest of the Female group results
and the male group results can be described as we did with the age
group results that are given in Table 1.

Table 2: summary of the Kaplan-Meier estimates for the sex groups up to day 15.

Female group

time
n.
risk

n.
event

non-recovery
probability

std.
err.

Lower.
95% CI

Upper.
95% CI

4 295 1 0.997 0.003 0.990 1.000
5 261 3 0.985 0.007 0.971 1.000
6 234 1 0.981 0.008 0.964 0.998
7 216 4 0.963 0.012 0.939 0.987
8 210 1 0.958 0.013 0.933 0.984
9 202 5 0.934 0.016 0.903 0.967
10 193 3 0.920 0.018 0.885 0.956
11 184 5 0.895 0.021 0.855 0.937
13 169 2 0.884 0.022 0.842 0.928
15 160 1 0.879 0.022 0.836 0.924

Male group
4 346 2 0.994 0.004 0.986 1.000
5 325 1 0.991 0.005 0.981 1.000
6 310 3 0.982 0.007 0.967 0.996
7 293 4 0.968 0.010 0.949 0.988
8 283 1 0.965 0.010 0.944 0.985
9 275 2 0.958 0.012 0.935 0.981
10 262 1 0.954 0.012 0.931 0.978
11 252 4 0.939 0.014 0.912 0.967
12 240 1 0.935 0.014 0.907 0.964
13 233 4 0.919 0.016 0.888 0.952
14 220 4 0.902 0.018 0.868 0.938
15 210 8 0.868 0.021 0.828 0.910

The corresponding survival curve for the sex is shown in Figure
5, where the step functions allow us to compare the survival time
of two sex groups. Figure 5 A is the probability of remaining un-
recovered patients based on gender. The survival function of the
Female group and that for the male group from the time 0 up to 40
follow similar paths, therefore the p-value (0.63) from the log-rank
test is not significant considering p < 0.05 indicates statistical sig-
nificance. Figure 5 B shows the survival curves starting from 0 and
they represent the proportion of the recovered patients based on sex.

We used Cox regression model to measure the effect of the dif-
ferent factors on the recovery from COVID-9. in Cox regression the
measure of the effect is hazard rate. The hazard is the instantaneous
event rate or the probability of a patient at time t has an event at
that time. Here the assumption is non-recovery if the event does not
occur up to time t [23, 34]. Hazard ratio of 1 means that event rates
are the same in the members of the same group. Figure 7 shows that
at any time 1.9 as many patients in the young age group are having
an event (recovery) proportionally to the old age group, which is
taken as a reference, and the value 0.001** shows that this result
is statistically significant. The result of the hazard ratios supports
the results that we obtained in the step functions that are depicted
in Figure 4 B. Regarding the sex group, the results in the figure
shows that the hazard ratio is 1 which indicate that three is no differ-
ence between male patients and female patients in recovery from
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Figure 4: Survival curves for days to recovery from COVID-19 (age groups). A) Proportion not recovered; B) Proportion recovered.

Figure 5: Survival curves for days to recovery from COVID-19 (sex groups). A) Proportion not recovered; B) Proportion recovered.

Figure 6: Survival curves for days to recovery from COVID-19 (time to hospitalization groups). A) Proportion not recovered; B) Proportion recovered.
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COVID-19. This result supports the results that we obtained in the
step functions. We note that the P-value is quite different from what
is shown with the Kaplan-Meier estimator and the log-rank test that
is because the hazard ratio calculates the hazard ratio and respective
risk of death whereas Kaplan-Meier estimator and the log-rank test
estimate the survival probability [35]. Therefore, we can see that
the results yielded by these different methods are different in terms
of significance.

Figure 7: Forest plot shows the hazard ratios of the age and sex groups.

Also, we analyzed the data based on the time to hospitalization
(early, late), we considered time to hospitalization as early if the
patient is hospitalized within 6 days from catching the disease and as
late if is hospitalized in a time greater than 6 days from catching the
disease. Since not all the COVID-19 patients are hospitalized, we
deleted the cases that have no hospitalization date. We then created
a survival object and fit the Kaplan-Meier curves by passing the
created survival object to survfit function. We obtained the results
given in Table 3, which shows the results for the first 20 days. The
results show that in the early time to hospitalization group over the
four days period 1 recovered out of 159, therefore, the proportion
not recovered rate is 158/159=0.994 (see Table 3 the first row), and
therefore the proportion recovered rate is 1-0.994=0.006. In the late
hospitalization group, the results show that over 12 days 1 recovered
out of 103 so the proportion not recovered is 102/103=0.990 and
hence the proportion recovered rate is 1-0.990=0.010. We note that
in the early to hospitalization group the recovery starts at day 4,
while in the late to hospitalization group the recovery starts at day
12.

The survival curve of the time to hospitalization groups is shown
in Figure 6. It is clear from Figure 6 B that the survival function
of the early time to hospitalization group consistently lies above
that for the late time to hospitalization group. This indicates that
the early time to hospitalization group is better recovering from
COVID-19 than the late time to hospitalization group. Also, we
note that the two functions are somewhat close to each other in

the first few days (up to day 4). This indicates that the early time
to hospitalization group can survive COVID-19 later after 4 days
from infection than its early one. The p-value of the log-rank is
0.0052, which indicates that the results are significant considering
p < 0.05 indicates statistical significance, in other words, the results
show that there is a significant difference between the early time to
hospitalization group and late time to hospitalization group.

Table 3: summary of the Kaplan-Meier estimates for the time to hospitalization
groups.

Early time to hospitalization group

time
n.
risk

n.
event

non-recovery
probability

std.
err.

Lower.
95% CI

Upper.
95% CI

4 159 1 0.994 0.006 0.981 1.000
5 157 1 0.987 0.009 0.970 1.000
7 147 4 0.961 0.016 0.930 0.992
9 133 3 0.939 0.020 0.901 0.978
10 124 3 0.916 0.023 0.872 0.963
11 118 4 0.885 0.027 0.833 0.940
13 110 2 0.869 0.029 0.814 0.928
14 103 2 0.852 0.031 0.794 0.915
15 100 4 0.818 0.034 0.754 0.887
16 92 5 0.774 0.037 0.704 0.851
17 85 2 0.755 0.039 0.683 0.835
18 81 2 0.737 0.040 0.662 0.819
19 77 4 0.698 0.042 0.620 0.786
20 70 7 0.629 0.046 0.545 0.724

Late time to hospitalization group
12 103 1 0.990 0.010 0.010 0.972
13 100 1 0.980 0.020 0.014 0.954
15 96 3 0.950 0.050 0.022 0.908
16 89 4 0.907 0.093 0.030 0.851
17 82 2 0.885 0.115 0.033 0.823
18 74 3 0.849 0.151 0.037 0.779
19 68 1 0.837 0.163 0.039 0.764
20 63 1 0.823 0.177 0.040 0.748

Cox regression model for time to hospitalization yielded the
hazard ratio, which represents relative that compares the early time
to hospitalization group with the late time to hospitalization group
as shown in Figure 8. A hazard ratio of 0.54 for the late hospital-
ization group tells us that patients who sent to hospital late have
less opportunity of recovering compared to patients who sent to the
hospital early, which served as a reference to calculate the hazard
ratio. As shown by the forest plot, the respective 95% confidence
interval is (0.35 – 0.84) and this result is significant (p-value=0.006).
Using this model, we can see that the time to hospitalization vari-
able significantly influences the patients’ recovery from COVID-19.
Also, We note that the obtained p-value is quite different from what
is shown with the Kaplan-Meier estimator and the log-rank test
and that is due to the same justification that we presented when
analyzing the sex and age groups.

Salinas-Escudero et al. study [24], which applied Kaplan-Meier
and Cox regression models to the Mexican found that the age factor
has a significant effect in recovering from COVID-19. This finding
agrees with our finding on the data we used. In another hand, their

www.astesj.com 1615

http://www.astesj.com


M.K. Elbashir et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1609-1617 (2020)

study found that sex group has significant effects, which disagrees
with our finding. Monira Mollazehi et al study [25] applied Weibull
model in Singapore. The factors they used are age and nationality.
Their finding agrees with ours regarding the age group.

The limitations that need to be declared in this research are:
First, the dataset is for a specific region and in a specific period.
Second, the dataset is relatively small compared to the total infected
cases.

Figure 8: Forest plot shows the hazard ratios of time to hospitalization group.

4 Conclusion
In this work, we used survival analysis to analyze COVID-19 data
that we obtained from the clinically diagnosed and confirmed cases
where the date of onset is recorded in Wuhan and elsewhere in China
from Jan 1 to Feb 11, 2020. We used the Kaplan-Meier method
which is an estimator of survival probabilities and the Cox regres-
sion model, which is known as the Proportional Hazard Model for
the analysis. The event of interest in our analysis is the recovery
of the patients from COVID-19 and the outcome is time in days
until the recovery. The predictor variables that we used are sex,
age, and time to hospitalization. The results show that the young
age group is better in recovering from COVID-19 than the old age
group with a significant difference (P-value = 0.00012) and at any
time 1.9 as many patients in the young age group is having an event
(recovery) proportionally to the old age group. The step functions of
the sex group show that the female and male groups are somewhat
close to each other in recovering from COVID-19 and the p-value
=0.63 indicates that there is a non-significant difference in the re-
sults between Male and Female considering p < 0.05 indicates
statistical significance. The results also show that early time to
hospitalization group can recover from COVID-19 better than late
time to hospitalization group (the p-value of the log-rank is 0.0052)
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