
 

www.astesj.com     1436 

 

 

 

 

Parameter Estimation for Industrial Robot Manipulators Using an Improved Particle Swarm 
Optimization Algorithm with Gaussian Mutation and Archived Elite Learning 

Abubakar Umar1, Zhanqun Shi1, *, Lin Zheng2, Alhadi Khlil1, Zulfiqar Ibrahim Bibi Farouk3 

1School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China 

2School of Mechanical and Electrical Engineering, Dalian Minzu University, Dalian, 116600, China 

3School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China 

A R T I C L E   I N F O  A B S T R A C T 
Article history: 
Received: 31 August, 2020 
Accepted: 01 December, 2020 
Online: 21 December, 2020 

 This work presents the analysis and formulation for optimizing the dynamic model and 
parameter estimation of all the six joints of a 6DOF industrial robot manipulator by 
utilizing swarm intelligence to optimize two excitation trajectories for the first three links 
at the arm and the last three links at the wrist of the robot manipulator. Numerical 
techniques were used to reduce the observation matrix to a minimum linear combination of 
parameters, thereby maximizing the identifiable parameters, and the Linear Least Square 
method was used for parameter identification. An improved particle swarm optimization 
algorithm with mutation and archived elite learning was proposed for solving the dynamic 
optimization problem of the industrial robotic manipulator. The basic parameters of the 
algorithm have been optimized for robotic manipulator analysis. The proposed algorithm 
is computationally economical while completely dominating other Evolutionary algorithms 
in solving robot optimization problems. The algorithm was further used to analyze 36 
benchmark functions and produced competitive results. 
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1. Introduction 

This paper is an extension of the work originally presented in 
the 2019 IEEE International Conference on Artificial Intelligence 
and Computer Applications [1], where a novel mutating Particle 
swarm optimization (MuPSO) based solution was proposed for 
analyzing the inverse kinematic problem of multi-degree-of-
freedom robot manipulator. It was observed that the basic 
parameters of the Particle swarm optimization (PSO) algorithm are 
incapable of analyzing robot optimization problems, and it was 
established that the PSO parameters need to be modified for robot 
analysis. Further investigations were published in [2] where 
various parameters were used to analyse the inverse kinematic 
problem of four popular robot configurations and a new range of 
parameters for solving robot optimization problems was 
established, thereby an optimized mutating PSO algorithm for 
robot analysis was developed. If the algorithm runs into stagnation 
while solving a robot optimization problem, the mutation function 
is used to generate a completely new swarm and all the information 
regarding the previous swarm is lost. It is keen to note that if a 

particle from the previous swarm is retained, that particle becomes 
the global best particle for the new swarm, making the entire 
swarm converge again at the previous solution. It was observed 
that it would be beneficial to save previously non-dominated 
solutions in an archive for future reference. This work therefore 
seeks to further modify the mutating PSO algorithm by 
implementing it with an archived elite learning system, and using 
the new eMuPSO algorithm for dynamic parameter estimation of 
a 6 Degree-of-freedom (DOF) industrial manipulator and finally 
compare the improved algorithm with other state of the art 
algorithms in analyzing 36 benchmark functions. The rest of the 
paper is structured as follows; section 2 presents previous 
literature, section 3 introduces the new Mutating PSO algorithm, 
section 4 presents the results of parameter estimation of robot 
manipulators, and compares the new PSO algorithm with state of 
the art swarm-based algorithms on thirty-six benchmark functions 
and finally section 5 concludes the findings.  

2. Literature 

In industrial robotics, a dynamic model determines the actuator 
force required to achieve the desired joint configuration, coupling 
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effects and non-linearity of the system introduces dynamic 
uncertainties. These errors degrade the robot’s performance. 
Therefore, re-calibrating robot parameters are necessary for 
efficient robot analysis and control, that can only be achieved 
experimentally. In dynamic model estimation, obtaining 
experimental data requires that firstly, a linearized model of the 
robot manipulator is developed, then a trajectory that excites the 
robot’s rigid body dynamics is developed, afterwards input torque 
and output joint configuration data is experimentally obtained and 
finally the dynamic parameters are estimated. The accuracy of the 
estimation method is largely dependent on the chosen trajectory 
and measuring accuracy. The actuator torque can be measured 
from input electric currents while optic encoders are incorporated 
for measuring joint output conditions. The recent improvement in 
technology makes available encoders and reduction gears that are 
capable of preventing cumulative errors and minimizing gearbox 
backlash. Therefore, carefully selecting an exciting trajectory is 
paramount in dynamic model estimation. Reference [3] observed 
that the excitation trajectory can be optimized by minimizing the 
condition number of the observation matrix. The observation 
matrix is a function of only the joint variables; it enables the 
solution of nonlinear systems to be presented as linear. The 
condition number of the observation matrix is a measure of noise 
immunity, a value closer to unity results in a better signal to noise 
ratio (SNR). The presence of unidentifiable parameters results in a 
high condition number of the observation matrix. References [4, 5] 
proposed techniques for categorizing dynamic parameters into 
identifiable parameters, unidentifiable parameters, and identifiable 
parameters in linear combinations. These works suggested that 
eliminating unidentifiable parameters from the observation matrix 
enhances estimation accuracy. In [6, 7] a set of Minimal Linear 
Combinations (MLC) of identifiable dynamic parameters from the 
total amount of parameters to be identified was generated. 
Reference [8] proposed formulating the periodic Finite Fourier 
series (FFS) as an excitation trajectory. FFS inhibits noise 
interference, if the identification experiment is repeated several 
times, averaging the measured data in the time domain improves 
SNR. Reference [9] used a modified Fourier series (MFS), where 
the FFS is implemented on a circular trajectory in the Cartesian 
space such that the initial and final conditions of the joints are the 
same, permitting continuity in the optimization experiment 
without necessarily stopping and restarting the manipulator. The 
particle swarm optimization algorithm (PSO) is a stochastic 
metaheuristic swarm-based evolutionary algorithm (EA), each 
particle in the swarm is attracted towards the global best particle’s 
position and its personal best position denoted as (Gbest and 
Pbest). The velocity and position of canonical PSO are updated 
according to (1) and (2). 
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where i = 1, 2, 3…nPop denotes for the index of each particle, 
nPop is the swarm size, and dim = 1,2…dof denotes for the 
dimensionality of the solution space, dof is the degrees of freedom 
of the robot. Vidim and Xidim stand for the position and velocity 

vectors of the ith particle, respectively. Vidim = [vi
1, vi

2, . . . , vi
dof], 

Xidim = [xi
1, xi

2, . . . , xi
dof

 ]. w is the inertia weight. c1 and c2 are 
cognitive and social learning coefficients. r1 and r2 are two 
uniformly distributed random numbers within the range of [0,1]. 
Over the years, PSO has undergone various modifications either to 
improve its internal dynamics (enhance convergence and 
exploitation characteristics) or to satisfy the requirement of a 
specific real-world optimization problem or both. 

2.1. PSO with Improved Dynamics 

An index based ring topology PSO was proposed by [10] for 
solving multimodal multi-objective optimization problems having 
more than one Pareto optimal solution corresponding to the same 
objective function. Reference [11] studied the impact of 
communication topology in PSO, the star topology (Gbest) where 
each particle communicates with every other particle, was found 
better in analyzing unimodal separable problems while the ring 
topology (LBest) where each particle communicates with only its 
two neighbor particles, is preferred for multimodal, non-separable 
and composite functions. The ring topology is more capable of 
jumping between optimum basins and it was also found to never 
converge at a local optimum, but with a considerably higher 
computational cost. Memetic algorithms (MA) are hybrid EAs that 
are a fusion of global and local search techniques. EAs are usually 
employed for global search while unconstrained optimizers are 
employed for local search. Adaptive MAs have been successfully 
combined with other EAs but not PSO, [12] proposed a co-
evolutionary memetic PSO for solving multi-objective 
optimization problems. Feature selection (FS) is a combinatorial 
problem for large dimension data processing which requires large 
memory and high computational cost, [13] proposed a variable-
length PSO for FS. The Proposed algorithm is flexible and 
simplifies large data analysis, and can jump out of local optima 
while narrowing the search space. The cooperative search strategy 
which prevents particle from being trapped in local optima was 
merged with PSO by [14] for unconstrained optimization, where 
cooperative multiple swarms were used to improve the 
convergence and efficiency of the canonical PSO. 

2.2. Problem Oriented PSO 

Medicine and medical healthcare are amongst the top 
beneficiaries of artificial intelligent swarm algorithms. Health care 
services are shifting from inpatients to outpatients. Reference [15] 
showed that accident and emergency centers in hospitals are 
currently being optimized to ensure 98% of patients get the 
required attention within 24 hours. The increasing demand for 
primary health care outlets has led to a requirement to optimize the 
operational efficiency of primary healthcare centers. Grouping the 
patients into an appropriate category optimizes time and 
manpower whereas patient no shows after grouping reduces 
operational efficiency of clinics.  In [16], using PSO to improve 
the accuracy of traditional clustering techniques was proposed for 
analyzing real-time patient attendance data and group them into 
clusters, while [15] compared PSO with opposition based learning 
and self-adaptive cohort intelligence for identifying significant 
features capable of predicting no shows. Gene selection from 
microarray data for cancer diagnosis and testing also involve large 
data sets and are computationally expensive, support vector 
machines algorithm is a fast and efficient classification model 
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which requires its parameters tuned to satisfy specific problems. 
Reference [17] compared the performance of PSO-SVM and 
Memetic SVM for classification and feature selection of cancer 
cells. Alzheimer’s disease is a primary stage of dementia which is 
a type of memory disorder that affects the brain. The structural 
changes of the brain’s internal regions are the most commonly 
measured in diagnosing AD. Reference [18] compared the 
accuracy of PSO and other metaheuristic algorithms in segmenting 
the brain sub-regions. Air pollution is a major contributor to human 
mortality and a potential danger to the environment and ecological 
system [19]. Thermal power plants such as coal, petroleum, and 
natural gas are the main sources of air pollution, mercury 
contamination has been identified to be the most acute air pollutant 
produced by power plants [20]. In [21], a novel combination of 
modified genetic algorithm and the improved particle swarm 
optimization was proposed for minimizing the fuel cost of 
generating plants and emission simultaneously, by managing and 
controlling the integration of renewable energy and thermal power 
production, where an optimal generation plan for maximizing 
system efficiency can be achieved. Reference [22] proposed using 
an adaptive neuro-fuzzy inference system with PSO (ANFIS-PSO) 
for predicting mercury emission in power plants. Reference [23] 
sought to minimize the construction cost of reinforced concrete 
retaining walls (RCRW). These structures include bridges, 
railways, dams, etc., capable of withstanding the pressure resulting 
from the difference in level by an embankment, excavation, or 
natural processes. PSO was used to determine the optimum 
solution between popular techniques. In rural areas where the 
utility grid is unavailable, renewable energy is an attractive 
alternative for water pumping applications. The power-voltage 
curve of a photovoltaic cell was found to have multiple maximum 
power points under partial shading conditions, making the solar 
tracking mechanism unstable. In [24], the performance of PSO was 
compared with salp swarm algorithm for maximum power point 
tracking of solar panels. Electric motors are most popular for 
electrical-mechanical power conversion and employed in several 
industrial applications including robotics, because of their 
simplicity, durability, and low maintenance cost. They usually 
require a controller for high performance and efficiency. The 
electrical parameters of the electrical motor are very essential to 
design, performance assessment, and feasibility of the control 
technique, any difference in the actual motor parameters adversely 
affects the system performance. Reference [25] proposed using 
PSO for estimating the electrical parameters of induction motors. 

3. Mutating PSO with Elite Archive Learning 

The proposed PSO is equipped with a modified set of 
parameters and governing equations. The mutation function is used 
to generate a new swarm around the vicinity of the most promising 
particles when the algorithm runs into stagnation. The operation of 
the proposed mutating PSO with elite learning (eMuPSO) is 
divided into two, during the early stages, the algorithm searches 
the solution space for the minimum solution, then when it 
stagnates, elite solutions are being recalled from the archive and 
merged with the best solutions of the current run to generate a new 
population. The new population would be created either through 
Random or Gaussian mutation depending on the application. It was 
found that a mix of both was suitable for kinematic analysis while 
the Gaussian mutation was suitable for dynamic analysis. 

3.1. Modified Parameters 

It was established in [1] and [2] that the basic parameters of 
canonical PSO are not capable of ensuring converging solutions 
for robot optimization problems especially when the DOF is 
greater than three. The basic parameters of the mutating PSO were 
modified to satisfy the requirement for solving robot optimization 
problems. This was achieved by testing the performance of various 
PSO parameters on four popular robot configurations, and a 
relationship between the inertia weight and the social learning 
coefficient was derived. More details on modifying PSO 
parameters can be found in [2]. A non-linearly decreasing inertia 
weight is implemented with values between (2.1 – 0.6), the 
cognitive learning coefficient is constantly at 2.24, while the social 
learning coefficient is non-linearly increasing between (1.8 – 3.9). 
The equations for updating w and c2 are given in (3) and (4). 

 iter
initialiter nww *=  , (3) 

 
iter

initialiter mcc /22 =  , (4) 

where iter is the iteration number, and n and m are coefficients. 
The coefficients n and m can be determined by setting iter to the 
maximum value. Robot configurations have complex dynamics 
described by highly coupled and non-linear, second-order 
differential equations, there are possibilities of numerous strong 
local minimizers in the solution space. 

3.2. Mutation 

In [26] it was shown that structural bias is a characteristic of 
swarm algorithms that tends to confine the algorithm to a region of 
the total search area. Mutation is a valid technique for overcoming 
such constraints. It was established in [2] that even the most 
intelligent swarm-based solutions are capable of running into 
stagnation, random mutation was used to push the algorithm out of 
stagnation and enhance convergence. The Gaussian mutation was 
used in [27] to improve swarm performance. Reference [28] also 
used a Gaussian mutation throw point strategy to redistribute the 
swarm at sparse positions. In the proposed algorithm, when the 
swarm stagnates at a local minimum solution, a Gaussian mutation 
is used to push the algorithm out of stagnation and redistribute the 
swarm to enhance unbiased coverage of the search space. The 
radius of the swarm is monitored according to (5). When the 
swarm radius becomes too small, it signifies that the swarm has 
lost diversity and might be stagnating, then the mutation function 
is initiated. The condition in (6) states that if there is no change in 
the swarm radius or when the change in the swarm radius is 
negligible, then the counter g increases sequentially otherwise the 
counter is reset to zero. A second condition in (7) terminates the 
algorithm when the minimum solution is achieved or the swarm is 
mutated when g is greater than a threshold value G. 

Assuming there are k elite particles, the entire swarm 
population would be divided into k+1 parts and each k part would 
be replaced by off-springs of the kth elite particle, while the k+1 
part consists of particles generated from a random distribution, 
thereby maintaining diversity in the swarm. such that if xdim is the 
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dimth dimension of the swarm, then all the elements in the dimth 
dimension shall mutate according to (8). 

 ( )iteriteriter BestCostmeanCostGlobalBestrad −=  ,   (5) 

 


 =−+

= −

Else
radradifg

g iteriter

,0
0)(,,1 1  , (6) 

 




≥
=

−

Ggifmutate
eifend

MuPSOf
81

)(  , (7) 

 ( )σgaussianxx elitemutate +=dimdim  , (8) 

where rad is the radius of the swarm, iter refers to the current 
iteration, dimxmutate and xelite are the mutated off-spring and the elite 
solution in the dimth dimension of the swarm, and σ is a variable 
between [0-1] multiplied by size of the search space. 

3.3. Elite Archive 

When the algorithm is searching for the best solution, the 
experiences of the best particle is transferred to the next iteration 
through the global best information, but at the beginning of 
subsequent generation or after mutation, all the information 
regarding the best particle from the previous generation is lost. 
This inspired the introduction of an archive where the experiences 
of the elite non-dominated solutions are saved and can be called in 
the future to enhance the search. Reference [29] applied a dynamic 
archive maintenance strategy to improve the diversity of solutions 
in multi-objective particle swarm optimization. In [30] an external 
archive was employed to preserve the non-dominated solutions 
visited by the particles to enable evolutionary search strategies to 
exchange useful information among them, and [31] used a grid-
based approach for the archiving process and ε-dominance method 
to update the archive, which helps the algorithm to increase the 
diversity of solutions. Reference [32] used the cooperative archive 
to exploit the valuable information of the current swarm and 
archive. Information about the elite particles from dynamic sub 
swarms was used in [33] to improve the following sub-swarm, 
while [32] introduced a new velocity updating technique that 
explores the external archive of non-dominated solutions in the 
current swarm. In this article, an elite archive learning is used to 
refine the solution in the final stages of the algorithm. Elites from 
previous searches are saved as global elites, while elites of the 
current search are saved as local elites. When the algorithm 
stagnates, a combination of both elite vectors is used to generate a 
new population, and the global elites are updated with new 
solutions from the current local solutions 

3.4. Robot Dynamics 

Industrial robot manipulator 

A 6 DOF industrial robot manipulator was analyzed, the 
structure of the robot manipulator is shown in Figure 1 and its D-
H parameters are given in Table 1. A homogeneous transformation 
matrix describes the state (orientation and position coordinates) of 
a robot link with respect to the previous link in the Cartesian 
coordinate space and can be used to describe the state of the end-

effector (tool) of the manipulator with respect to the base (global 
coordinate) frame. If all the joint parameters are known (D-H 
Parameters), the homogeneous matrix of each successive pair of 
frames for the forward and inverse directions can be obtained from 
(9). The robot manipulator's end-effector coordinates would be a 
product of post multiplication as shown in (10).  

 
Figure 1: A 6 degree of freedom industrial robot manipulator 

Table 1: D-H parameters of 6 degree of freedom industrial robot manipulator 

Joint Link  Off-set Joint  Off-set  

1 300 320  (-165 : +165) -pi/2 
2 700 0  (-110 : +110) 0 
3 0 0  (-110 : +70) -pi/2 
4 0 200+497.5  (-160 : +160) pi/2 
5 0 0  (-120 : +120) -pi/2 
6 0 97.5+30  (-242 : +242) 0 
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where cθ and sθ refers to cosθ and sinθ respectively.  

Dynamic parameter estimation 

The Linear-least-square (LLS) method together with an 
optimized excitation trajectory was used for dynamic parameter 
estimation of the robot manipulator. LLS requires that the model 
equations are linear with respect to dynamic parameters and it is 

http://www.astesj.com/


A. Umar et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1436-1457 (2020) 

www.astesj.com     1440 

sensitive to noise in the measured data. [34] observed that the 
actuator forces of an industrial manipulator are linear functions of 
dynamic parameters, [4] inferred that reformulating the Newton-
Euler dynamic model such that the link inertia tensors are 
expressed about the link coordinate frames instead of the center of 
the links' mass, would result in a linearized Newton-Euler 
formulation. Equations (11-14) presents a summarized Newton-
Euler formulation in the form of observation matrix. For detailed 
information on linearizing the Newton-Euler equation, see [4] and 
[34]. 

 ( ) Γ∗ΩΩΩ=Φ
− TT 1  , (11) 
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where Γ is the compound torque for the manipulator comprising of 
individual joint torques τ, the compound observation matrix Ω 
comprises of individual joint vectors ω(q, q̇, q̈), and is a function 
of the joint position, velocity, and acceleration only. ϕ is a vector 
of unknown robot parameters for each link that require to be 
identified, it includes link mass mm, first moments [mcx mcy mcz]T 

along the x-y-z axis, and six inertia tensor Iij, these compose the 
compound vector of unknown parameters Փ. The intelligent 
swarm-based algorithm would be required to minimize the 
condition number of the observation matrix while maximizing the 
smallest singular value and minimizing the largest singular value. 
Therefore, the fitness function would be as described in (15). 

Exciting trajectory 

A modified Fourier series (MFS) formulation was used to 
define the excitation trajectory with a cubic polynomial. The 
equation of motion for the trajectory of the first three joints are 
given in (16-18), a circular trajectory path was implemented so as 
to allow continuous trajectory tracking of the robot during 
experimentation. The trajectory is to be optimized by applying the 
eMuPSO algorithm to minimizing the condition number of the 
observation matrix. The trajectory is implemented in Cartesian 
space, and joint positions are determined from inverse kinematic 
solutions. The wrist of the manipulator has a z-x-z orientation, 
therefore the excitation trajectory along the x and y axis can be 
derived independently from (16) and (17) while that of the z axis 
is estimated from (19), where d6 is the offset length of the sixth 
link of manipulator (see DH parameters) and t14 is the position 
coordinate of transformation matrix T4

0 from the Base to Link-04. 
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where Q describes the trajectory in Cartesian space such that [Qx, 
Qy, Qz]T are the x-y-z coordinates of Q, P is the polynomial, the 
variables a0 is the radius, b0 and c0 are the coefficients of the MFS 
while the variables d0, e0, and f0 are the x-y-z position coordinates 
of the excited trajectory.  j = 1,2…N denotes the harmonics of the 
MFS, while the index of time segment/period is denoted as it; freq 
is the fundamental frequency and tym is the period. The joints 4, 5, 
and 6 coincident at the joint 5, described by the transformation 
matrix T4

0 in (10). The inverse kinematic solution of these joints 
can be estimated given the orientation matrix, but in this case only 
the position vector is known (i.e. [Qx, Qy, Qz]T). Therefore, the 
rotation angles of the joints at the wrist would be estimated from 
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(20-23), and the orientation matrix is evaluated by substituting θ in 
(9) then inverse kinematics can be subsequently evaluated. To 
achieve continuity along the tool-path, the initial and final 
conditions of the trajectory must be the same as described in the 
conditions in (24). The initial and final values for the circular 
trajectory P are set as 0 and 2π radians, 3 harmonics for the 
coefficients of MFS were used (N=3), and the fundamental 
frequency is 0.6283 with a period of 10 seconds. 

4. Results 

The eMuPSO algorithm was first implemented together with 
the LLS for optimizing the observation matrix and dynamic 
parameter estimation of all the six links of the 6DOF robot 
manipulator. The ideal parameters of the manipulator are given in 
(25-32). Then the proposed algorithm was finally implemented in 
evaluating thirty-six benchmark functions including twenty-four 
variable-dimension benchmark functions and twelve constant-
dimension benchmark functions. The variable dimension 
benchmark functions consist twelve functions each, of unimodal 
and multi-modal roles (a full description of all benchmark function 
used are given in the appendix).  

The results were compared with the Standard PSO (PSO) [35] 
and four other swarm-based EAs including the Whale 
Optimization Algorithm (WOA) [36], Grey Wolf Optimization 
(GWO) [37], Grass-hopper Optimization Algorithm (GOA) [38], 
and the Differential Evolution (DE) algorithms [39]. 

4.1. Dynamic Parameter Estimation 

Generating initial elite particles 

Parameter estimation was in two stages; initial elite particles 
were first generated which were then used to generate the swarm 
for parameter estimation. This reduces the probability for the 
algorithm to run into stagnation. A swarm of ten particles was first 
generated for each variable (a0, b0, …, f0). From inverse 
kinematics, the joint conditions (position, velocity and 
acceleration) corresponding to the generated trajectory of each set 
of particle is estimated and compared with the stated constraints in 
(24).  Trajectories that do not meet the constraints are flagged and 
a penalty was introduced.  

The fitness function for this swarm is a measure of the degree 
of compliance of the generated trajectory with the stated robot 
constraints. If a trajectory is found to completely satisfy these 
constraints, the variables corresponding to such trajectory is 
elevated to elite status and a new particle is generated to replaces 
that particle, else, the entire swarm’s velocity and position is 
updated in accordance with PSO. Elite particles should be 
generated within 5-10 iteration if the minimum and maximum 
limits of the variables are carefully selected. This algorithm is 
terminated when 5 elite particles have been generated. The 
variable limits are set at ±10. While the variables a and b span 
between negative and positive limits, others must always be 
positive. 
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Optimizing the excitation trajectory 

A swarm of 20 particles is generated from the previously 
generated initial elite particles through Gaussian mutation. Similar 
to previous procedures, the boundary conditions are set, joint 
conditions corresponding to each generated trajectory is estimated, 
again penalties are introduced to make trajectories that do not 
satisfy the constraints in (24) less likely to be selected as 
exemplars. The fitness function for this swarm is evaluated 
according to (15). The swarm of the algorithm is mutated at 10 
iterations after stagnation (i.e. G=10). 

Parameter estimation 

The dynamic parameters of a 6DOF manipulator was estimated 
in two stages, the last three links corresponding to the wrist were 
first estimated followed by the first three links corresponding to 
the arm of the manipulator. A numeric technique for reducing the 
observation matrix to a minimum linear combination of 
identifiable parameters was implemented as described in [40] 
where three empty matrices were created corresponding to 
identifiable parameters, unidentifiable parameters, and identifiable 
parameters in linear combinations. Understanding that the rank of 

the observation matrix is equal to the number of identifiable 
parameters, the norm of each column of the observation matrix is 
determined independently. The columns with zero norms represent 
coefficients of unidentifiable parameters and are moved to the 
matrix of unidentifiable parameters, else it is added to the matrix 
of identifiable parameters. Note that the initial rank of the empty 
matrix of identifiable parameters is zero, if the newly added 
column does not increase the rank of the matrix of identifiable 
parameters, it is moved to the matrix of identifiable parameters in 
linear combination. The eMuPSO was used to select the trajectory 
that best optimizes the observation matrix. Removing 
unidentifiable parameters from the observation matrix increases 
estimation accuracy. In the first estimation stage (wrist), out of the 
30 unknown parameters at the wrist, 15 were independently 
identifiable, 7 were identifiable in linear combination, while 8 
were unidentifiable. Out of the 7 parameters that were identifiable 
in linear combination, it was observed that for most elite particles, 
5 were identifiable with lower errors. The 15 independently 
identifiable parameters include Iyy4, Ixz4, mx5, Ixx5, Iyy5, Izz5, 
Ixy5, Ixz5, Iyz5, mcx6, mcy6, Iyy6, Izz6, Ixz6, and Iyz6. The 7 
parameters identifiable in linear combination include mcy4, mcy5, 
mcz5, mm6, mcz6, Ixx6, and Iyz6. It was found that Ixx6 and Iyz6 
were identified with very large errors for most elite particles. In the 
second estimation stage (arm), 20 parameters were independently 
identifiable, 2 were identifiable in linear combinations while 8 
were unidentifiable. All parameters were identified with little 
errors. The 22 identified parameters include mcy1, Iyy1, mm2, 
mcx2, mcy2, mcz2, Iyy2, Izz2, Ixz2, Iyz2, mm3, mcx3, mcy3, mcz3, 
Ixx3, Iyy3, Izz3, Ixy3, Ixz3, Iyz3, Ixz1, and Ixx2.  

Figure 2.0 (a) and (b) show the convergence plot at the wrist 
and at the arm of the manipulator respectively. The eMuPSO was 
populated with twenty particles in thirty iterations and five runs. 
The Figure 2.0 shows all five runs, the sixth being the average of 
all five runs. It would be observed that in the third run of Figure 
2.0 (a), the algorithm converges to the global minimum solution in 
eight iterations, then it is mutated in the 14th iteration where it 
stagnates until it is mutated again in the 24th iteration. The best 
solutions are stored in the archive before mutation. The Figure 2.0 
(b) show less agitation of the algorithm signifying less mutation 
and simpler analysis. 

 
(a)  

 
(b)  

Figure 2: Convergence plot of the observation matrices (a) at the wrist, and (b) at the arm. 
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(a)  

 
(b)  

 
(c)  

Figure 3: Excitation trajectory for the links at the wrist of manipulator. (a) Trajectory in Cartesian space (b) Joint displacement (c) Joint velocities 

Table 2: Dynamic parameter estimation for the last three joints of a 6 DOF industrial robot 

Parameter 
Elite Particles (wrist) 

1 2 3 4 5 6 
a0(1) -3.8711 -8.7566 -6.1829 -4.824 -6.7566 -4.4276 
a0(2) 9.8782 1.1156 5.7223 -2.4838 3.1156 4.0066 
a0(3) 0.42207 4.5867 -4.0733 -3.0035 3.748 -5.7368 
b0(1) 2.1907 2.8328 4.9482 2.6421 4.7319 6.1336 
b0(2) -3.5264 -7.3354 -2.4158 -1.0079 -5.3354 5.1722 
b0(3) -2.293 -7.4121 0.31497 -3.5628 -5.4121 0.91808 
c0 6.5802 5.4755 6.423 6.8105 5.0595 2.9898 
d0 6.5802 3.1097 6.423 0.85837 5.0595 2.9898 
e0 0 0 0 0 0 0 
f0 t34 t34 t34 t34 t34 t34 
fitness 418.354 401.380 357.993 351.894 349.889 297.128 
condition 
number 

154.591 152.878 156.902 157.041 155.063 154.087 

Error(20) 10.8120 188.679 14.5859 99.1558 86.8486 25.3959 
Error(22) 2220.44 16789.5 529.495 4568.45 8777.48 44.3582 
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(a)  

 
(b)  

 
(c)  

Figure 4: Excitation trajectory for the links at the arm of manipulator. (a) Trajectory in Cartesian space (b) Joint displacement (c) Joint velocities 

Table 3: Dynamic parameter estimation for the first three joints of a 6 DOF industrial robot  

Parameter 
Elite Particles (Arm) 

1 2 3 4 5 6 
a0(1) -1.2742 5.2376 -3.2742 -2.8265 0.72577 -3.2742 
a0(2) -6.5754 6.2129 -4.5754 -6.5754 -8.5754 -8.5754 
a0(3) -9.0638 8.2042 -7.0638 -9.0638 -6.8925 -6.7108 
b0(1) -0.4967 6.2173 1.5033 -0.4967 1.5033 -2.4967 
b0(2) 4.5411 -2.6712 2.6293 2.9774 2.5411 6.5411 
b0(3) -1.6233 -7.73 -0.74646 1.2535 -3.6233 0.37674 
c0 3.0295 1.4518 1.0295 1.7199 1.0295 1.0295 
d0 0 0 0 0 0 0 
e0 173.11 101.03 184.34 187.21 188.04 166.14 
f0 5.7001 6.0889 1.0295 1.7199 1.0295 1.0295 
fitness 293.392 199.588 145.3132 103.235 70.9066 64.7651 
condition 
number 

53.5757 44.7731 26.41273 17.8764 13.4862 11.8133 

Error(20) 0.00270 0.00286 0.035218 0.01955 0.03211 0.00822 
Error(22) 0.00460 0.00766 0.074774 0.03507 0.08359 0.01544 
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Tables 2 and 3 presents the parameters of the non-dominated 
elite solutions for the joints at the arm and wrist of the manipulator, 
including the three harmonics each for a0 and b0, with 
corresponding fitness values, condition number of the observation 
matrix and cumulative errors for the best 20 identified parameters 
and for all 22 identified parameters. Figure 3.0 (a) presents the 
resultant trajectory in Cartesian space for the 5th elite particle at the 
robot’s wrist, showing a somewhat circular continuous trajectory 
with fluctuations that are typical of FFS. Figures 3.0 (b) and (c) 
show the position and velocity of the three joints at the robot’s 
wrist in joint space, while Figure 4.0 shows the equivalent for the 
1st elite particle at the robot’s arm. From the results presented in 
Table 2 (at the wrist), it would be observed that while the 6th elite 
particle has the lowest fitness value and the lowest cumulative 
estimation error for all the 22 identified parameters, the 2nd elite 
particle presents the trajectory with the lowest condition number, 
and the 1st elite particle presents the lowest cumulative estimation 
error for the 20 best identified parameters. Likewise, in Table 3 (at 
the arm), although all the 22 identifiable parameters were 
identified with higher accuracy, yet it would also be observed that 
the 6th elite particle has the lowest fitness and presents the 
trajectory with the lowest condition number, but the 1st elite 
particle presents the lowest cumulative estimation errors for both 
the 20 best identified parameter and the 22 identifiable parameters. 
This supports the observation of [41] that the best solution does not 
guarantee the global minimum solution because the dynamic 
optimization problem is not convex. 

4.2. Benchmark Function Analysis 

A total of thirty-six benchmark functions (BF) were evaluated, 
and the results presented in Tables 4-6. Reference [2] showed that 
accuracy and convergence time are paramount in robot analysis, 
the average and standard deviations alone do not completely 
describe the results, and some solutions with good averages are 
incapable of finding the global minimum solution (inaccurate). 
Therefore, the minimum values are also presented in the tables. 
The solution that best minimizes the function is presented in 
bolded font. From the Table 4, in the unimodal BF analysis, all the 
algorithms satisfactorily found the minimized solution for the 
function f6; eMuPSO, PSO, and DE equally minimized the 
function f7 while GWO and WOA equally minimized the function 
f11. WOA and GWO had the best performance, producing the best 
minimizing solutions for five out of twelve unimodal BF each. 
WOA dominated other algorithms in f1, f3, and f12 functions, tied 
with GWO in f11 and tied with all other metaheuristics in f6. While 
GWO dominated other metaheuristics in f8, f9, and f10. Therefore, 
WOA and GWO dominated other algorithms in three unimodal 
BF, tied in two BF and were dominated in seven BF each as 
elaborated in Table 7. The PSO dominated other metaheuristics in 
f4 and f5, while eMuPSO was dominant in f2. Both tied with other 
metaheuristics in f6 and f7 and were dominated in eight and nine 
unimodal BF respectively. From the Table 5, in the multimodal BF 
analysis, it can be observed that the eMuPSO and PSO tied in f1, 
f4, and f12; PSO, WOA, and GWO tied in f2; WOA and GWO 
tied in f3; eMuPSO, PSO and GOA tied in f5; all the metaheuristics 
except GWO and DE tied in f6, eMuPSO and DE tied in f9, and 

all the metaheuristics except GOA tied in f11. eMuPSO had the 
best performance producing the best minimum results on eight out 
of twelve multimodal BF, followed by PSO, WOA, and GWO 
producing the best minimum solutions for seven, five, and four 
multimodal BF respectively. eMuPSO dominated other 
metaheuristics on f10 and tied with other metaheuristics on seven 
multimodal BF. PSO did not dominate other metaheuristics on any 
of the multimodal BF, but tied on seven and was dominated in five 
BF, WOA was dominant on f7, tied with other metaheuristics on 4 
Multimodal BF and was dominated in 7 BF. GWO was dominant 
on f8, tied with other metaheuristics on 3 BF, and was dominated 
on 8 BF. From the Table 6, in the constant dimension BF analysis, 
eMuPSO and PSO tied in producing the best minimizing solution 
for f1 and f6, all metaheuristics except GOA and GWO tied on f2; 
eMuPSO, PSO and DE tied on f3, f5, f7, f8, f9, f11. All the 
metaheuristics except WOA and GWO tied on f4 and f12. 
eMuPSO once again had the best performance producing the best 
minimum solutions for all twelve BF, dominated other 
metaheuristics in f10, and tied in eleven BF, followed by PSO and 
DE producing the best-minimized solution for eleven and nine BF 
respectively. Compared to other algorithms, WOA and GWO 
performed well in the unimodal BF analysis but performed poorly 
in the constant-dimension BF analysis. After numerous 
experiments, at various dimension sizes, it can be suggested that 
the WOA algorithm is convenient for analyzing optimization 
problems with high dimensionality (especially unimodal roles), 
but may not necessarily maintain its lead when the dimensionality 
is low, while the proposed eMuPSO is convenient for analyzing 
optimization problems with lower dimensionality. Compared to 
other EAs, the eMuPSO and PSO algorithms performed averagely 
in the unimodal BF evaluations but were excellent in analyzing 
multimodal and constant-dimension BF. DE performed poorly in 
the unimodal and multimodal BF, performed well in the constant-
dimension BF analysis. 

The Wilcoxon signed-rank test was performed at a 5% 
significance level to compare the results of each run and decide on 
the significance of the results, and the p-values are reported in 
Table 8. In the statistical analysis, the best algorithm in each test 
function is the algorithm with the best average value, the best 
algorithm is compared with other algorithms independently. For 
instance, if eMuPSO is the best algorithm, pairwise comparison is 
done between eMuPSO/PSO, eMuPSO/GOA, and so on. Observe 
that since the best algorithm cannot be compared with itself, N/A 
with bold font size has been assigned to it. From Table 8, in the 
unimodal statistical analysis (F1-F12) WOA algorithm was most 
significant in six out of twelve BF as elaborate in Table 9. SPSO 
and GWO were significant in four functions each, while DE and 
eMuPSO were significant in three and two of the functions 
respectively. In the multimodal statistical analysis (F13-F24), the 
eMuPSO and DE were most significant in six out of the twelve BF 
each, followed by WOA with five BF, while SPSO and GWO were 
most significant in 3 of the BF each. In the constant-dimension 
statistical analysis (F25-F36), the eMuPSO and DE remained most 
significant for ten out of the twelve BF each, followed by the SPSO 
with 8 BF, GOA was most significant in 2 of the BF, while others 
were significant in only one each of the benchmarks functions. 
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Table 4: Unimodal benchmark function analysis. 

Unimodal Benchmark 
Functions 

Evolutionary Algorithms 

eMuPSO PSO WOA GWO GOA DE 

F1:  
Sphere 

Min 2.00E-12 4.90E-44 0 2.85E-240 2.25E-06 0.001903 

Ave 9.46E-08 5.44E-42 0 1.91E-232 8.66E-05 0.031038 

StDev 3.13E-07 2.23E-41 0 0 9.17E-05 0.039287 

F2:  
Beale 

Min 1.67E-08 7.70E-08 0.000176 6.42E-05 0.000149 3.147E-08 

Ave 0.0178315 0.015488 0.026001 0.005977 0.035998 1.43E-07 

StDev 0.0308013 0.029336 0.044659 0.0154745 0.038128 2.13E-07 

F3:  
Matyas 

Min 1.69E-12 2.12E-24 0 1.33E-143 1.42E-06 3.50E-07 

Ave 3.42E-09 1.07E-18 0 1.57E-120 1.55E-05 6.23E-06 

StDev 7.91E-09 5.33E-18 0 4.10E-120 1.51E-05 5.08E-06 

F4:  
Rosenbrook 

Min 10.167783 0.087952 14.80708 15.116454 13.29022 6.665086 

Ave 28.023866 6.257364 15.61825 16.217369 258.643 28.08251 

StDev 32.409539 3.514322 0.417166 0.6497502 480.0779 31.98284 

F5:  
Step 2 

Min 3.91E-10 0 1.38E-05 1.91E-07 7.31E-07 0.004025 

Ave 8.03E-08 0 4.99E-05 0.1749605 0.000109 0.047807 

StDev 1.77E-07 0 3.02E-05 0.1875981 0.000145 0.055443 

F6:  
Scahffer 2 

Min 0 0 0 0 0 0 

Ave 0 0 0 0 0 0 

StDev 0 0 0 0 0 0 

F7:  
Scahffer 3 

Min -3.37E-4 -3.37E-4 -3.37E-4 -3.37E-4 -3.37E-4 -3.37E-4 

Ave -3.37E-4 -3.37E-4 -3.36E-4 -3.37E-4 -3.37E-4 -3.37E-4 

StDev 1.65E-19 1.65E-19 3.00E-06 3.45E-08 1.08E-09 1.65E-19 

F8:  
Scwefel 1.2 

Min 0.0003765 1.92E-11 0.317571 7.14E-99 1.759081 0.003903 

Ave 0.0071479 4.45E-09 207.2391 4.23E-82 33.02237 0.079942 

StDev 0.0069211 6.37E-09 408.9857 2.15E-81 28.64997 0.090924 

F9:  
Scwefel 2.21 

Min 0.370036 9.76E-10 1.62E-09 8.56E-66 0.018632 0.179791 

Ave 1.0249904 1.39E-08 4.32931 1.20E-62 1.084041 2.315132 

StDev 0.5007591 1.17E-08 9.450776 4.98E-62 1.537078 2.441406 

F10:  
Scwefel 2.22 

Min 0.0027291 5.00E-26 2.0800E-322 4.67E-136 0.018623 0.077971 

Ave 0.0326953 2.66E-24 2.7900E-321 1.61E-133 0.192329 1.517522 

StDev 0.0266489 5.88E-24 0 5.42E-133 0.578804 2.606056 

F11:  
De Jong 4 

Min 2.35E-22 1.53E-79 0 0 1.40E-13 5.83E-10 

Ave 3.14E-14 4.80E-73 0 0 2.75E-09 0.117002 

StDev 9.95E-14 1.73E-72 0 0 3.50E-09 0.640849 

F12:  
Axis Parallel 

Min 4.79E-12 2.48E-46 0 2.61E-241 3.93E-05 6.28E-05 

Ave 2.12E-08 2.71E-43 0 2.61E-235 0.001067 0.000993 

StDev 6.13E-08 9.27E-43 0 0 0.001414 0.001253 
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Table 5: Multimodal benchmark function analysis. 

Multimodal 
Benchmark Functions 

Evolutionary Algorithms 

eMuPSO PSO WOA GWO GOA DE 

F13:  
Easom 

Min 0 0 3.26E-15 7.77E-12 2.11E-16 NaN 

Ave 0 0 0.023333 1.00E-09 0.086667 NaN 

StDev 0 0 0.043018 9.16E-10 0.034575 NaN 

F14:  
Griewank 

Min 2.00E-07 0 0 0 0.000577 0.011976 

Ave 0.0343134 0.015987 0.001742 0.0001222 0.04842 0.147971 

StDev 0.0330935 0.017756 0.009541 0.0006694 0.06238 0.143891 

F15:  
Rastrigin 

Min 8.9546265 7.959672 0 0 31.83894 9.732789 

Ave 17.378784 16.01883 0 0 67.56469 36.96119 

StDev 5.8526738 5.267084 0 0 29.12814 22.58322 

F16:  
Pen Holder 

Min -9.04E-08 -9.04E-08 2.87E-07 0.0393752 0.026031 NaN 

Ave 0.0168779 0.001703 0.029721 0.0652148 0.082208 NaN 

StDev 0.0251307 0.004706 0.02437 0.0179396 0.034506 NaN 

F17:  
Test-tube 

Holder 

Min -2.04E-08 -2.04E-08 -2.04E-08 -2.04E-08 -2.04E-08 -2.040E-
08 

Ave -2.04E-08 -2.04E-08 0.000198 -1.63E-08 0.002207 -1.50E-05 

StDev 0 0 0.000604 4.80E-09 0.00908 3.01E-05 

F18:  
Egg Holder 

Min 0 0 0 1.03E-10 0 NaN 

Ave 69.652218 52.92821 1.14E-13 25.398919 149.1868 NaN 

StDev 77.530967 74.41267 1.16E-13 50.110379 130.2925 NaN 

F19:  
Damavandi 

Min 2 2 0.009163 2.0000051 2 2.000002 

Ave 2 2 0.278923 2.2578664 2.000002 2.000018 

StDev 3.27E-10 0 1.197583 1.412306 3.83E-06 1.32E-05 

F20:  
Cross-Leg 

Table 

Min 0.0037107 0.049876 0.099255 0 0.09978 0.0150 

Ave 0.0603736 0.084285 0.099835 0.0832343 0.099862 0.011415 

StDev 0.0271336 0.019337 0.000111 0.0378599 2.45E-05 0.006958 

F21:  
Bucking 4 

Min 0 1.47E-90 2.20E-11 1.58E-08 3.80E-08 0 

Ave 0 5.03E-79 1.17E-06 1.15E-06 0.00028 0 

StDev 0 2.35E-78 1.28E-06 1.26E-06 0.000495 0 

F22:  
Bucking 6 

Min 0.0023858 0.003192 0.003289 0.092071 0.0065 0.013404 

Ave 0.1010663 0.119555 0.124073 0.152622 0.098243 0.097272 

StDev 0.0585834 0.074511 0.08727 0.0926189 0.066986 0.055002 

F23:  
Cosine 

Min 0 0 0 0 1.94E-15 0 

Ave 0.0084647 0 0 0 0.08306 0 

StDev 0.0080534 0 0 0 0.05875 0 

F24:  
Modified 

Rosenbrook 

Min 3.4040243 3.404024 3.404024 3.4040243 3.404024 3.404024 

Ave 4.8692154 5.80161 3.404024 6.8672033 7.000974 3.404024 

StDev 1.9585576 1.991086 4.00E-08 1.3815921 1.219484 1.88E-15 
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Table 6: Constant-dimension benchmark function analysis. 

Constant-Dimension 
Benchmark Functions 

Evolutionary Algorithms 

eMuPSO SPSO WOA GWO GOA DE 

F25:  
Paviani 

Min -2.34E-06 -2.34E-06 4.52E-06 1.91E-05 -2.34E-06 NaN 
Ave -2.34E-06 -2.34E-06 0.000137 4.28E-05 -2.34E-06 NaN 
StDev 5.70E-15 3.54E-15 0.00013 2.09E-05 2.03E-11 NaN 

F26:  
Modified 
Ackley 

Min 0 0 0 1.53E-10 1.78E-15 0 
Ave 0 0 2.01E-10 4.45E-09 3.00E-14 0 
StDev 0 0 3.77E-10 3.79E-09 2.01E-14 0 

F27:  
Camel 6 
Hump 

Min 2.22E-16 2.22E-16 1.11E-15 1.11E-13 4.44E-16 2.22E-16 
Ave 2.22E-16 2.22E-16 5.03E-13 3.93E-10 8.44E-16 2.22E-16 
StDev 0 0 1.25E-12 4.48E-10 3.37E-16 0 

F28:  
Branin Rcos 

Min -2.26E-11 -2.26E-11 -2.26E-11 1.84E-10 -2.26E-11 -2.26E-11 
Ave -2.26E-11 -2.26E-11 6.93E-09 1.94E-08 -2.26E-11 -2.26E-11 
StDev 0 0 1.32E-08 2.29E-08 4.85E-15 0 

F29:  
Hartmann 3 

Min -1.78E-05 -1.78E-05 -1.78E-05 -1.78E-05 -1.78E-05 -1.78E-05 
Ave -1.78E-05 -1.78E-05 0.000528 0.0005009 0.051517 -1.78E-05 
StDev 0 0 0.001523 0.0017303 0.196121 0 

F30:  
Hartmann 6 

Min 0 0 9.46E-07 4.68E-08 6.22E-15 4.44E-16 
Ave 0.0435941 0.047557 0.041273 0.056637 0.043647 0.11493 
StDev 0.0582734 0.059241 0.059382 0.0745266 0.058344 0.021707 

F31:  
Shekel 5 

Min 0 0 2.36E-06 2.51E-06 6.04E-14 0 
Ave 1.5943441 2.514812 0.81061 0.6767119 4.505148 0 
StDev 2.7615053 3.018129 2.487387 1.7547512 3.369024 0 

F32:  
Shekel 7 

Min -20.80588 -20.80588 -20.80588 -20.80588 -20.80588 -20.80588 
Ave -19.2602 -19.6892 -20.62807 -20.80587 -17.28696 -20.80588 
StDev 2.9070217 2.583984 0.970316 1.00E-05 3.854556 3.61E-15 

F33:  
Shekel 10 

Min -2.20E-07 -2.20E-07 2.50E-06 1.27E-06 -2.20E-07 -2.20E-07 
Ave 0.4489944 1.336099 0.455673 1.37E-05 4.623238 -2.20E-07 
StDev 1.7463952 2.782463 1.750715 6.81E-06 3.885799 5.42E-16 

F34:  
Perm 

Min 1.00E-30 1.81E-26 0.067631 0.0001552 0.00023 0.0049 
Ave 0.042594 0.03135 2.678428 1.3509178 0.046792 0.006286 
StDev 0.095434 0.089466 3.288481 2.9794594 0.093625 0.007091 

F35:  
Goldstein 

Price 

Min -8.08E-14 -8.08E-14 5.46E-11 5.70E-10 -7.02E-14 -8.08E-14 
Ave -7.87E-14 -7.86E-14 5.70E-07 1.04E-06 2.7 -7.93E-14 
StDev 9.85E-16 8.92E-16 1.13E-06 9.80E-07 14.78851 8.83E-16 

F36:  
Langerman 5 

Min 0.3033287 0.303329 0.694475 0.3033287 0.303329 0.303329 
Ave 0.5761576 0.61325 1.021407 0.5757514 0.742518 0.329675 
StDev 0.3298947 0.33584 0.186392 0.3026761 0.321734 0.10027 

Table 7: Summary of benchmark function evaluations. 

Summary of Benchmark 
Function Analysis 

Evolutionary Algorithms 

eMuPSO PSO WOA GWO GOA DE 
 

Minimum 
function 

Evaluations 

Unimodal 1/2/9 2/2/8 3/2/7 3/2/7 0/1/11 0/2/10 
Multimodal 1/7/4 0/7/5 1/4/7 1/3/8 0/3/10 0/3/9 
Constant Dim. 1/11/0 0/11/1 0/1/11 0/0/12 0/2/10 0/9/3 
Total 3/20/13 2/20/14 4/7/25 4/5/27 0/6/30 0/14/22 
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Table 8: p-Values obtained from Wilcoxon signed rank pairwise test. 

Wilcoxon signed 
rank pairwise test 

(Benchmark 
Functions) 

Evolutionary Algorithms (P_val) 

eMuPSO SPSO WOA GWO GOA DE 

F1: Sphere 1.73E-06 1.73E-06 NA 1.73E-06 1.73E-06 1.73E-06 

F2: Beale NA 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1 

F3: Matyas 1.73E-06 1.73E-06 NA 1.73E-06 1.73E-06 1.73E-06 

F4: Rosenbrook 1.92E-06 NA 1.73E-06 1.73E-06 1.73E-06 1.92E-06 

F5: Step 2 1.73E-06 NA 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F6: Scahffer 2 NA 1 1 1 1 1 

F7: Scahffer 3 NA 1 1.73E-06 1.73E-06 1.73E-06 1 

F8: Scwefel 1.2 1.73E-06 1.73E-06 1.73E-06 NA 1.73E-06 1.73E-06 

F9: Scwefel 2.21 1.73E-06 1.73E-06 1.73E-06 NA 1.73E-06 1.73E-06 

F10: Scwefel 2.22 1.73E-06 1.73E-06 NA 1.73E-06 1.73E-06 1.73E-06 

F11: De Jong 4 1.73E-06 1.73E-06 NA 1 1.73E-06 1.73E-06 

F12: Axis Parallel 1.73E-06 1.73E-06 NA 1.73E-06 1.73E-06 1.73E-06 

F13: Easom NA 1 1.67E-06 1.73E-06 1.98E-07 NaN 

F14: Grievant 1.73E-06 5.94E-05 1 1 1.73E-06 1.73E-06 

F15: Rastrigin 1.73E-06 1.73E-06 NA 1 1.73E-06 1.73E-06 

F16: Pen Holder NA 1.01E-06 1.73E-06 1.73E-06 1.73E-06 NaN 

F17: Test-tube 
Holder 

0.015625 0.015625 1.73E-06 1.73E-06 5.06E-06 1 

F18: Egg Holder NA 0.000375 0.014795 0.002585 4.73E-06 NaN 

F19: Damavandi 3.11E-05 3.11E-05 NA 2.84E-05 3.11E-05 3.11E-05 

F20: Cross-Leg 
Table 

1.92E-06 1.73E-06 1.73E-06 7.69E-06 1.73E-06 1 

F21: Bucking 4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1 

F22: Bucking 6 NA 0.19861 0.14704 0.010444 0.53044 0.734325 

F23: Cosine NA 1 1 1 1.73E-06 1 

F24: Modify 
Rosenbrook 

NA 3.38E-05 1.73E-06 1.73E-06 1.72E-06 1 

F25: Paviani 1.73E-06 1 1.73E-06 1.73E-06 1.73E-06 NaN 

F26: Modified 
Ackley 

NA 1 2.56E-06 1.73E-06 1.73E-06 1 

F27: Camel 6 
Hump 

NA 1 1.73E-06 1.73E-06 1.50E-06 1 

F28: Branin Rcos NA 1 1.73E-06 1.73E-06 0.007813 1 

F29: Hartmann 3 NA 1 1.73E-06 1.73E-06 1.73E-06 1 

F30: Hartmann 6 0.877403 0.106394 1 0.544006 0.082206 0.000616 

F31: Shekel 5 0.25 0.000244 1.73E-06 1.73E-06 1.73E-06 1 

F32: Shekel 7 NA 0.0625 1.73E-06 1.73E-06 1.71E-06 1 

F33: Shekel 10 0.375 0.007813 1.73E-06 1.73E-06 1.73E-06 1 

F34: Perm 0.24519 0.236936 1.73E-06 0.000388 0.093676 1 
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F35: Goldstein 
Price 

0.000509 0.004651 1.73E-06 1.73E-06 1.73E-06 1 

F36: Langerman 5 0.165027 0.025637 1.73E-06 0.001382 0.000148 1 

Table 9: Summary of Wilcoxon signed rank pairwise test evaluations. 

Summary of Wilcoxon 
signed rank pairwise test 

Evolutionary Algorithms 

eMuPSO PSO WOA GWO GOA DE 
 

Wilcoxon 
Signed Rank 

test 

Unimodal 0/2/10 2/2/8 4/2/6 2/2/8 0/1/11 1/2/9 
Multimodal 2/4/6 0/3/9 1/4/7 0/3/9 0/1/11 2/4/6 
Constant 
Dim. 

0/10/2 1/7/4 0/1/11 0/1/11 0/2/10 1/9/2 

Total 2/16/18 3/12/21 5/7/24 2/6/28 0/4/32 4/15/17 

 

4.3. Convergence Analysis 

In Figure 5, the unimodal convergence plot analysis, it can be 
observed that eMuPSO was dominant in f2, tied with other 
metaheuristics in f6 and f7, produced the second-best minimum 
solution for f4 and f5, and the third-best minimum solution for f8. 
A large overshoot can also be observed in the results of f7. In 
Figure 6, the multimodal convergence plots, eMuPSO dominated 
others in f10 and tied in f1, f4, f5, f6, f9, f10, f11. eMuPSO 
produced the second-best minimized solution in f8. All the 
algorithms except WOA stagnated at the local minimum in f7. In 
Figure 7, the Constant-dimension benchmark function 
convergence plots, eMuPSO best minimized all twelve BMF 
dominating others in f10. Overshoot can be observed in the results 
of eMuPSO in f25, f28, f29, f33, and f35. Similarly, an overshoot 
can also be observed in the results of WOA in f28 and f29. In the 
convergence plots presented, it can be seen that the GOA and 
GWO produced the slowest converging results, this is most evident 
in f13, f16, f18, f22, and most of the constant-dimension 
benchmark functions. This suggests good exploration capabilities 
of the swarms. Whereas eMuPSO, PSO, and DE produced the 
fastest converging results. In robot analysis speed and accuracy are 
required, therefore the best algorithm has to make a balance 
between fast convergence speed and good exploration tendencies.  

5. Conclusion 

An enhanced PSO algorithm was proposed with a Gaussian 
mutation and an archive elite learning (eMuPSO), the parameters 
and dynamic update technique were optimized for robot analysis. 
The parameter identification problem of robot manipulators is 
generally computationally demanding, therefore finding a 
computationally efficient solution is important for which swarm-
based algorithms are suitable. In Dynamic parameter estimation, 
excitation trajectory was optimized using the proposed eMuPSO, 
it allowed the swarm to be populated with fewer particles thereby 
requiring less computational time. The mutation function allowed 
a wholesome search of the solution space. The LLS method was 
subsequently used to estimate the dynamic parameters of a 6DOF 
industrial robot manipulator where it was seen that estimation 
errors are larger at the wrist of the manipulator. Parameter 
estimation accuracy is better at the arm with less dexterity, while 
the total estimation accuracy for the 6DOF manipulator is 
deteriorated by the cumulative estimation errors at the wrist with 

increased dexterity. This suggests that larger DOF manipulators 
would be suitable for manufacturing, agriculture and other 
industrial applications, but may not be suitable for high end 
application that are keen on accuracy like medical operations, 
airplane manufacture, etc. The eMuPSO particularly gives a 
scientist the advantage of choosing from the set of elite particles, 
the solution that best solves the desired problem. The eMuPSO is 
therefore capable of analyzing both kinematic and dynamic robot 
problems of robot manipulators. Further experimentation showed 
that the landscape of the solution space for robot optimization 
problems are non-linear, non-separable and multi-modal with 
multiple possibilities of sub-optimal solutions (local minimizers) 
some of which are very steep. When a solution approaches the 
vicinity of these steep local minimizers, it easily falls into its trap 
and it is usually very difficult to break out of such stagnation 
without artificial perturbation, resulting to the failure of most 
evolutionary algorithms in analyzing robot optimization problems. 
The performance of the eMuPSO can be related to its origins. The 
parameters of the eMuPSO was derived experimentally by 
comparing the performance of various robot manipulator 
configurations as described in [2]. The robot optimization problem 
is a non-linear and multi-modal problem with dimension size 
usually less than twenty. Robot manipulator problems are 
generally computational demanding, therefore a fast convergence 
time and high accuracy are important. The eMuPSO best showed 
its veracity in analyzing multimodal and constant dimension BF. 
PSO and DE performed well in constant dimension BF. It would 
also be observed that the proposed eMuPSO cannot drill a solution 
below 1E-30, this is also suitable for robot analysis because the 
solution to robot optimization problems is usually in the range of 
1E-10.  

For a successful dynamic parameter estimation analysis, the 
following should be carefully observed. 

• It is recommended to keep either d0 or e0 equal to zero to 
avoid singularity so that the excitation trajectory is limited two 
quadrants on the x-y plane.  

• It would be keen to differentiate between dynamic and 
kinematic DH-parameters. When determining the position 
coordinated of the robot manipulator, the sum of lengths of the 
3rd and 4th links make up d4, while during dynamic analysis 
this results in actuator torque errors. Likewise, the length d6. 
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Figure 5: Convergence analysis for unimodal benchmark functions. 
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Figure 6: Convergence analysis for multimodal benchmark functions. 
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Figure 7: Convergence analysis for constant-dimension benchmark functions. 
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• When determining the 6th joint angle from the excitation 
trajectory vector with (27), the initial joint position is 
unknown, so it is recommended to assume the initial joint 
position at the first segment (@ it = 1) is equal to the joint 
position at the last time segment to reduce the overshoot in 
velocity. 
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Appendix A2: Multimodal benchmark functions. 
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Appendix A3: Constant-dimension benchmark functions. 
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Dimension 
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