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We consider the estimation of empirical probability distributions, both discrete and con-
tinuous. We focus on deriving formulas to estimate number of categories for the discrete
distribution, when the number of categories is hidden, and the means and methods to esti-
mate the number of components in the Gaussian mixture model representing a probability
density function given implicitly in terms of its realizations. To reach the stated goals,
we solve certain combinatorial problems for discrete distribution and develop methods to
compute the expected Kullback-Leibler divergence for Gaussians. The last mentioned result
is needed to develop the theory of continuous distributions. Sample applications and an
extensive numerical study are given.

1 Introduction
This paper is an extension of work originally presented in 2019
Signal Processing Symposium [1]. The extension includes:

• measure theoretic account,

• derivation of the results first presented in the paper [1],

• new section devoted entirely to estimation of the number of
components in continuous distributions,

• a numerical study of algorithms dealing with estimation of
the continuous distributions,

• a specialized algorithm for counting number of monomials in
a trace of covariance matrix raised to a power.

Empirical probability distributions are a crucial element of many
applications such as machine learning [2], source coding [3], data
compression [4], speech recognition [5], speaker recognition [6],
image recognition [7], noise reduction [8], bandwidth extension [9],
and many others. It is also a scientific discipline in itself, which
is studied independently [10], [11]. In this paper, we deal with the
means and methods to estimate probability distributions, both dis-
crete and continuous. That being said, we also focus on a particular

problem encountered during probability distributions estimation,
which is the problem of an unknown number of components. In case
of discrete distribution, the number of components is the number of
categories, and in case of continuous probability distributions, it is
the number of Gaussian components in the Gaussian mixture model
(GMM) [2]. We provide estimators and methods to determine the
number of components. Toward this, in case of GMMs, we formu-
late an information-theoretic criterion that allows the selection of
an optimal, in some sense, number of components.

To strengthen the ties between discrete and continuous probabil-
ity distribution, we provide a short account of measure theory and
probability spaces. In particular, we show that the difference lies in
the type of the underlying measurable space, which is a standard
space with finite countable alphabets in case of discrete distribu-
tions and a Polish Borel space (where the Polish space, i.e., the
complete separable metric space, is the sample space) in the case
of continuous distributions. The name Polish space originates from
the pioneering work by Polish mathematicians on such spaces.

1.1 Measure Theoretic Account

This account is based on the presentation provided by Robert M.
Gray in an excellent book [12].
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1.1.1 Measurable Space

A measurable space is a pair, (Ω,B) consisting of a sample space
Ω with a σ-field B of subsets of Ω (also called the event space).
A σ-field or σ-algebra B is a collection of subsets of Ω with the
following properties:

Ω ∈ B (1)

If F ∈ B, then Fc = {ω : ω < F} ∈ B (2)

If Fi ∈ B; i = 1, 2, . . . , then ∪ Fi ∈ B (3)

The type of the measurable space is what differentiates discrete
from continuous distributions. More precisely, it is the topology
of the sample space. The discrete topology gives rise to discrete
probability distributions, and the euclidean topology gives rise to
continuous probability distributions.

Let F = {Fi, i = 0, 1, 2, . . . , n − 1} be a finite field of sample
space Ω, that is, F is a finite collection of sets in Ω that are closed
under finite set theoretic operations. To make it more concrete, let
us give an example of such a field, which is the power-set of a finite,
countable set of atoms (also called categories in the sequel). A
set F in F will be called an atom only if its subset is also a field
member of itself and the empty set, that is, it cannot be broken up
into smaller pieces that are also present in the field. LetA denote
a collection of atoms of F . Then, one can show thatA consists of
exactly all nonempty sets of the form

n−1⋂
i=0

F∗i (4)

where F∗i is either Fi or Fc
i . Let us call such sets intersection sets;

we observe that any two intersection sets must be disjoint since for
at least one i, one intersection set must lie inside Fi and the other
within Fc

i . In summary, given any finite field F of the sample space
Ω, we can find a unique collection of atoms A of the field such
that the sets inA are disjoint, nonempty, and have the space Ω as
their union. Thus,A is a partition of Ω. Such a sample space has a
discrete topology with the basis given by the set of all atomsA.

Now, we turn our attention to continuous distributions. As al-
ready mentioned, the underlying space is the Polish Borel space.
An example of such a space, which will be used in this paper, is the
Euclidean space endowed with the Euclidean topology. The basis
for the Euclidean topology is the set of all open balls in that space.
The Polish space is a complete, separable, metric space. We will
explain what the listed properties of the Polish spaces mean.

A space is called metric if it is a set A, with elements called
points, such that for every pair of points in A, there is an associated
non-negative number d(a, b) with the following properties:

d(a, b) = 0 if and only if a = b (5)

d(a, b) = d(b, a) symmetry (6)

d(a, b) ≤ d(a, c) + d(c, b) all c ∈ A triangle inequality (7)

A set F is said to be dense in A if every point in A is a point in F or
a limit point of F.

A metric space A is called separable if it has a countable dense
subset, that is, if there is a discrete set, say B, such that all points in
A can be well approximated by points in B. This means that all the

points in A are points in B or limits of the points in B. For example,
n-tuples of rational numbers are dense in Rn.

A sequence {an; n = 0, 1, 2, . . . } in A is called a Cauchy sequence
if for every ε > 0, there is an integer N such that d(an, am) < ε if
n ≥ N and m ≥ N. A metric space is complete if every Cauchy
sequence converges, that is, if an is a Cauchy sequence, then there
is a ∈ A for which a = limn→∞ an.

1.1.2 Probability Spaces

A probability space (Ω,B, P) is a triple consisting of a sample space
Ω, a σ-field B of subsets of Ω, and a probability measure P defined
on the σ-field; P(F) assigns a real number to every member F of B
so that the following conditions are satisfied:
Nonnegativity:

P(F) ≥ 0, all F ∈ B, (8)

Normalization:
P(Ω) = 1. (9)

Countable Additivity:

If Fi ∈ B, i = 0, 1, 2, . . . are disjoint, then

P(
∞⋃

i=0

Fi) =

∞∑
i=0

P(Fi).
(10)

1.1.3 Densities

The probability density function (PDF) is a measure theoretic term
defined through the Radon-Nikodym theorem.

A measure m is said to be absolutely continuous with respect to
another measure P on the same measurable space, formally m � P,
if P(F) = 0 implies m(F) = 0.
Theorem (Radon-Nikodym theorem )

Given the two measures m and P on a measurable space (Ω,F )
such that m � P, there exists a measurable function h : Ω → R
with the property that h ≥ 0 such that

m(F) =

∫
F

hdP, all F ∈ B. (11)

The function h is called the Radon-Nikodym derivative or density
of m w.r.t. P and is denoted by dm

dP . If
∫

f dP = 1, then f is called a
probability density function.

2 Discrete Distributions
For the statement of all results, as well as notations conventions, we
refer the reader to the paper [1]. The results in the article [1] include
discussion of the sun rise problem by Pierre-Simon Laplace from
the essay [13] and some applications of the theory. We reference
the paper [1] in its entirety. Here, only extensions of the material
from the paper [1] are included, which have not found place there
due to the form of a conference paper. However, for the readers
convenience we provide a short summary of the notations used in
the derivations:

• K - number of categories, possibly a hidden variable

• M - number of random experiments
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• S - the partition, set of all categories

• {pi}i∈S - multinomial proportions

• X = {xi}(i∈[1,M],xi∈S ) - observations from the random experi-
ments

• |A| - cardinality of the set A

• UNIQUE(X) - unique elements in the multiset X

• Z = |UNIQUE(X)| - the diversity index

• Pi = |{x j : x j = i}| - counts of the observations

2.0.1 Derivations of the results for the uniform distribution

Assumption of uniform distribution is restrictive. However, it gives
initial insight into the problem and, thus, is briefly presented here.
As already introduced by X, we denote the sequence of observations.
We can show that conditional probability of this sequence given the
hypothetical K is equal to:

p(X|K) =

(
K
Z

)(
M

P1P2 · · · P3

)
1

KM . (12)

It can be seen that the maximum likelihood estimate for the hypo-
thetical number of categories, does not depend on the middle term,
which includes the multinomial coefficient. Thus, the estimate can
be obtained by,

KML = argmax
K

[(
K
Z

)
K−M

]
. (13)

It is convenient to introduce another quantity, which plays an impor-
tant role in our theory. This quantity is the generalization coefficient
N, which equals by definition:

N ≡
M
Z
. (14)

The ML estimate of K can then be obtained by solving the following
equation:

1
v

ln
(

1
1 − v

)
= N, (15)

where:
v =

Z
KML

, (16)

is the fraction of the number of observed categories to the number of
all categories. The condition for the likelihood to be monotonically
decreasing is as follows:

M > log(
Z+1

Z

)(Z + 1). (17)

If this condition holds, the ML estimate for K is equal to Z. The
derivations of the above conditions are in place next. First, we note
a property that establishes the link with the known in the statistical
literature problem of coupon collector [14]:

lim
K→∞

 K × H(K)
log( K+1

K )(K)

 = 1, (18)

where one can easily recognize that K × H(K) is the expected num-
ber of trials before the coupon collector collects the whole collection.
In the above expression, H(K) is the harmonic number, equal by
definition:

H(K) ≡
K∑

i=1

1
i
. (19)

The main vehicle of the derivation is the following expression that
is valid for the harmonic numbers [15]:

K∑
i=1

1
i

= C + ln K +
1

2K
−

∞∑
i=2

Ai

K(K + 1) · · · (K + i − 1)
, (20)

where C is the Euler-Mascheroni constant. It can be seen that asymp-
totically, as K approaches infinity, the terms after the logarithmic
term vanish to zero. This leads to the following property:

lim
K→∞

 K∑
i=1

1
i
− ln K

 = C. (21)

The derivation for the condition (15) begins with taking the
logarithm of the considered expression (13):

ln [p(X|K)] =

K∑
i=1

ln i −
Z∑

i=1

ln i −
K−Z∑
i=1

ln i − M ln K. (22)

Suppose, i is a continuous variable, which setting follows from
allowing that variable to take on non-integer values. It can be seen
that the middle sum does not depend on K; therefore, derivative
w.r.t that variable reads:

d
dK

ln [p(X|K)] =

K∑
i=1

1
i
−

K−Z∑
i=1

1
i
−

M
K

= ln K−ln (K − Z)−
M
K
. (23)

The last expression allows us to immediately state the (15) and (16).
Equations (15) and (16) allow us to conclude that the sample length
needed to learn a given percent of the categories S is a multiple of
K. Setting Z = M, we see that, indeed, this (Z = M) is the sufficient
and necessary condition for optimal K approaching infinity. This is
due to the following identity:

lim
K→∞

K
M

ln
 1

1 − M
K

 = 1. (24)

It remains to prove the (17). In this case, the maximum of the like-
lihood should be attained at K = Z. Thus, we have the following
inequality:

ln [p(X|Z)] > ln [p(X|Z + 1)], (25)

which implies:

ln (Z + 1) − M ln (Z + 1) < −M ln Z, (26)

and, after some algebra, we attain at the (17). From the above rea-
soning all the results pertaining to the discrete, uniform distribution
from the paper [1] can be deduced. In Figure 1, we illustrate the
dependence of the data amount M needed to learn a given percent
of all categories.
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Figure 1: Data amounts requirement to learn a given percent of categories in case of
uniform distribution

Next, we discuss the case of the non-uniform distribution, which
is more relevant for real-world applications.

2.0.2 Derivations of the results for the non-uniform distribution

The next step will be the derivation of the conditions analogous to
that introduced in the previous section, which are distribution-free
(we relax the assumption of categories of equal probabilities). The
desired effect will be achieved by using the earlier introduced multi-
nomial proportions {pi}i∈S . Since we do not impose a constraint on
the multinomial proportions, the considered probability function is
now in the form,

p(X|K, p1, · · · , pK) =(
M

P1P2 · · · PZ

) ∑
{k : combinations of Z objects out of K objects}

Z∏
i=1

pPi
ki
,

(27)

where k = [k1, · · · , kZ]. We integrate the above function over a unit
simplex D:

D =

p :
K∑

i=1

pi = 1, p ∈ RK
+

 . (28)

This corresponds to the assumption that all PMFs are equally likely,
meaning we assume that we do not know the true PMF and attach
to each possible p = [p1, · · · , pK] an equal weight (we assume they
are equally probable):

p(X|K) =
1

vol(D)

∫
D

p(X|K,p)dp =(
K
Z

)(
M

P1P2 · · · PZ

)
1

vol(D)

∫
D

pP1
1 × · · · × pPZ

Z dp,
(29)

where the expression (29) follows the fact, that the value of the
integral does not depend on the choice and order of the probabil-
ities in the monomial integrand. To proceed with the derivation,
we compute the integral in (29) using Brion’s formulae; please see
[16]:

1
vol(D)

∫
D

pP1
1 × · · · × pPZ

Z dp = (K − 1)!
∏Z

i=1 Pi!
(M + K − 1)!

. (30)

In light of the above expression, we get,

p(X|K,M) =
K!M!Γ(K)

Z!(K − Z)!Γ(K + M)
, (31)

and next,

p(Z|K,M) =
MΓ(K)Γ(K + 1)Γ(M + Z)

Γ(Z + 1)2Γ(K + M)Γ(K − Z + 1)
. (32)

To get the probability of the hypothetical number of categories,
given M and Z, we apply the following derivation:

p(K|Z,M) =
p(Z|K,M)p(K)

p(Z|M)
=

p(Z|K,M) ×C∑∞
K=Z p(Z|K,M) ×C

=

p(Z|K,M)∑∞
K=Z p(Z|K,M)

,

(33)

where C is some constant (not to be confused with the Euler-
Mascheroni constant used earlier in this document). Evaluation
of (33) yields the following:

p(K|Z,M) =
Γ(K)Γ(K + 1)Γ(M − 1)Γ(M)

Γ(Z)Γ(Z + 1)Γ(K + M)Γ(K − Z + 1)Γ(M − Z − 1)
.

(34)
From the reasoning presented above we can state the following:

s =
u

u + 1
, s =

Z
K
, u =

M
K
. (35)

Also, all results pertaining to non-uniform distribution, stated in the
paper [1], are a consequence of the above reasoning. Based on (35)
we can plot the dependence of the amount of data needed to learn
given percent of all categories. This dependence is shown in Figure
2.
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Figure 2: Data amounts requirement to learn a given percent of categories in case of
non-uniform distribution

3 Continuous Distributions
The prominent method of density estimation for continuous dis-
tribution are Gaussian mixture models (GMM). The GMMs can
approximate a PDF given by some training vectors drawn from that
PDF. A wide-spread fitting procedure of the GMMs to the given
training vectors is based on the Expectation-Maximization (EM)
algorithm. Both, the mathematical definition of GMMs and the
fitting procedure based on the EM is explained in detail in the book
[2]. The neat property of the GMMs is that their expressive power
allows modeling any PDF to any accuracy, given enough training
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vectors are available. However, the traditional fitting procedure
is susceptible to overtraining if too many components are chosen.
Thus, in this paper, we study a fitting method that does not overfit,
and, secondly, allows for the estimation of the number of compo-
nents given the newly introduced information-theoretic criterion.
To reach the goal of formulating the criterion, we first develop a
mathematical approach to compute the expected Kullback-Leibler
(KL) divergence for the single multivariate Gaussian, whereas the
expectation is taken over given number M of samples used to esti-
mate the multivariate Gaussian. In this section, we first develop the
theory of expected KL divergence; next, we provide the modified
training procedure and end the section with a numerical study.

3.1 Computation of expected Kullback-Leibler diver-
gence

To the best of the authors’ knowledge, the computation of the ex-
pected Kullback-Leibler divergence for multivariate Gaussian vari-
ables has been never previously explored in the literature. Thus, this
paper deals with this problem, which can be formally expressed as,

EKL(M) = Exi∼p(x)
[
DKL(p(x)‖q̂(x, x1, · · · , xM))

]
, (36)

where p(x) and q(x) are multivariate Gaussians.
The solution to the problem indicated above can be used in the

context of the Minimum Description Length (MDL) cf. [17] or
Minimum Discrimination Information (MDI), cf. [18]. MDI and
MDL principles have been used often for solving computational
learning problems (see [19]–[23]).

The well-known result from the statistics is the following for-
mula for the KL divergence between two multivariate Gaussians:

DKL(p‖q) =

∫
p(x) log

p(x)
q(x)

dx, (37)

for p(x) and q(x) given as:

p(x) = N(x|µ1,Σ1) and q(x) = N(x|µ2,Σ2), (38)

where:

N(x|µ,Σ) = det(2πΣ)−
1
2 exp

(
−

1
2

(x − µ)T Σ−1(x − µ)
)
, (39)

and finally (see [24]):

DKL(p‖q) =

1
2

[
log

(
det(Σ2)
det(Σ1)

)
− d + tr(Σ−1

2 Σ1) + (µ2 − µ1)T Σ−1
2 (µ2 − µ1)

]
, (40)

where d is the dimension of PDFs p and q.
Next, let us assume that the positively defined and symmetric

Σ1 is given, µ1 is a zero vector, and Σ2 and µ2 are estimated from
samples xi, where xi ∼ N(x|µ1,Σ1):

µ2 = 1
M

M∑
i=1

xi Σ2 = 1
M

M∑
i=1

(xi − µ1)(xi − µ1)T = 1
M

M∑
i=1

xixT
i ,

(41)
where M is the number of samples (length of the observation). We
also assume that Σ2 is positively definite and thus well-conditioned

(otherwise KL divergence would go to infinity). This assumption
leads to the requirement that M has to be greater than the dimension
of Σ1 when Σ2 is non-diagonal.

As already indicated in (36), we are looking for the expectation
of the Kullback-Leibler divergence over finite sample:

Exi∼p(x)
[
DKL(p(x)‖q̂(x, x1, · · · , xM))

]
,

where p(x) and q(x) are given in (38).
We consider two cases: the first case is when the covariance ma-

trix is diagonal, and the second case, which is a more complicated
one, is when the covariance matrix is full.

3.1.1 Diagonal Case

At first, it is worth noticing that the expectation of the Kullback-
Leibler divergence does not depend on a specific form of the covari-
ance matrix Σ1. Let us introduce the following substitution:

xi = Σ
1
2
1 yi where yi ∼ N(y|0, I), (42)

which, in turn, under the assumption given by the (41), gives:

E

[
log

(
det(Σ2)
det(Σ1)

)]
= E[tr(log Σ)], (43)

where:

Σ =
1
M

M∑
i=1

diag(yi � yi), (44)

where � denotes the element-wise product, the Hadamard product.
It is worth mentioning that we have used the following identity (see
[25]):

log(det(Σ)) = tr(log Σ). (45)

Since Σ is diagonal and yi has a zero mean vector, we conclude,

E[tr(log Σ)] =

E

 d∑
k=1

log

 1
M

M∑
i=1

yi(k)2


 =

E

 d∑
k=1

log(σM(k)2)

 =

= d · E[log(σM(1)2)] =

d
(
ψ

(
M − 1

2

)
+ log 2 − log(M − 1)

)
, (46)

where ψ(n) is the digamma function.
The next expression, which appears in (40), is:

tr(Σ−1
2 Σ1) = tr(Σ−1), (47)

where Σ is defined as in (44). After a number of transformations,
we get

E[trΣ−1] = E

[
d∑

k=1

1
σ2

M(k)

]
= d · E

[
1

σ2
M(1)

]
= d 1

M−2 . (48)
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The last expression, which needs to be calculated, is

E[µT
2 Σ−1

2 µ2] = E

[
d∑

k=1

x̄(k)2

σM (k)2

]
= d · E

[
x̄(1)2

σM (1)2

]
= d M−1

M·(M−2) . (49)

And finally, our derived formula reads,

EKL(M) =

d
2

[
ψ

(
M − 1

2

)
+ log 2 − log(M − 1) − 1 +

M
M − 2

+
M − 1

M · (M − 2)

]
.

(50)

3.1.2 Non-diagonal Case

In the non-diagonal covariance matrix case, we first introduce the
same substitution as in the diagonal case, which is shown in (42):

xi = Σ
1
2
1 yi where yi ∼ N(y|0, I). (51)

We start by calculating the logarithmic expression, which ap-
pears in (40). By using identity in (45), and transforming the ex-
pression using (41), as previously, we get,

log
(

det(Σ2)
det(Σ1)

)
= tr(log Σ). (52)

To calculate the expectation of this expression, we use the expansion
of the matrix logarithm into the power series, see [26]:

log A =

∞∑
k=1

(−1)k+1 (A − I)k

k
, (53)

and, after a number of transformations, we get,

E[tr(log Σ)] =

E[tr(log mΣ − log mI)] =

E

tr
 ∞∑

k=1

(−1)k+1 1
k

k∑
j=0

(
k
j

)
(−1) jmk− jΣk− j − log mI


 , (54)

where m is chosen so as to ‖mΣ − I‖ < 1 is satisfied.
We further develop our approximation by introducing the fol-

lowing auxiliary function:

z(k, kmax) =


kmax∑
i=1

(−1)k+1 ·
(

i
k

)
· 1

i when k = 0
kmax∑
i=k

(−1)k+1 ·
(

i
k

)
· 1

i when k > 0
, (55)

and, consequently:

E[tr(log Σ)] =

kmax∑
k=0

z(k, kmax) · mk · E
[
tr

(
Σk

)]
− d log m, (56)

where d is a dimension of the covariance matrix. To proceed further,
we calculate the expectation of tr(Σk). It is worth noticing that the
integral

+∞∫
−∞

tnN(t|0, 1)dt =
1
√

2π
2

n−1
2 ((−1)n + 1)Γ

(
n + 1

2

)
, (57)

vanishes for odd n. At this point, we need to calculate the number
of monomials with only even exponents that appear in tr(Σk).

Now we can describe the algorithm for calculating the number
of such monomials. First, we introduce the following auxiliary
matrix:

A =
1
√

M

[
y1

∣∣∣∣ . . . ∣∣∣∣yM

]
. (58)

One can easily notice that:

Σ = 1
M

M∑
i=1

yiyT
i = A · AT ,

Σn = (AAT ) . . . (AAT )︸              ︷︷              ︸
n

,
(59)

which leads to formula for the specific element, Σn
i j, of the covari-

ance matrix raised to the n-th power:

Σn
i j = Ai∗ · AT . . . A · AT

∗ j =

d∑
s1=1

M∑
k1=1

aik1 · a
(T )
k1 s1

. . .

d∑
sn−1=1

M∑
kn=1

asn−1kn · a
(T )
kn j =

=
∑

s1,...sn−1

∑
k1,...,kn

aik1 as1k1 as1k2 . . . asn−1kn a jkn , (60)

The number of the above configurations with only even exponents is
equal to the number of even partitions of 2n. For such a partition, we
have to calculate the number of monomials separately. The detailed
description of the algorithm for counting monomials is presented in
section A. Implementation of the algorithm for counting monomi-
als and computing expected KL divergence is available (see [27]).
Below, we have shown examples of the formulas derived by the
above-mentioned algorithm, for the power of n = 3, where d is a
dimension of the covariance matrix and M is the number of samples
used to estimate the matrix:

Partition: 2 2 2
dM(M − 1)(M − 2) + dM(d − 1)(d − 2) + 3dM(M − 1)(d − 1)

Partition: 4 2
3dM(M − 1) + 3dM(d − 1)

Partition: 6
dM

(61)
Once we have calculated the number of monomials for each power
n, it is relatively easy to calculate the expectation in (56).

The second expression, which has to be calculated, is

tr
(
Σ−1

2 Σ1

)
. (62)

We start in the same way as in the diagonal case:

tr
(
Σ−1

2 Σ1

)
= trΣ−1. (63)
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The next step is to expand inversion of the covariance matrix into
the Neumann series (see [28]):

Σ−1 = m
∞∑

k=0

(I − mΣ)k, (64)

where m is selected so that ‖I − mΣ‖ < 1 is satisfied. After several
transformations, we get

Σ−1 ≈

kmax∑
k=0

(−1)kmk+1
(
kmax + 1

k + 1

)
Σk, (65)

which finally gives,

E[trΣ−1] ≈
kmax∑
k=0

(−1)kmk+1
(
kmax + 1

k + 1

)
E[trΣk]. (66)

We note that the resulting expression has a similar form to (56), with
the difference of the k-dependent expression. The last expression
for which the expectation needs be calculated is

(µ2 − µ1)T Σ−1
2 (µ2 − µ1). (67)

By using substitution (41), and subsequently (42), we get

µT
2 Σ−1

2 µ2 =  1
M

M∑
i=1

Σ
1
2
1 yi

T

Σ−1
2

 1
M

M∑
i=1

Σ
1
2
1 yi

 =

 1
M

M∑
i=1

yi

T

Σ−1

 1
M

M∑
i=1

yi

 , (68)

then, given (58), and by expanding the inverse of the covariance
matrix as in (64) into the Neumann series, we get:

µT
2 Σ−1

2 µ2 = ∑
i, j

[
1

M2 AT Σ−1A
]

i j
≈

1
M2

∑
i, j

kmax∑
k=0

(−1)kmk+1
(
kmax + 1

k + 1

)
AT

i∗Σ
kA∗ j. (69)

Now, we need to calculate the following expression:

AT
i∗Σ

nA∗ j. (70)

By multiplying out we get:

AT
i∗Σ

nA∗ j =

d∑
s0=1

d∑
sn=1

a(T )
is0

[
Σn]

s0 sn
asn j =∑

s0

∑
sn

as0i

∑
s1,...sn−1

∑
k1,...,kn

as0k1 as1k1 as1k2 . . . asn−1kn asnkn asn j =

=
∑

s1,...sn+1

∑
k1,...,kn

as1ias1k1 . . . asn+1kn asn+1 j. (71)

An important observation is in place, namely, the monomials cannot
have only even exponents if i , j. This allows us to bring down
the calculation of the expectation of the above expression to the
expectation of the trace of Σn+1. Thus, finally, we get

E[µT
2 Σ−1

2 µ2] ≈ 1
M

kmax∑
k=0

(−1)kmk+1
(

kmax+1
k+1

)
E[trΣk+1]. (72)

Obviously, the algorithm for calculating the above expression is the
same as in the case of the two previously examined terms.

3.2 Procedure

Here, we show how to estimate the GMM using the modified train-
ing procedure. The introduced procedure solves the problem of
overtraining. First, we focus on training the GMM with fixed K
- the number of components in the mixture. Based on this devel-
opment, we formulate a method to select the optimal number of
components for a given training set without resorting to the devel-
opment sets. The classical Expectation-Maximization algorithm, cf.
[2], produces in each iteration more and more accurate estimates of
the mean vectors, covariance matrices, and weights. We denote the
trajectory of these parameters in subsequent iterations as,

θ =
[
θ(1), · · · , θ(J)

]
, (73)

where J is the maximum acceptable number of iterations (or the
number of iterations until convergence), and

θ( j) =
[
Σ

( j)
1 , · · · ,Σ

( j)
K , µ

( j)
1 , · · · , µ

( j)
K

]
, (74)

with j the iteration number, Σi denoting covariance matrix for the
i − th component, µi denoting the mean vectors for the i − th com-
ponent, and K the number of components in the Gaussian mixture.
Moreover, we denote θ( j)

k = [Σ( j)
k , µ

( j)
k ]. To proceed further, we

introduce and define some mathematical entities:

• the entropy in nats of the categorical distribution {ri}i is de-
fined as H({ri}) = −

∑
i ri log ri

• the kernel width is the effective number of samples used to
estimate a given component. Given the samples {xi}

M
i=1, we

compute the kernel width, w(θ, {xi}), also abbreviated by w(θ),
using the following set of formulas:

ri =
N (xi|θ)∑
lN (xl|θ)

, (75)

w(θ) = exp (H({ri})) , (76)

• Gaussian component differential entropy in nats, H(θ), will
be defined as:

H(θ) =
1
2

log (det(2πeΣ)) , (77)

• the score or cross entropy for the component is expressed by
the following formula:

s(θ) = H(θ) + EKL (w(θ)) . (78)

We see that the expression for cross entropy depends only on
the observed quantities.
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M. Kuropatwiński et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1293-1305 (2020)

Equipped with the above definitions, we can formulate the algo-
rithm,

Algorithm 1: train GMM

Require: starting parameters values θ(0), maximal
number of iterations J, initial scores s

(
θ(0)

k

)
= ∞,

set all weights to ρk = 1
K .

Ensure: θ(J) and weights {ρk}.
1: for j ∈ [1, . . . , J] do
2: compute θ( j) update according to EM (keeping

weights unchanged)
3: for k ∈ [1, . . . ,K] do
4: if s

(
θ

( j)
k

)
> s

(
θ

( j−1)
k

)
then

5: θ
( j)
k = θ

( j−1)
k (backtracking)

6: end if
7: end for
8: end for
9: run few EM updates of weights alone

10: return θ(J) and weights {ρk}

Algorithm 2: train GMM

Require: starting parameters values θ(0), maximal
number of iterations J, initial scores s

(
θ(0)

k

)
= ∞,

set all weights to ρk = 1
K .

Ensure: θ(J) and weights {ρk}.
1: for j ∈ [1, . . . , J] do
2: compute θ( j) update according to EM (keeping

weights unchanged)
3: for k ∈ [1, . . . ,K] do
4: if s

(
θ

( j)
k

)
> s

(
θ

( j−1)
k

)
then

5: θ
( j)
k = θ

( j−1)
k (backtracking)

6: end if
7: end for
8: end for
9: ////run /////few /////EM /////////updates///of//////////weights ///////alone

10: return θ(J) and weights {ρk}

The mechanism behind the algorithm 1 is as follows:

• if the number of components is large in comparison to the
number of training vectors, the precision of each component
goes up with each iteration until it eventually reaches infinity;
this means at the same time, H(θ) goes toward −∞ (in prac-
tice, it will stop at a low value due to the constraint we put on
the minimal eigenvalue of the covariance matrix)

• the second term in the expression for score, see 78, to the
contrary, grows toward +∞ as kernel width approaches di-
mension of the training vectors d. Thus, even if componenent
differential entropy goes toward −∞, the cross entropy has a
minimal extreme point and at the very last grows toward +∞.

• thus, the statements from 3-7 in the algorithm 1 prevent the
collapse of the components to something resembling a dirac
delta

• in effect, the algorithm does not overtrain

We also examine the algorithm 2, which does not run a few EM
updates of weights (statement 9 in algorithm 1).

3.2.1 Number of components selection criterion

The cross entropy in 78 is the expression on number of nats needed
to code from the component. Based on the cross entropy, we can
get the number of bits needed to code with given fidelity using the
Shannon-Lower-Bound [29].

Given the component weights {ρk}
K
k=1, the average number of

nats needed to code from the GMM modeled source PDF is equal to

C1

(
K, θ(J), {ρk}

)
= C1(K) = H

(
{ρk}

K
k=1

)︸       ︷︷       ︸
components indices entropy

+

K∑
k=1

ρk s
(
θ(J)

k

)
︸         ︷︷         ︸

mean per component cross entropy

. (79)

We also consider a second criterion, which seems to give mean-
ingful results:

C2

(
K, θ(J), {ρk}

)
= C2(K) =

K∑
k=1

ρk s
(
θ(J)

k

)
︸         ︷︷         ︸

mean per component cross entropy

. (80)

number of samples

Figure 3: Comparison of the empirically and analytically obtained expectation of
the KL divergence for Gaussians with the diagonal covariance matrices. Dashed
lines represent the Monte Carlo result. Dimensions of covariance matrices from the
beginning of the coordinate axes: 3, 7, and 11, respectively.

To find the optimal number of components K (which minimizes
the average number of nats needed to code from the source), we
proceed as follows:

• we swap the K from 1 to M

• for each K we run the algorithm 1 or 2.
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• we smooth with smoothing splines, see [30], the resulting
curve C∗(K), obtaining a smoothed curve C̃∗(K)

• we select K̂ for which C̃∗(K̂) attains minimum and returns the
optimal number of components.

Above, the asterisk means either 1 or 2.

3.3 Numerical experiments

3.3.1 Expected Kullback-Leibler Divergence

In this section, the comparison our analytical results with the Monte-
Carlo obtained curves of expected Kullback-Leibler divergence will
be presented. First, the results for the diagonal covariance matrix
will be shown in Figure 3.

As can be seen, the analytical expectation shows high accuracy
for the diagonal covariance matrices.

The results are a bit worse for the non-diagonal matrix. The
following issues affected the accuracy of the result:

• the calculation of the higher degree series expansions was
too hard as the computation of the number of even exponent
monomials grew exponentially with n. We were able to com-
pute the number of monomials for n as high as eight (the
formulas for n = 8 when written on A4 page taking 44000
rows).

• The Monte-Carlo curves on the left are sensitive to the thresh-
old for the detection of the semi-definiteness of the matrices.
It sometimes happens that one of the eigenvalues of the co-
variance matrix is very small. Then value of term trΣ−1 grows
enormously. It is clear that the result depends on the choice
of the threshold.

Figure 4 depicts the results for non-diagonal covariance matrices.
To obtain the plot, we rejected matrices with the smallest eigenvalue
less than 0.01 (which is around 1

100 of the largest eigenvalue).

number of samples

Figure 4: Comparison of empirically and analytically obtained expectation of the KL
divergence for Gaussians with the non-diagonal covariance matrices. Dashed lines
represent the Monte Carlo estimation. Dimensions of covariance matrices from the
beginning of the coordinate axes: 3, 7, 11, and 15, respectively.

Figure 5: Illustration of the overtraining prevention mechanism. Plot shows that
score prevents the overtraining, differential entropy of the Gausssian component goes
down and the score starts increasing after kernel width exceeds 8 training points

Figure 6: Results of the algorithm 1 for d = 2

3.3.2 Overtraining Prevention Mechanism

Here, we present a drawing (Figure 5) showing the trajectory of
the score and component differential entropy. The plot has been
obtained by by recording the parameters for subsequent iterations
for one chosen component of the GMM. We see that the score at-
tains minimum but component differential entropy goes to −∞. This
allows to use the backtracking procedure present in algorithms 1
and 2.

3.3.3 Numerical Analysis of the Number of Components Selection
Criteria

All numerical experiments of this section has been carried out using
the Line Spectral Frequencies (LSF) as the data to which the GMMs
are fitted. The LSFs were computed from the LibriSpeech database.
In all subsequent experiments the training set length M equals 1000.
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First, the workings of the algorithm 1 will be presented. The
Figure 6 shows the criteria C1 and C2 and the components indices
entropy on pictures from left to right and from top to bottom, respec-
tively. We see erratic behaviour of the components indices entropy
that falls down, meaning it silences some components by driving
some weights to zero. The criterion C1 suggests that the optimal
number of components is > 500, what is unlikely and probably
caused by silencing of some components by zero weights. The C2
criterion, instead, gives a sensible result. We see that for algorithm
2, selected by the C2 criterion, number of components is similar.

Figure 7: Results of the algorithm 2 for d = 2

Figure 8: Results of the algorithm 2 for d = 4

As the second example, we show the workings of the algorithm
2. The plots in Figure 7 show the same curves as in the case of the
Figure 6 (see previous paragraph). The C1 criterion points as the
optimal number of components exactly one component, that is, a
single Gaussian. Above K = 1, the components indices entropy pe-
nalizes the score to the extent that the score curve is monotonically
increasing. Another optimal number of components is suggested
by C2. We computed the GMMs for the number of components se-
lected using the C2 criterion, for which the contour plots are shown
on Figure 10. We see that the GMM is tightly fitted to the data
for the selection criterion C2. However, the composite criterion C1
suggests a single component, which seems to by trivial, but still
optimal, as indicated by the methodology proposed.

Figure 9: Results of the algorithm 2 for d = 8

As the third example, we show the working of the algorithm 2
for the problem dimension d = 4 (first four line spectral frequencies).
In this case, the criterion C1 returns trustworthy results, the mini-
mum on the C1 curve is clearly noticeable. The returned result is
sensible and indicates that for d = 4, the training vectors distribution
needs more components to be modeled accurately; the distribution
is probably far from Gaussian. The curves are presented in Figure
8. This experiment is an indication that the proposed methodology
is sound. To make the evidence even stronger we present more
experiments for dimensions d = 8, Figure 9, and d = 16, Figure 12.
As expected the optimal number of components decreases with the
dimension of the problem. This is to maintain proper generalization.

The last result shows the behavior of the classical number of
components selection criterion, that is the maximization of the like-
lihood on the development set. For this experiment, from 1000
samples of the training set, we excluded 100 samples as the devel-
opment set. In Figure 13, we show the plot of the log-likelihood on
the development set as a function of the number of components. It
is evident that the plot is quite erratic of what decreases trust in this
method of selection of the number of components. The results can
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Figure 10: GMM fitted using algorithm 2 with number of components selected using the criterion C2
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Figure 11: GMM fitted using traditional EM algorithm with number of components selected using tuning on the development set

be made more stable if we allow the development set to be larger.
Such a measure will come at the cost of reducing the number of
training points. Here, our proposed method shows the advantage of
not using development sets. The contour plots for the GMM fitted
using traditional method with the number of components tuned on
the development set are shown in Figure 11.

4 Conclusions
In this paper, the theory of both discrete and continuous distribution
with unknown number of components has been developed. The mea-
sure theoretic reason for the inherent similarity between PMFs and
PDFs, with the difference in the structure of the underlying sample
space, has been given. The difference causes the two distribution
categories to be treated with much different mathematical tools. The

main result of the paper are the means and methods of computing
the number of components, that is, the number of categories in the
PMF case and the number of Gaussian components in the GMM
modeling in a PDF case, which is given implicitly in terms of its
realizations.

Development of the theory required considering the expected
Kullback-Leibler divergence - a difficult problem on its own rights.
Especially, the algorithm for counting monomials with only even
exponents in the expression for a trace of a matrix raised to a power
has been developed. This algorithm allows to compute certain inte-
grals analytically without resorting to the Monte-Carlo experiments.
This algorithm can also be of interest on its own rights.

We believe that the theory presented in this paper will find many
practical applications in diverse fields of science, technology, and
engineering as a convenient tool of data analysis.
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M. Kuropatwiński et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 1293-1305 (2020)

Figure 12: Results of the algorithm 2 for d = 16

Figure 13: Results of the traditional EM algorithm d = 2
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A The algorithm for counting monomials
The solution of the problem from section 3.1.2 is divided into six short algorithms

Algorithm 3: Counting monomials with only even exponents for given even
partition of number n

Require: Even partition P = {p1, ..., pk} of the number n, problem dimen-
sion d,number of random samples m

Ensure: Number of monomials with only even exponents
1: S := 0
2: for every multipermutation of P do
3: Create T = {1, ..., 1︸ ︷︷ ︸

p1

, ..., k, ..., k︸︷︷︸
pk

}

4: for every multipermutation of T do
5: Check if T is correct with Algorithm (7).

If Algorithm (7) returned false, go to the next multipermutation
of P.

6: Create matrices D and M for the table T with Algorithm (4).
7: If there are unfilled places in matrices D and M, create pairs of

matrices D′ and M′ by filling unfilled places in D and M in every
possible way.

8: From the set of every generated in previous step pairs of matri-
ces, discard these which are incorrect. Correctness of the pair of
matrices is checked with Algorithm (5).

9: For every pair of matrices calculate it’s numerical value with
Algorithm (6) and add it to S .

10: end for
11: end for
12: return S

Algorithm 4: Creating matrices D and M

Require: T = {t1, ..., tn}, where ti ∈ {1, ..., k}
Ensure: Filled matrices D and M
1: Create matrices D and M of a dimension k
2: for i = 1 to n do
3: if i is odd then
4: To Mtiti+1 and Mti+1ti write ”=”.
5: To Dtiti+1 and Dti+1ti write ”,”.
6: end if
7: if i is even then
8: To Dtiti+1 and Dti+1ti write ”=”.
9: To Mtiti+1 and Mti+1ti write ”,”.

10: end if
11: end for
12: return matrices D and M
Note: If there is an occurrence of writing ”,” or ”=” in previously filled

place, stop the algorithm and return nothing.

Algorithm 5: Checking if given pair of matrices D and M is correct

Require: Matrices D and M
Ensure: True, if given pair is correct; False in other cases
1: for every pair of indexes i, j of the matrix do
2: if Di j = Mi j = ”=” then
3: return False
4: end if
5: if the negation of any from implications listed below is true:

[(Xi j = ”=”) ∧ (Xik = ”=”)] ⇒ Xk j = ”=” or [(Xi j = ”=”) ∧ (Xik =

”,”)]⇒ Xk j = ”,”
where X is a matrix D or M then

6: return False
7: end if
8: end for
9: return True

Algorithm 6: Calculating a component of sum from formula for number of
monomials

Require: Pair of matrices D and M, problem dimension d, number of
random samples m

Ensure: A component of sum from formula for number of monomials
1: q = 1
2: for i = 1 to dim D do
3: if i = 1 then
4: q = q · d · m
5: else
6: Calculate cd oraz cm with Algorithm (8) with input data: (D, i)

and (M, i)
7: if there exists i < j, such that Di j = ”,” then
8: q = q · (d − cd)
9: end if

10: if there exists i < j, such that Mi j = ”,” then
11: q = q · (m − cm)
12: end if
13: end if
14: end for
15: return q

Algorithm 7: Checking if table T is correct

Require: T = {t1, ..., tn}, where ti ∈ {1, ..., k}
Ensure: True, if T is correct; False in other cases
1: A = ∅

2: for i = 1 to n do
3: if there exists s < i, such that ts > ti and ti < A then
4: return False
5: end if
6: insert ti into A
7: end for
8: return True

Algorithm 8: Calculating auxiliary minuend

Require: Matrix X, number i
Ensure: Auxiliary minuend
1: if i = 1 then
2: return 0
3: end if
4: for each j < i do
5: if If Xi j = ”,” then
6: Calculate c j with Algorithm (6) with input data (X, j)
7: end if
8: end for
9: c = min j c j

10: return c + 1
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