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 Phasor Measurement Unit (PMU) is an integral device for tracking, protection, and 

regulation of the power network. PMU gives synchronised calculations of actual-time data 

for voltage phasor, current phasor, and the frequency. Placing PMU in every node to 

observe the power network is not realistic from an economic standpoint and even for big 

data management. Thus, raising the number of PMUs in the node network to achieve 

optimum monitoring of the power network is a mandatory issue. In tracking the problem of 

optimal PMU placement, various methods have been proposed by various researchers in 

recent times. To facilitate understanding among the various approaches, this study 

classified the existing methods into two headings; heuristic and 

mathematical(conventional)methods. The study discusses the different existing optimisation 

approaches used to solve the optimal PMU placement problems. The benefits, as well as 

the drawbacks of each approach, is thoroughly examined and wind up the discussion that 

the heuristic approach is a fast knowledge-based methodology, which was used as the 

optimization solver for the IEEE 14, 30 and Nigeria national grid 28 and 52 bus system. 
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1. Introduction  

Phasor measurement unit is an electrical instrument that 

measures the phase angle and magnitude of current and voltage in 

the power network system, using a synchronised time source 

provided by global positioning system, which can provide 

accuracy up to one microsecond [1]. To decide the condition of a 

power network, the estimations of the state variables (phase angles 

and voltage magnitude), of all system nodes should be known. 

Realising these values helps to calculate the flow of real and 

reactive power in the power network. It will be very strenuous to 

consider system nodes one of after the other most especial a large 

system, this is one area in which intelligent devices find 

application [2] in this case PMU estimations solve the problem 

effortlessly. 

At a particular period, the voltage phase angle and magnitude 

and current sinusoidal waveforms are expressed as real and 

imaginary numbers that are known as a phasor. The value of the 

magnitude is dependent on the amplitude of the sinusoidal 

waveform, while the phase angle is gotten relying on the time 

position as presented in the figures. Figure 1a shows the sinusoidal 

waveform is behind as for the cosine reference, as it is behind, the 

phase angle will be negative, though, in Figure 1b, the sinusoidal 

waveform is ahead as for the cosine reference. Subsequently, the 

phase angle is positive. Since the phasor measurement unit is 

provided with the global positioning system, every phasor 

estimation is time-tagged, consequently, permitting phasor 

estimations gotten from the phasor measurement units in different 

positions in a system to synchronise. 

PMU firstly receives signals in analogue form. The signal 

being received contains estimated voltages and currents from 

current and voltage transformer. The anti-aliasing filter then used 

in eliminating high-frequency factors surpassing the sampling 

limit of Nyquist. It will, therefore, suppress the frequency factors 

that exceed the Nyquist sampling rate. The phase-locked oscillator 

divides the global positioning system one pulse each second into 

the needed number of pulses as regards the sampling of the 

waveform. Through the use of a 16-piece accuracy analogue to a 

digital converter, the input signals will be digitised at sampling 

moments when the time signals are sampled from the phase-locked 

oscillator before feeding it to the phasor microprocessor. The 

microprocessor resamples the signals from the digitised sample 

information and estimates the positive succession. Then the 
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approximate phasor is time-stepped before being moved using 

modems to a communication medium [3]. 

 

Figure 1: (a) phasor representation. -90º regarding cosine reference [3] 

 

Figure 1: (b) phasor representation. 90º regarding cosine reference [3] 

2. Optimal PMU Placement Problem Formulation 

There are two main performances used in the analysis for 

observing power system; they are numerical observability and 

topological observability [4]. Numerical observability suffers from 

a lot of matrix computations; thus, it is not advisable to employ 

them for analysing power systems, especially large ones. 

Topological observability of a system is achieved when a full rank 

of traversing the tree is obtained. Some simplified and improved 

effective rules when topologically analysing a power system are 

illustrated below: 

Rule 1: For a PMU-installed node, voltage phasor and the 

connecting branches current phasor are known as demonstrated in 

Figure 2. This measurement is known as direct measurement. In 

Figure 2, PMU is installed in node 1; consequently, the voltage 

phasor of the node is known, and the current phasor of the 

connecting line is also known following the first rule. 

 

Figure 2: illustrating Direct measurement Rule 1 

Rule 2: When the voltage phasor is known, and the current 

phasor at one end of the branch is also known, it guarantees that 

the other end is observable by determining the voltage phasor, as 

illustrated in Figure 3. This type of measurement is known as 

pseudo-measurement. 

 

Figure 3: illustrating pseudo-measurement Rule 2 

Since the value of the current phasors of the lines connected to 

node 1 is known, the value of the other nodes can be solved for by 

utilising Ohms law. 

𝐼12 =
𝑉1 − 𝑉2

𝑅12 + 𝑗𝑋12

                                             (1) 

𝑉2 = 𝑉1 − 𝐼12(𝑅12 + 𝑗𝑋12)                                  (2) 

𝐼13 =
𝑉1 − 𝑉3

𝑅13 + 𝑗𝑋13

                                            (3) 

𝑉3 = 𝑉1 − 𝐼13(𝑅13 + 𝑗𝑋13)                                 (4) 

𝐼41 =
𝑉4 − 𝑉1

𝑅14 + 𝑗𝑋14

                                            (5) 

𝑉4 = 𝑉1 + 𝐼41(𝑅41 + 𝑗𝑋41)                                (6) 

 

Rule 3: In a case where the voltage phasor for both ends is 

known, the current phasor of the connecting branch can be gotten 

as shown in Figure 4. Knowing the voltage phasor of node-1 and 

node-2, the current phasor of the connecting line can be calculated 

using Ohm’s law. 

 

Figure 4: Illustrating observability of the branch current for rule 3 

𝐼12 =
𝑉1 − 𝑉2

𝑅12 + 𝑗𝑋12

                                       (7) 

Rule 4: For a zero-injection node, knowing all the current of all 

connected branches, except one, calculating the current for the 

unknown branch can be achieved using Kirchhoff current law 

(KCL) this rule is demonstrated in Figure 5. node-3 is the zero-

injection node, and current phasor of every branch is known except 

the current for the branch between node-3 and node-4. 

Rule 5: For a zero-injection node where the voltage phasor is 

not known, if all the neighbouring nodes are known, the zero-

injection node can be known through calculations, as shown in 

Figure 6. In the diagram, node-3 is the zero-injection node and the 
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voltages for the neighbouring nodes is known. By using node 

calculations, the voltage for node-3 is known. 

 

Figure 5: Model observability of zero-injection node for rule 4 

 

Figure 6 Modelling unobservable ZIN rule 5 

𝑉3 = 𝑉1 − 𝐼13(𝑅13 + 𝑗𝑋13)                           (8) 

𝑉3 = 𝑉2 + 𝐼32(𝑅32 + 𝑗𝑋32                             (9) 

𝑉3 = 𝑉4 + 𝐼34(𝑅34 + 𝑗𝑋34)                        (10) 

0 = 𝐼12 − 𝐼32 − 𝐼24                                (11) 

Rule 6: For a group of neighboring zero-injection nodes that 

are not observable because the voltages are not known, but the 

neighboring nodes connected to the group of zero injection nodes 

are known. The unknown voltage phasors of the zero-injection 

nodes can be made known by using both Kirchhoff’s current and 

voltage laws as illustrated in Figure 7. In this figure, the voltage of 

node-3 and node-4, but the voltages of the nodes connected to them 

are known. 

 

Figure 7 Modelling unobservable ZINs rule 6 

Minimum number of PMU: One of the purposes of the optimal 

PMU placement problem is to resolve the minimum number of 

PMUs needed for a power system and their right allocation to make 

sure that the system is totally observable. This objective can be 

represented mathematically as shown: 

   ∑ Aij

N nodes

i

                                           (12) 

  𝑠. 𝑡 𝐵 ∗ 𝐴 ≥ 1                                     (13) 

𝐼 =  [111 … … 1] 𝑇
𝑁 𝑋 1 

                             (14)    

𝐴(𝑖) = {
1           𝑖𝑓 𝑃𝑀𝑈 𝑖𝑠 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑖 
0    𝑖𝑓 𝑃𝑀𝑈 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑖

             (15) 

𝐵(𝑖, 𝑗) = {

1                                                𝑖𝑓 𝑖 = 𝑗
1        𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑗𝑜𝑖𝑛𝑒𝑑 

0 𝑖𝑓 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑗𝑜𝑖𝑛𝑒𝑑 
               (16) 

3. Placement Methods  

Several methods have been deployed for optimal location on 

power system network in different regards such as distributed 

generators and PMU [5,6]; in this section, several of the methods 

used to optimally site PMU are extensively reviewed.  

3.1. Conventional Method 

Two of the conventional methods that have been reported in 

previous studies are discussed under this subsection. 

3.1.1. Integer Linear Programming (ILP) 

Integer Linear Programming methods, also recognised as 

binary integer programming, considering both the system's 

injection and power measurement as well as PMU error calculation 

by state estimation. Integer linear programming algorithm is based 

on the individual vectors derived from the adjacency matrix of the 

transverse tree [7]. Upon decomposition, the PMUs are positioned 

ideally in the networks utilising the integer linear programming 

principle to reduce the deployment rate. Two types of ILP models 

are mixed integer linear programming (MILP) and binary integer 

linear programming (BILP) [8]. 

3.1.2. Integer Quadratic Programming (IQP) 

Integer quadratic programming utilises the connectivity matrix 

that reflects the topology of the system to define the optimal PMU 

placement (OPP) problem.  The quadratic function's objectives 

were structured, taking into account linear constraints and the 

vector of integer values. The method will decrease the number of 

PMUs by providing full network observability in standard 

operations as well as in outages [8].  

In [9], the authors discussed factors that affect calculation 

precision, including measurements inconsistencies, number of 

PMU measurements, and quasi-power measurements 

implementation. Quasi-power uncertainty is determined by the 

propagation concept of uncertainty, and the optimum location of 

PMU is calculated by integer quadratic linear programming. 

Various types of state variables as well exhibited different 

sensitivities to different measurements [10]. 

3.1.3. Drawbacks of Conventional Methods 

Usually, the conventional technique is utilised to model a 

network when the network is not so complex. Also, conventional 
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technique takes more computational time when compared with 

Heuristic techniques to solve a complicated network problem.   

3.2. Heuristic Methods 

Most of the Heuristic Methods that have been reported in 

previous studies are discussed under this subsection. 

3.2.1. Genetic Algorithm 

The foundation of genetic algorithm is to model natural 

selection which has no requirement for secondary functions like 

derivatives calculation. Some of the advantages of genetic 

algorithm which makes it more applicable to OPP problems are: 

the likelihood of the local minimum being trapped is reduced, 

Calculations are decreased from one state to the other, and the 

fitness assessment of each sequence directs the search [11].  

In [12], they investigated optimally placing PMUs and 

communication links for distributed state estimation in distribution 

networks. They combined integer linear programming and genetic 

algorithm to find the least number of PMUs in a distribution 

network. A distributed state estimation system segmenting 

technique is created to minimise the burden it takes to compute and 

communicate [13]. The aim of the partitions is to balance the 

number of buses in subareas. By turning the network segmenting 

into the problem of assigning a centralised bus of each subarea, the 

scale-balanced partitioning scheme between subareas is obtained 

by applying genetic algorithms. 

3.2.2. Particle Swarm Optimisation 

Particle swarm optimisation is a similar technique to genetic 

algorithm, where population solutions are randomly assigned to a 

system firstly [14]. In [15], the authors described particles as 

entities that are hovering through multidimensions in space. For 

every particle, the best location is determined by the fittest position 

faced by that particle and its neighbouring particles. The process 

of the particle swarm optimisation begins with a primary point and 

velocity for every particle, where the velocity of each particle is 

restricted by reasons of not hovering in unusable space as well as 

overflowing forbiddance [16]. 

3.2.3. Tabu Search 

The Tabu search algorithm is a combinatorial method, and it 

combines techniques such as conventional method and heuristic 

method.  This method is majorly used in solving combinatorial 

optimisation problems in covering and scheduling. Tabu lists, 

which is a major element of tabu search, consists of numbers of 

states visited in recent times and unwanted states. Another major 

element of tabu search is the state definition and the encompassing 

area. The tabu search resets when it does not converge [17]. 

In [18], the authors solved the optimal PMU placement 

problem and achieved maximum observability of a system and 

maximum redundancy by utilising tabu search-based linear state 

estimation model [19]. This quick technique of topological 

observability analysis required a loss simulation function relying 

on the matrix of incidence to solve the optimal PMU placement 

problem. This technique also concerns the convenience and high 

speed to monitorable power network by manipulating integer 

numbers [20]. 

3.2.4. Differential Evolution 

The method of differential evolution (DE) uses elements such 

as N-dimensional vectors to reduce progressing space functions. 

Mutation, fusion and choice are the key functions used in the 

global optimising process. Differential evolution approach is 

utilised extensively in various problems of cost function including 

multimodal, non-differentiable, and nonlinear functions. Certain 

advantages of this method include simultaneous computations, 

simple use, and strong synchronisation properties [21].  

The researchers introduced multi-objective optimal PMU 

placement in [22] utilising a non-dominating filtering DE 

technique, that is an organic synthesis of the nondominated 

filtering procedure and DE technique Pareto. This theory put into 

consideration total measurement reliability and voluntary PMU 

failure to achieve complete observability of the network in addition 

to finding a solution to the optimal PMU placement problem [3] 

Using the differential evolution technique obtained from genetic 

algorithm contributed to the suggested method for the 

nondominated sorting differential evolution algorithm. It was 

stated that obtaining a particular and absolute Pareto front and 

having several Pareto ideal solutions was the improvement of this 

method. 

3.2.5. Simulated Annealing  

The simulated annealing method solves complex 

combinatorial optimisation where the existing solution is changed 

arbitrarily. The new changed solution is the worst change with a 

decreased probability as computing continues. The ideal outcome 

for a major problem of combinatorial optimisation requires an 

effective disturbance framework, cost function, space for the 

solution, and cooling plan for the simulated annealing to solve. 

Simulated annealing can be considered adequate by looking for a 

large-scale network and achieving good speed in seeking an ideal 

or near-ideal solution [23] 

Authors in [24], investigated effective use of different PMU 

estimated values and exposure to extremely critical network data 

were put into consideration for the ideal deployment of PMUs to 

make the power system fully observable. A topological 

observability formulation based on the incidence matrix evaluated 

the original PMU arrangement to have a network with complete 

observability.  

3.2.6. Ant Colony Optimization 

A further concept used to present an optimisation problem 

solution is ant colony optimisation, which originally utilises the ant 

population. The function of the ant colony was to travel across 

neighbouring states of the problem by implementing an ideal 

controller for the stochastic local resolution, resulting in solving 

optimising problem. Evaporation of the pheromone trace and 

action of the daemon are procedures in ant colony optimisation. 

The use of ant colony optimisation to determine good paths across 

graphs will decrease computational issues [25]. 

Authors in [26], investigated on an enhanced ant colony 

optimization which was used to solve the ideal PMU placement 

problem for achieving a totally visible power network with the 

least number of PMUs and putting into consideration total 

measurement redundancy. The depth-first search as a conceptual 
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graph approach was used to create an estimation tree to evaluate if 

the power system was observable [27]. 

3.2.7. Iterated Local Search 

The key viewpoint of iterated local search is to search for a 

subspace characterised by local optimal solutions rather than the 

entire solution space. By using an integrated heuristic, there is a 

series of solutions where the best option is achieved if repeated 

arbitrary tests of the heuristic were to be used [28].  

The optimal PMU placement method introduced in [29] 

involves two phases which included an initial PMU dispensation 

to reach a visible network by using an iterated local search to 

decide the least number of PMUs required to make a system fully 

visible. Page rank placement formulation is utilised in this 

approach to determine the significance of every bus.  

3.2.8. Mutual Information 

Taking into account not only access to a system with maximum 

observability but also analysing irregularities in the network states 

that utilised mutual information between PMUs measurements 

values and system states, and information theoretical method to 

solve optimal PMU placement problems was addressed in [30].  

3.2.9. Matrix Reduction 

For the problems of placing PMUs, a distribution matrix 

occurs, whereby the graph indicates the distribution scope 

whenever a station is placed in different locations. The problem 

level is determined by the range of the distribution. The approach 

of matrix reduction aims to establish ideal placement by increasing 

the matrix of incidence.  Using a formulation based on removing 

digital data, the matrix reduction technique was proposed to 

achieve the least number of PMU to reach observability of the 

network completely and reduce the computation process [31].  

3.2.10. Imperialistic Competition Algorithm 

Imperialistic competition technique is a new technique 

formulated to solve optimal placement problems. Just like other 

heuristic techniques, imperialistic competition algorithm begins 

with a first population named country which is a colony of two 

types. Competitiveness of the countries brings about the minimal 

of the problem. The effectiveness of the Imperialistic competition 

technique in wide area optimisation was evaluated on test buses 

and as confirmed [32]. 

3.2.11. Immune Genetic Algorithm 

The Immune Genetic Algorithm was utilised to proffer solution 

to placing the PMU optimally utilising three impact vaccinations 

to create a topologically measurable power system. The two 

measures that occur in an immune genetic algorithm approach to 

defend against viruses and bacteria are vaccines and immunity 

alternatives. The vaccination basis is the combination of technical 

knowledge and previous data about the optimal PMU placement 

problem. Two operators, namely, crossover and mutation, were 

considered by the immune genetic algorithm, which was utilised 

to maximise the tests [33]. 

3.2.12. Biogeography Based Optimisation 

The biogeography-based technique is a mathematical model 

for the movement of species from one region, which is known as a 

habitat to another region, rising and extermination conditions of 

species. This technique is used to provide solutions to the problem 

of optimisation through complex performance environments and 

to improve the efficiency of species migration and integration into 

the habitat [34].  

3.2.13. Chemical Reaction Optimization 

To find a solution to the OPP problems, a newly formed 

heuristic approach named population-based chemical reaction 

technique was implemented. Through modelling the behaviour and 

movement of gases in a chemical reaction, reaching a low energy 

steady state was the key goal of the chemical reaction techniques, 

which sought to achieve the least free energy level. High 

performance was demonstrated by the application of the chemical 

reaction technique to metrics and practical problems [35]. 

Using a new heuristic approach called chemical reaction 

technique and simplified chemical reaction technique model, 

optimal PMU placement problem solved to achieve a completely 

measurable power network considering the system with and 

without zero-injection nodes [36].  

3.2.14. Artificial Bee Colony (ABC) 

Artificial bee colony technique's key motivating criteria are 

food resources path, food resources range, and food resources 

performance information [37]. The developed formulation could 

be used in solving unimodal and multi-modal mathematical 

optimization problems. Also, a multiple objective optimal PMU 

placement algorithm, called binary-coded was implemented in 

solving the optimal PMU placement problem and obtain the least 

quantity of PMU and highest possible network redundancy. 

Consideration was given to eventuality constraint conditions like a 

one-line outage, and arrangements of the least quantity of needed 

PMUs were determined [37].  

3.2.15. Bacteria Foraging Algorithm  

Biological evolution propensity towards animal exclusion with 

weak feeding strategies that work to find, handle, and consume 

food and spread the genes of animal performance in feeding 

approaches as they are more probable to achieve productive 

results. Weak foraging approaches after several years are either 

discarded or revamped [4]. Four operators utilised in the developed 

bacterial foraging algorithm were chemotaxis, swarming, 

reproduction, and removal and distribution [38]. 

3.2.16. Cellular Learning Automata 

Cellular learning automata technique is cantered on the use of 

training automaton to change cellular automaton state conversion 

likelihood. This approach begins by determining each cell's inner 

condition. Instead, on the basis of cellular learning automata law, 

the strengthening signal for every training automata is calculated. 

Maintaining this operation will achieve the intended state [39]. 

In [29], a CLA approach was used to examine the integration 

of two opposing objective functions like the least number of PMUs 

and total measurement reliability to achieve a completely 

measurable power network. This research put into consideration 
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the drawbacks of flexibility, including PMU/branch loss and 

traditional measurements and zero-injection nodes. 

3.2.17. Hybrid Methods 

Utilising a formulated hybrid genetic algorithm and simulated 

annealing, a solution was introduced in [38] to ideally place PMUs 

and remote terminal units for a large network of interconnected 

grids determined by a multiarea system state estimate. Using 

remote terminal units and conventional measurements, a PMU was 

incorporated into a power network to ensure the calculated state 

more precisely and reduce the expense of conventional 

measurement and cost of the remote terminal unit. Utility centre of 

one multiarea area to reach system measurements required a single 

PMU placement, as PMU measurement calculated the network 

node voltage. A criterion for the PMU was the node with the 

highest connecting line. The identification of faulty data was 

achieved by taking into account the vital measurement of each 

region. 

A synthesis of least traverse tree technique with the optimised 

genetic algorithm is a hybrid method named MST-GA presented 

in [40] to achieve the least number of PMUs required to make a 

system fully observable and to consider optimising redundancy. 

This approach enhanced mutation operation taking into account 

grid topology information. As the key and side steps, fusion and 

mutation were used as an activity to create new entities, the 

outcome of the new analysis of this approach was a decrease in the 

number of PMUs required and a variety of solutions [41]. 

To easily capture the objectives and contributions of the 

previous studies with respect to methods/techniques deployed 

Table 1 is developed while Table 2 gives the comparison of 

conventional and heuristic methods with respect to four factors 

namely; the size of the problem, data requirement, accuracy, and 

effectiveness. 

3.2.18. Drawbacks of Heuristic Methods 

To efficiently implement the heuristic technique, it takes a 

specific level of expertise and experience [4,8]. Often these 

functionality specialists are difficult and costly to employ, 

particularly if they need domain knowledge. If the analysts are not 

included in the development, they may not be informed of the 

technical design constraints or why such design choices have been 

made [8]. Heuristic tests are poorly organized, and thus risk 

identifying one-time, low-priority issues.  Lastly, heuristic 

assessments do not allow for an assessment of the performance of 

re-designs [3]. 

 
Table 1: Objectives and contributions of investigated studies 

Author(s)/Reference 
Number 

Objective Technique Considerations Gaps Benefits 

B. Mallikarjuna, P. 
Gopakumar, M. J. B. 
Reddy and D. K. 
Mohanta [23] 

Ideal positioning of PMUs to allow 
monitoring of incorrect data. simulated 
annealing technique is implemented with 
the stochastic new approach 

Simulated 
Annealing 

detection of critical 
measurements 

Zero-injection nodes 
(ZIN)& Measurement 
Redundancy was not 
considered 

Observability of the power 
network with critical 
measurements 

C. Margarida, K. 
Xenia and V. Ana, 
[42] 

Limiting the quantity of PMU allocation 
utilising stochastic simulated annealing 
algorithm 

Stochastic 
Simulated 
Annealing 

Detection of critical 
measurements is 
introduced as a 
consequence function 

The algorithm was not Line 
loss, PMU the outage  

Detection of critical 
measurements 

Z. Zhida, Y. Hao, L. 
Peng, L. Peng, K. 
Xiangyu, W. 
Jianzhong and W. 
Chengshan [12] 

Reducing the quantity of PMUs, and 
determining their geographical allocation, 
achieving a total network of measurable 
power. A genetic algorithm-
based procedure is used, and PMUs are 
installed with current phasor 
measurements as the maximum 
quantity of simultaneous lines 
are highlighted in all network nodes 

Genetic 
Algorithm 

Connection of PMUs 
with the number of 
current phasors to be 
calculated 

Quality of the result were 
not documented. 

Needed channels for current 
in the optimisation problem 

C. Peng, H. Sun and 
J. Guo. [43] 

Limiting the quantity of PMUs and 
increasing the redundant measurements. In 
place of one optimal solution, Pareto-ideal 
solutions are presented 

Non-
Dominated 
SortingGeneti
c Technique 

Zero-injection nodes & 
Measurement 
Redundancy 

It was assumed that PMUs 
capacity is limitless. PMU 
channels limit was not 
considered 

Offering Pareto-ideal 
facade forcontradictory 
objectives, solution repair 

S. M. Mazhari, H. 
Monsef, H. Lesani 
and A. Fereidunian 

[39] 

A multi-objective ideal allocation to 
minimise the quantity of PMUs and 
increase the accuracy of measurements. 
PMU allocation is also analysed by the 
implementation of a standardised 
observability function based on traditional 
non-synchronous 

 

Cellular 
Learning 
Automata 

Traditional 
measurements, PMU 
failure, Branch loss 

This technique might not 
give the least quantity of 
PMUs to make the network 
observable 

High 
performanceinelectrical net
works on a large scale 

A. A. Hany, Y. A. 
Almoataz and V. 
Mukherjee [25] 

The ABC definition is used to attain 
the least quantity of PMUs to achieve a 
total measurable power network, fulfilling 
measurement redundancy 

Artificial Bee 
Colony 

One branch loss, zero-
injection nodes 

The pheromone variation 
span is restricted to interval 
[0, -1], 

System viability and 
efficiency is shown by the 
comparison of the 
simulation results with the 
previous works 
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N. C. Koutsoukis, N. 
M. Manousakis, P. 
S. Georgilakis and 
G. N. Korres [19] 

Two contending purposes involving the 
least quantity of PMU and maximum 
redundancy on the network 

Tabu Search Zero-injection nodes & 
Measurement 
Redundancy 

Placement of PMU in 
ZINwas not allowed in the 
initialization. 

Optimal problems solved 
with high precision and 
reduced calculation 

R. Ramachandran 
and S. Karthick [44] 

Limiting the quantity of PMU placement 
and developing a parallel tabu search 
formulation 

 

Parallel Tabu 
Search 

Communication 
restraint, Zero-injection 
nodes, and matrix 
condition of the state 
estimations 

Traditional measurements, 
PMU failure, Branch loss 
was not considered 

Reduced calculation period 

M. Nazari-Heris and 
B. Mohammadi-
Ivatloo [4] 

Two contending purposes involving the 
least quantity of PMU and maximum 
redundancy  

Clonal 

Algorithm 

Total redundancy ZIN enhancement of 
secondary voltage control 
operation was not 
considered 

Maximum velocity of the 
procedure, achieving 
practical schemes 

M. Zhou, V. 
Centeno, A. Phadke, 
Y. Hu, D. Novosel 
and H. Volskis [31] 

Reducing the quantity of PMUs. Utilising 
pre-processing techniques and providing 
solutions using mathematical based 
methods 

 

Matrix 
Reduction 

Computer-generated 
data removal, Pre-
processing technique and 
matrix reduction 
procedure, utilising 
Lagrangian relaxation 

Quality assessment was not 
recorded because there was 
no other tested optimal 
placement set for the 
Brazilian network 

Minimising the size of 
allocation model and the 
calculation exertion, 
employed in a large-scale 
network 

S. Md, I. H. Md, M. 
Abido, A.-F. Taher 
and M. A.H [15] 

Limiting the quantity of PMUs so as the 
power network can be fully observed. 
Developing a hybrid technique based on 
binary particle swarm optimisation 

Binary Particle 
Swarm 
Optimisation 

Increasing redundancy in 
the power network, one 
PMU and Multi-PMU 
failure 

loss of PMU and branch 
loss were ignored 

Maximum velocity of the 
procedure and reduced 
calculation period 

A. A. Hany, Y. A. 
Almoataz and V. 
Mukherjee. [25] 

Reducing the quantity of PMU in the 
system. Developing an improved ant 
colony technique 

 

Ant Colony 
Optimisation 

High redundant 
measurements in the 
system 

The pheromone variation 
span is restricted to interval 
[0, -1], 

Avoiding inactivity 
behaviour and elevated 
velocity of the procedure, 
employing a graph theoretic 
technique  

S. S. Noureen, V. 
Roy and S. B. Bayne 
[8] 

Reducing the quantity of PMU and remote 
terminal units with critical measurements 
free 

Hybrid 
Genetic 
Algorithm and 
Simulated 
Annealing 

Traditional measurement 
and RTU faulty data 
recognition, one-line 
outage 

Fault monitoring, ZIN was 
ignored  

Relevant to existing power 
networks observed utilising 
remote terminal units 

S. Mahapatra, S. 
Pandab and S. C. 
Swaina [33] 

Limiting the quantity of PMU placement 
and increasing measurements redundancy, 
taking considerations of traditional 
measurements 

Bacterial 
Foraging 
Algorithm 

Total redundancy & 
zero-injection nodes 

The linear model could not 
correctly depict complex 
dynamics of the network, 
particularly in disturbances. 

Appropriate for existing 
power networks due to 
modelling standard 
measurement 

M. N. Seyyed and 
M. Javad [21] 

Limiting means square error by achieving 
the least quantity of PMUs, with or 
without the presence of standard 
measurement 

Differential 
Evolution 

Normal measurement 
least square error of state 
estimate 

Fault monitoring, Zero-
injection nodes was ignored 

The precise, fast and 
straightforward procedure, 
ability to employ in multiple 
objectives problem 

B. Rohit and B. 
Biplab [45] 

Limiting the cost of installation of 
Mismodelling dissimilar cost of PMUs for 
various nodes 

 

Particle 
Swarm 
Optimisation 

Dissimilar cost of PMU 
allocations 

It was assumed that PMUs 
capacity is limitless. PMU 
channels limit was not 
considered 

Taking consideration of 
real-time equipping cost of 
PMUs, limiting entire cost 
in place of the quantity of 
PMUs 

B. Rohit and B. 
Biplab [46] 

Reducing the number of meters and PMUs 
Taking consideration of one line/meter 
loss and one line/PMU loss 

 

Biogeography 
Based 
Optimisation 

Zero-injection nodes, 
line loss, SCADA meter 
loss, PMU the outage, 
PMU/branch loss 

 

Traditional measurements, 
PMU failure, Branch loss 
was not considered 

using simulated node 
reduction method for 
decreasing the size of the 
network 

 

M. Hurtgen and J.-
C. Maun. [28] 

Reducing the overall quantity of PMUs 
utilising PageRank placement technique 
and iterated local search 

 

Iterated Local 
Search 

PMU outage Zero-injection nodes 
(ZIN)& Measurement 
Redundancy was not 
considered 

Taking consideration of 
eventualities, simple 
comprehension and 
implementation 

S. S. Noureen, V. 
Roy and S. B. 
Bayne. [8] 

Limiting the quantity of PMUs. Observing 
guide nodes needed for secondary voltage 
control 

 

Branch and 
Bound 

Zero-injection nodes 
enhancement of 
secondary voltage 
control operation 

PMU outage, branch loss, 
measurements redundancy, 
considered 

Observing guide nodes for 
boosting speed of the 
voltage control system 

Y. Zhao, P. Yuan, Q. 
Ai and T. Lv [22] 

Reducing the quantity of PMUs to monitor 
both the overall network and fault in the 
power network 

Differential 
evolution 

Fault monitoring, Zero-
injection nodes 

The constraints utilized 
ignored some optimal 
solutions 

Utilising PMUs for power 
network monitoring and 
fault detection 
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Table 2: Comparison of Conventional and Heuristic Technique 

S/N Properties Conventional Technique Heuristic Technique 

1 Size of the 
Problem 

Usually, the conventional technique is utilised to 
model a network when the network is not so 
complex. 

Heuristic technique is a form of computation which tries to 
mimic human or animal capability in a very simplified manner 
in order to proffer solution to the problem of PMU allocation 

2 Data 
requirement 

The conventional method utilises physical 
principles to obtain network relationships, which 
are typically rightfully generalised with several 
assumptions and need a previous understanding 
of the nature of the data relationships.   

The heuristic technique focuses on data based on the data only 
to decide the framework and variables to solve a network 
problem, with fewer assumptions about the network’s nature. 

3 Accuracy As compared to Heuristic technique, because of 
several factors implemented, the conventional 
technique does not have a better degree of 
correctness. 

Owing to very little possibilities of failure, Heuristic technique 
has higher precision. 

4 Effectiveness The conventional technique takes more 
computational time when compared with 
Heuristic techniques to solve a complicated 
network problem.   

The heuristic technique can be used effectively in performing 
routine and tasks that consume time. 

 

4. Results 

According to the comparison in Table 2, heuristic technique 

did better in terms of complexity of the network, data requirement, 

and level of correctness and effectiveness as regards to time. For 

this research genetic algorithm is selected the optimization solver 

for optimal placement of PMUs on IEEE14, 30 and Nigerian 

330KV (28 and 52 bus system) networks. It was selected in place 

of other heuristic algorithms because it is one of the pioneer 

evolutionary algorithms, simplicity and ease of implementation, 

and logical reasoning behind the use of operators like selection, 

crossover and mutation.  The mutation operator is executed bit by 

bit after offspring is produced, for every node in the chromosome 

expression, an evenly appropriated random number is created 

between zero and one. If the number produced is lower than the 

likelihood of the mutation, then the corresponding bit will be 

S. S. Noureen, V. 
Roy and S. B. Bayne 
[8] 

Limiting means square error by achieving 
the least quantity of PMUs 

Differential 
evolution 

Taking consideration of 
incessant alterations in 
the power network’s 
topology 

Fault monitoring, ZIN was 
ignored 

Integrating PMU allocation 
problem into state estimate. 

 

A. Ahmadi, Y. 
Alinejad-Beromi 
and M. Moradi [16] 

Limiting the quantity of PMUs, 
recommending new the rule for the 
network to be observed topologically 

Modified 
binary particle 

swarm 
optimisation 

Zero-injection nodes, 
PMU/Branch loss 

Measurement redundancy 
was not studied, and the 
problem of local least 
affected the results 

Establishing new rules of 
topologically Observable 
valuation for limiting the 
quantity of the needed 
PMUs 

H. Mohammadi, G. 
Khademi, D. Simon 
and M. Dehghani 
[34] 

Two contending purposes involving the 
least quantity of PMU and maximum 
redundancy 

Multi-
objective 
biogeography-
based 
optimisation 

measurements 
redundancies, zero-
injection nodes. 

 

The large amount of cost 
evaluations utilized made a 
little difference in the 
solution 

The proposed technique 
generates well-circulated 
Pareto-optimal solutions  

 

M. Nazari-Heris and 
B. Mohammadi-
Ivatloo [4] 

Multi-objective model, reducing the 
quantity of PMUs and increasing 
measurements 

Genetic 
algorithm 

Considering single 
branch/single PMU loss 
considered 

ZIN enhancement of 
secondary voltage control 
operation was not ignored 

Very little population and 
iterations needed are less 

L. Qiao, C. Tao, W. 
Yang, N. Rohit, F. 
Franz and M. D. Ilić 
[30] 

Reducing the quantity of PMUs utilising 
anInfo-theoretic approach 

 

Mutual 
information 

PMU outage, standard 
measurement 

 

ZIN was not considered Modelling the 
improbabilities in the 
network states 

A. Bashian, M. 
Assili, A. Anvari-
Moghaddam and O. 
R. Marouzi [11] 

Reducing the quantity of PMUs needed for 
a total observable network and increasing 
measurements redundancy. A 
topologically observable rule of zero-
injection nodes is also presented 

Binary 
imperialistic 
completion 
algorithm 

PMU outage, branch 
loss, measurements 
redundancy,  

Cost considering ZIN was 
ignored 

Quick integration, less 
deviance, competence of 
locating global optimal and 
zero standard deviation 

S. Li and Z. Meng 
[37] 

Artificial bee colony technique is 
implemented to attain least Quantity of 
PMUs to achieve total observability of the 
power network, a fitting measurement 
redundancy 

Artificial bee 
colony 

One branch loss and 
Zero-injection nodes 

The technique in this study 
was only tested on small 
scale network 

Viability and performance 
of the technique validated 
by comparison of the 
simulation outcomes with 
the related previous 
research 
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modified from zero to one or one to zero, thereby putting or 

eliminating the PMU on the appropriate node. Once all the 

offspring have been generated, the current population and the 

created offspring are categorized based on the decreasing order of 

the objective function provided, and a tournament selection is 

carried out to determine the new generation. Again, a difference is 

made based on the size on the problem, the top 10 chromosomes 

are chosen to utilize the tournament selection scheme and inserted 

directly into the current generation. The suggested approach is 

implemented to find a solution to the problem by taking 

consideration of these cases: Normal operation; and Case 

considering Zero Injection (ZIN) 

4.1. Normal operation 

In this case, the solution for the optimal PMU placement 

problem is obtained by ignoring ZIN. 

Table 3: Normal operation 

 
IEEE14 

IEEE 

30 
NG 28 NG 52 

Number 

of PMU 
4 10 11 17 

PMU 

location 

Bus 

number 

2, 6,7, 9 

1, 5, 8, 

11, 12, 

19, 23, 

26, 29 

1, 3, 4, 12, 

13, 17, 20, 

21, 23, 24, 

27 

3, 4, 6, 8, 10, 

16, 19, 24, 26, 

27, 32, 35, 39, 

41, 42, 46, 51 

Table 3 shows PMU placement result for the IEEE 14, IEEE 

30, Nigeria bus 28 and 52 considering normal arrangement of the 

bus. 

4.2. Case considering ZIN 

In this case, the solution for the optimal PMU placement 

problem is obtained by considering ZIN. 

Table 4:  Locations of the ZINs 

Bus  Zero Injection location 

IEEE-14 7 

IEEE-30 6, 9, 22, 25, 27,28 

NG-28 11 

NG-52 - 

Table 4 shows the location of the zero-injection node for each 

bus considered. 

Table 5: Considering Zero Injection Node 

 IEEE14 IEEE 30 NG 28 NG 52 

Number 

of PMU 
3 7 10 N/A 

 

Bus PMU 

location 

2, 6, 9 

1, 2, 10, 

12, 19, 23, 

27 

1, 3, 4,12, 

17, 20, 21, 

23, 24, 27 

N/A 

 

Table 5 shows PMU placement results for the IEEE 14, IEEE 

30, Nigeria bus 28, and 52 considering zero injection node. When 

a zero-injection node is considered, the number of PMUs needed 

to observe a system is reduced because that particular bus is 

merged with a connecting node. 

Table 6: System of Redundancy Index (SORI) 

Bus GA ILP [54] IQP [55] 

IEEE14 NPMU: 4 

SORI: 19 

NPMU: 4 

SORI: 19 

NPMU: 4 

SORI: 19 

IEEE 30 NPMU: 10 

SORI: 52 

NPMU: 10 

SORI: 50 

NPMU: 10 

SORI: 50 

NG 28 NPMU: 11 

SORI: 46 

N/A N/A 

NG 52 NPMU: 17 

SORI: 71 

N/A N/A 

Table 6 shows a benchmark with previous studies that utilized 

a mathematical method considering a normal operation. The result 

is favourably compared with the previous work carried out on 

IEEE 14 and IEEE 30 bus system. However, the result obtained in 

this study is superior to the mathematical methods since it gives 

the same number of PMU and a higher quality of SORI. Based on 

this fact, Genetic Algorithm is recommended and is adequately fit 

heuristic technique for PMU placement which improved resilience 

of the system and enhanced its reliability. 

5. Conclusion 

The problem of placing PMU optimally was solved using GA 

heuristic technique and the quality of the result was compared to 

results of previous research, from the comparison as shown in the 

result, it can be observed that the system of redundancy index for 

the heuristic algorithm used did better than the mathematical 

programming method when implemented on the IEEE 30 bus 

system, and achieved the same quality for the IEEE 14 bus system. 

Methods such as conventional and heuristic techniques, exist to 

solve the optimal placement problems; this study presented a 

thorough review study on both techniques. Stabilisation and 

control of Optimal PMU Placement (OPP) have become a power 

network necessity. We covered a magnificent set of techniques in 

this study. This would give researchers a structure for classifying 

these methods and choosing the appropriate solution prior to 

applying for PMU placement.  Analysis of optimisation techniques 

in this research shows that minimising the OPP would be a 

framework and help identify optimisation conditions for 

projections in time to come. 
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