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This article proposes a cost-aware autoscaler for microservices-based applications deployed
with docker containers. This autoscaler decreases the cost of the application deployment
as it reduces computing resources. In elastic treatment, microservice resources are scaled
when the used metric as the central processing unit (CPU) exceeds the threshold. In
case of threshold exceeding, an autoscaler adds many instances of docker containers in
order to satisfy the need of the application. In many studies, the autoscaler adds many
containers without selecting the appropriate microservices for scaling and without in
advance calculation of the adequate number of containers. This may lead to allocating
additional resources to inappropriate microservices and a non optimal number of containers.
For this reason, we propose our autoscaler ”Docker-C2A” which identifies the adequate
microservices to add resources. It also calculates the optimal number of needed containers.

”Docker-C2A” analyses the state of the application, uses the execution history and uses
a Particle Swarm Optimization (PSO) algorithm to identify the adequate microservices
for scaling resources and to determine the optimal number of containers. As a result,

”Docker-C2A” helps to reduce computing resources and to save extra costs. Experimental
measurements were conducted on a microservices-based application as a concrete use-case
demonstrating the effectiveness of our proposed solution.

1 Introduction
Microservices is an architectural style of development consisting of
a collection of small independent and loosely coupled components
[2]. Nowadays, several companies like Amazon, Linkedin, Spo-
tify and Netflix have migrated towards microservice architecture
in order to increase the efficiency and the scalability of computing
resources.

Currently, the most of microservices-based applications are de-
ployed in docker containers [3] and orchestrated with kubernetes
tool [4]. Docker is a container technology designed for creating,
deploying and running applications using containers. The latter
allow developers to package up an application with all needed parts
such as libraries and deploy it as one package. Each instance of
a microservice is a docker container. They are orchestrated and
deployed in a cluster of VMs (Virtual Machines) configured by
kubernetes, an open-source container orchestration system created
by Google for automation of application deployment, scaling and

management.

When there is a rise on the workload, microservices resources
are overloaded and thus additional resources should be allocated.
One of the most important stakes in Cloud environment is to mini-
mize computing resources so as to reduce the deployment cost of
the application. We can resolve this issue and optimize comput-
ing resources using autoscaling techniques. Over-provisioning of
computing resources leads to allocating unused resources. Whereas,
under-provisioning causes performance degradation of the appli-
cation. Thus, an autoscaling technique should identify the needed
resources for the application in order to allocate quasi-exact needed
computing resources.

In literature, few autoscalers are proposed for containers and
microservices-based applications, and most existing solutions have
the same treatment as kubernetes autoscaler. The autoscaler of ku-
bernetes is called Horizontal Pod Autoscaler HPA [5]. HPA scales
the number of containers based on CPU usage. CPU threshold is
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specified by the user. When the application receives high work-
load due to the increase of requests number, many microservices
are overloaded and the CPU threshold is exceeded. Consequently,
kubernetes HPA adds one container instance to each overloaded
microservice. If the threshold is still exceeded, the autoscaler con-
tinues adding other containers until reaching the normal state of
the CPU or the maximum number of containers. This autoscaling
process has several issues that allocate many resources and thus
charge a high deployment cost.

The first issue is the usage of CPU metric. In fact, using CPU
metric in autoscaling is not effective and may lead to allocating
unnecessary resources. Indeed, it was proved in [6] that a high
CPU usage means that the container instance is fully utilized, but
it can still provide acceptable response time without adding more
resources. So, it is possible to execute further requests and to have
acceptable response time even if we have high CPU and high work-
load. This is also why many elastic solutions tend to use response
time metric instead of CPU usage to benchmark their autoscaler.
Moreover, it is highly recommended to use response time metric
instead of resource metrics as CPU when launching autoscaling
actions.

The second issue is that existing autoscalers do not select the
adequate microservices for adding resources. In fact, the microser-
vices of an application are in relationship, and an issue in a given
microservice may be propagated to other ones. Similarly, if this
issue is resolved for a microservice, it is automatically resolved for
related microservices. Thus, an autoscaler should select and find the
eligible microservices for scaling. To do that, the autoscaler should
analyze the whole application with an overview of all microservices.
Also, it should use the execution history of the application to find
eligible microservices.

The third issue is that existing autoscalers do not calculate the
needed number of containers for each microservice and do not react
fast. For example, the autoscaler of kubernetes adds containers one
by one until reaching the normal state. In this case, the normal state
is recovered after a period of time, while in Cloud applications, the
time constraint is critical and fast scaling actions are requisite. Then,
the autoscaler should calculate and estimate the needed number
of containers for each microservice from the beginning to launch
fast actions. To do this, the autoscaler should analyze the appli-
cation and its microservices to estimate the adequate number of
containers for each microservice. Moreover, it should consider the
execution history and the architecture of the application as the re-
lationship between microservices to estimate the adequate number
of containers. As a result, the autoscaler calculates precisely the
needed number of container and launches fast actions. This leads to
optimize computing resources and deployment cost.

This paper proposes ”Docker-C2A” a Cost Aware Autoscaler
for microservices-based applications deployed with docker contain-
ers. This autoscaler focuses on existing issues in order to optimize
computing resources and reduce deployment costs. Firstly, ”Docker-
C2A” is based on response time metric instead of CPU metric. Also,
it selects eligible microservices for scaling and calculates the op-
timal number of containers to be added to each microservice. To
do this, during autoscaling treatment, ”Docker-C2A” considers
the architecture of the application and the relationship between
microservices. In addition, it uses the execution history of the

application and executes a PSO algorithm. As a result, ”Docker-
C2A” selects appropriate microservices for scaling and calculates
the needed number of containers for each microservice. Experi-
mental results conducted on a concrete use case demonstrates that
we can satisfy high workload with minimum computing resources
by allocating a small number of containers. Thus, ”Docker-C2A”
optimizes computing resources and reduces the deployment cost.
And that is the main purpose of this autoscaler.

This paper is organized as follows: Section 2 presents the related
work. Section 3 presents the motivating example of our autoscaler.
Section 4 presents in details Docker-C2A autoscaler. Section 5
details the PSO algorithm in Docker-C2A. Section 6 discusses the
experimentations. We conclude the paper in Section 7.

2 Related Work

Autoscaling is dedicated for optimizing resource allocation in or-
der to avoid allocating unused resources and to reduce the cost
of deployment. Few studies were proposed for the autoscaling of
microservices-based applications focusing on containers. As it was
explained in section 1, these solutions have many issues. In fact,
most of these solutions focus on CPU metric. Also, the resource
allocation is not accurate as many resources are allocated without
selecting the adequate microservices for scaling and without previ-
ous calculating the needed amount of resources. This may lead to
allocating unused and unnecessary resources and thus charging the
user extra costs. In this section we review these studies and explain
the shortcomings of each one.

In [7], the author designed a container-based autoscaling policy
with a mathematical model dedicated for Iot applications based
on containers and microservices. This autoscaler uses two main
metrics, number of requests and resource related metrics as CPU
or memory usage. Also, it uses the history of the application to
take adequate actions for similar cases recorded in the history. After
each scaling action, the autoscaler waits for a cooling period defined
by the user to avoid launching other scaling actions until the appli-
cation becomes stable. The main objective of this autoscaler is to
minimize computing resources and the deployment costs. Using the
history, this autoscaler calculates and estimates the optimal number
of containers used to scale each microservice. Although this solu-
tion estimates the needed resources for allocation, it does not select
the eligible components for scaling.

In [8], the author presented a message queue as a specific use
case in IoT context. They considered metrics related to message
queue mi- croservices. Two classes of microservices were consid-
ered, compute-intensive and I/O-intensive. In [9], the author aimed
to adjust computing resources to the incoming load. In scaling
process, a new container is added when the response time exceeds
1000 ms in a 15 s window. A container can be removed if it uses
less than 10% of cpu. These two studies neither select containers
and components for scaling nor calculate the adequate quantity of
resources to be allocated.

In [10], the author proposed a genetic algorithm for resources
allocation and elasticity management dedicated for microservices-
based applications deployed on a containerized environment. The
main objectives of the proposed solution is the container allocation
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in VMs and elastic treatment of containers. This study models the
whole system such as applications, microservices, the relationship
between microservices, the required resources of each microservice,
containers, the needed resources, physical machines and the net-
work. Then, it optimizes this model using a meta heuristic genetic
algorithm to get optimal results for resource allocation of containers
and the number of containers for each microservice. This autoscaler
considers the architecture of the application and the relationship
between microservices in scaling process. However, it does not
calculate the needed amount of resources for scaling.

In [11], the researchers developed an autoscaler called Mi-
croscaler for microservices-based applications which identifies the
scaling-needed services using a customized metric called Service
Power. When detecting a response time violation, Microscaler
launches the process of detecting services that should be scaled
using the customized metric Service Power. This metric is based on
response time and used to identify the microservices that need to be
scaled with additional resources. Besides, this autoscaler calculates
the adequate number of containers to be added for each selected
microservice. This autoscaler uses a Bayesian Optimization (BO)
and an heuristic approach to determine the optimal number of in-
stances for selected services. Although this autoscaler selects the
appropriate microservices to be scaled and calculates the number
of additional containers, it is strongly related to applications based
on service mesh that make this approach not applicable in other
contexts.

In this paper, we propose ”Docker-C2A” autoscaler for
microservices-based applications using docker containers. We focus
on docker container technology because it is the most used in the
context of containerization and microservices-based applications.
This autoscaler is based on response time metric. Also, ”Docker-
C2A” selects eligible microservices for scaling and calculates the
optimal amount of resources to be allocated. This autoscaler uses
the execution history of the application and a PSO heuristic algo-
rithm. The execution history helps to determine which of application
microservices need to be scaled. Then, the PSO algorithm calcu-
lates the optimal number of containers to be added to each selected
microservice.

”Docker-C2A” can be distinguished over existing solutions as it
allocates the optimal amount of resources to the adequate microser-
vices. ”Docker-C2A” is a fast and accurate autoscaler that gives
more precise scaling actions. This leads to optimizing application
resources and deployment costs.

3 Motivating Example

To illustrate existing issues, we detail the behavior of kubernetes
autoscaler on a concrete microservices-based application. We take
the example of kubernetes autoscaler as most existing autoscalers
have the same treatment. In fact, we consider Bookinfo [12] a
microservices-based application. Figure 1 illustrates Bookinfo ap-
plication composed of four microservices.

This application displays the data related to each book. It is simi-
lar to a unique catalog entry of an online book store. It displays book
details as ISBN, number of pages, and book reviews. Bookinfo ap-
plication is composed of four separate microservices: Productpage

microservice calls details and reviews microservices to get the book
data. Details microservice gives the book information. Reviews mi-
croservice contains the book reviews and calls ratings microservice.
Ratings microservice contains ranking formation deducted from
the book review. Reviews microservice has three versions as three
types of instance : Reviews v1 does not call Rating microservice.
Reviews v2 invokes Rating microservice and displays rating stars
as 1 to 5 black stars. Reviews v3 invokes Rating microservice and
displays rating stars as 1 to 5 red stars. This application is deployed
with docker containers and deployed on a kubernetes cluster.

Figure 1: Bookinfo Application

Kubernetes is the most known and efficient orchestrator for
docker containers. In the following, we use the pod concept of
kubernetes. A pod in kubernetes is considered as a single docker
container of a microservice. A microservice is composed by a set
of pods (a set of containers). The elasticity controller of kubernetes
is called Horizontal Pod Autoscaler HPA [5] and is based on CPU
metric. It adds pods when the CPU threshold is exceeded. CPU
threshold is specified by the user. If the maximum number of pods
(containers) is reached, HPA autoscaler cannot add any more pods.

Many types of workload can be launched in this application.
For example we can manage a workload that routes all incoming
requests to Reviews v3 of microservice Review. Another example
of workload routes incoming requests in 50% to Reviews v2 and
50% to Reviews v3. Technically, it is difficult to route requests flow
to a specific container of a microservice. However, it is easy to
manage the request flow with Istio [13] service. Istio is based on
service mesh which facilitates the creation and management of the
network of deployed services. Istio allows to manage network com-
munication between microservices as well as the traffic of requests.
In fact, it helps to create configuration rules for traffic routing in
order to control the traffic flow between microservices.

In this paper we consider a workload that routes all incoming
requests of microservice review to reviews-v3 instances. This work-
load launches a flow of 70 Req/s. It is not a very high workload but
it saturates resources and generates overloaded microservices. This
section presents the behavior of kubernetes HPA autoscaler using
this workload.

Figure 2 shows the behavior of kubernetes HPA autoscaler using
the presented workload with a request flow of 70 Req/s. Many
pods were saturated and Kubernetes HPA launches autoscaling ac-
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tions. Kuberenetes HPA adds 4 pods for productpage microservice
resulting in a total of 5 pods. It adds also 1 pod to reviews-v3
microservice. From t=70, we have a total of 12 pods of reviews-v3.
Ratings and details microservices were not saturated and we have
no additional pods. The curves of ratings and details are superim-
posed as they have 1 pod all the time. The total number of pods
required for this workload is 19 pods as 5 pods for productpage, 12
pods for reviews-v3, 1 pod for ratings and 1 pod for details. This
autoscaler is based on CPU. If the CPU usage of a microservice
exceeds threshold, the autoscaler adds many pods until recovering
of the normal state.

However, as explained in section 1, using CPU usage in autoscal-
ing treatment is not effective and may lead to allocating unnecessary
resources. Therefore, we should also analyze the behavior of ku-
bernetes autoscaler towards the response time. The red curve in
Figure 2 illustrates the evolution of the response time in kubernetes
autoscaler.

Figure 2: Kubernetes HPA Autoscaler behavior

Figure 3: EPMA : Elastic Platform for Microservices based Application : Autoscal-
ing Engine

Approximately, the response time starts with 1300 milliseconds
(ms). At time t=25, we have 5 pods for productpage microservice
and 2 pods for reviews-v3 microservice. We can notice a con-
siderable evolution of the response time with approximately 1100
milliseconds. From t=37 to t=100, kubernetes autoscaler adds pods
for the microservice reviews-v3 until reaching 12 pods. Following
this addition, we notice no improvement in response time, but we

can see a slight increase starting from t=43. It is concluded that
during this interval of time, kubernetes autoscaler added 10 pods for
reviews-v3 microservice, while the response time is not improved.
So the added pods for reviews-v3 are not useful and kubernetes
allocates unnecessary resources without any benefit.

With our autoscaler Docker-C2A, based on response time met-
ric, we aim at optimizing the addition of resources and avoid al-
locating unnecessary resources. Docker-C2A uses PSO heuristic
algorithm and the execution history of the application to optimize
resource allocation. Using Docker-C2A, we can satisfy the same
workload used in kubernetes example with a very small number of
pods and with a better application performance.

4 Docker-C2A Autoscaler

4.1 EPMA platform

Docker-C2A is part of our EPMA platform (Elastic Platform for
Microservices based Applications) illustrated in Figure 3. This plat-
form is based on the autonomic MAPE-K loop proposed by IBM
[14]. MAPE-K loop is composed of four components that share the
Knowledge: Monitor, Analyze, Plan and Execute. EPMA manages
the entire system with all levels: VM level, container level and
microservice level. The analyze component DockerAnalyzer was
previously presented [1] while this paper details the plan component
Docker-C2A.

The monitor component collects data from different levels: VM,
container and Microservice. This component collects metrics related
to resources as CPU usage and memory usage and metrics related
to the application performance as the response time. These param-
eters are filtered and correlated in order to determine symptoms
that should be analyzed. As example of a symptom, an overload
state caused by the CPU violation. If the monitor detects a symp-
tom, DockerAnalyzer, the analyze component, is invoked to check
whether this symptom is caused by a normal behavior as resource
saturation or by an abnormal behavior as VM problem. If an abnor-
mal behavior is detected, the analyzer had to check the root cause
of the problem. Then, the plan component Docker-C2A generates
the appropriate change plan describing the desired set of changes,
and deliver the change plan to the execute component. The execute
component applies the change plan and executes adequate actions
for each layer. These four components share the knowledge contain-
ing particular data as policies and symptoms. This paper explains
deeply the plan component Docker-C2A of EPMA platform.

Docker-C2A is based on the execution history of the application
and a PSO heuristic algorithm. When the application state needs
additional resources, Docker-C2A selects the best microservices
for scaling and calculates the optimal amount of needed resources
for each microservice.

4.2 Execution History

The main purpose of the execution history is to identify the microser-
vices that should be scaled, and those that should not be scaled as
there is no need to add resources. To do that, we attribute a score
value for each microservice. The score value is a number varying
from 0 to 5 depending on the utility of adding resources to the
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microservice. For example, if we have a microservice that the ad-
dition of pods (containers) improves greatly the response time, the
attributed score will be 5. If we have a microservice where adding
pods will not improve the response time, the attributed score will
be 0. As a result of the execution history, we generate the score
value for each microservice. This helps to scale the appropriate
microservices.

We account for the score attribution using bookinfo application
with the same workload explained in section 3 which routes the
incoming traffic of reviews microservice to reviews-v3 instances
and uses a flow of 70 Req/s. Bookinfo application is composed
of 4 microservices. We present in the following an extract from
the history related to two microservices in order to demonstrate the
score attribution.

Figure 4: An extract of Productpage history

In Figure 4, we change the number of pods in microservice
productpage and we keep the same number of pods for other mi-
croservices. In the second row in this table of Figure 4, we have
5 pods of productpage and the response time has been improved
considerably compared to the first line with 1 pod. The response
time decreased effectively with 155 milliseconds. So requests are
much faster with 5 pods than if we had 1 pod of productpage. In
this case, we notice that adding pods to productpage microservice
improves greatly the response time. We attribute the high score with
value 5 for this microservice.

Figure 5: An extract of Reviews-v3 history

In Figure 5, we change the number of pods in microservice
reviews-v3 and we keep the same number of pods for other mi-
croservices. There is no remarkable difference in response time
between 1 and 5 pods. There is a very small increase in response
time with 3 milliseconds, which is not profitable when we add 4
pods. In this case, we notice that adding pods to reviews-v3 mi-
croservice has no effect on the response time. Then, there is no
change in the result. So we attribute the lowest score to reviews-v3
with value 0.

With the same process, we analyze the evolution of the response
time when we add pods to ratings and details microservices. In
fact, there is a weak improvement of the response time when we
add pods to these two microservices. Then, we attribute the score

value of 1 for ratings and details microservices while adding pods
improves the results slightly.

As a conclusion for the execution history, we can admit that
adding more resources to productpage microservice can effectively
improve the response time of the application. Adding pods to
reviews-v3 microservice has no effect on the response time. So
adding pods to this microservice is unnecessary. Adding pods to
ratings and details microservices improves the results slightly. They
are not privileged in autoscaling treatment.

We illustrate the score values for each microservice in Figure 6.

Figure 6: Score value for each microservice

The execution history is very helpful when adding resources in
scaling actions. In fact, it helps to select the appropriate microser-
vices for scaling which leads to optimize resource allocation. After
selecting eligible microservices for scaling, Docker-C2A calculates
the optimal number of pods to be added to each microservice. To
do this, Docker-C2A uses PSO algorithm to estimate the needed
amount of resources for each microservice.

4.3 PSO Algorithm

Particle Swarm Optimization (PSO) is a computational technique
based on the behavior of herds of animals that optimizes a given
problem. It tries iteratively to improve candidate solutions with
regard to a given quality measure. It was developed by Kennedy and
Eberhart [15] in 1995 and widely used and researched ever since.

In PSO algorithm we define a particle which is analogous to a
bird in a flock of birds. The flock of birds forms the search space.
The movement of each particle is guided by the velocity vector.
Each particle moves according to its best position pbest and the best
position of the swarm gbest.

In this algorithm, we use a fitness function to measure the per-
formance of each particle. In each iteration, the algorithm changes
the velocity of each particle towards pbest and gbest positions. The
algorithm stops when a stopping criterion is met or the number
of iterations is reached. The velocity and positions equations are
represented with Eqs. (1) and (2), respectively. The pseudo-code of
the algorithm is presented in Algorithm 1.

Vk+1
i = wVk

i + c1r1(pbesti − Xk
i ) + c2r2(gbest − Xk

i ) (1)

Xk
i+1 = Xk

i + Vk+1
i (2)

where

• w : inertia weight
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• c1 and c2 : acceleration coefficients

• Xk
i : position of particle i at iteration k

• Xk+1
i : position of particle i at iteration k+1

• Vk
i : velocity of particle i at iteration k

• Vk+1
i : velocity of particle i at iteration k+1

• pbesti : best position of particle i

• gbest : best position of the swarm

Algorithm 1 PSO Algorithm

1: Initialize a population of particles with random values positions
and velocities from D dimensions in the search space

2: while Termination condition or Number of iterations not
reached do

3: for Each particle i do
4: Update the velocity of the particle using Equation 1
5: Update the position Xi of the particle using Equation 2
6: Calculate the fitness value f (Xi)
7: if f (Xi) < f (pbesti) then
8: pbesti ← Xi

9: end if
10: if f (Xi) < f (gbest) then
11: gbest ← Xi

12: end if
13: end for
14: end while

5 Docker-C2A : PSO Algorithm

Docker-C2A uses PSO algorithm to calculate the optimal number
of pods (containers) to be added to each microservice. Two main
objects should be defined in PSO algorithm: particle and fitness
function.

5.1 Particle definition in Docker-C2A

In PSO algorithm, a particle represents a solution candidate of the
problem. In our context, a solution is a particle that contains the
adequate number of pods for each microservice. The dimension
of the particle is defined by the number of microservices of the
application. We consider the same example and workload explained
in section 3. In this example, we use bookinfo application composed
by 4 microservices: productpage, reviews-v3, ratings and details. In
this case we define particles of 4 dimensions. Each microservice is
referenced by an index. For example, we consider the productpage
microservice with index 0, reviews-v3 with index 1, ratings with
index 2 and details with index 3. We illustrate the particle model
for bookinfo application in Figure 7.

Figure 7: Particle model of bookinfo application

In Figure 8. below we present an example of two particles.
Particle 0 contains 3 pods for productpage microservice, 1 pod for
reviews-v3 and ratings microservices, 3 pods for details microser-
vice. Particle 1 contains 1 pod for productpage microservice, 5 pod
for reviews-v3 microservice, 1 pod for ratings details microservices.

Figure 8: Example of Particles

The PSO algorithm 1 evaluates each particle using the fitness
function. The fitness value helps to decide about the best and which
one is better than another by searching pbest and gbest positions as
described in the algorithm.

5.2 Fitness function in Docker-C2A

The fitness function helps to evaluate particles and update pbest and
gbest positions. We aim to minimize the fitness value to get the best
solution. In Docker-C2A, the fitness function depends on the score
based on the execution history as depicted in section 4.2 and the
cost of the particle. We aim to maximize the score of particles in
order to improve the response time and to minimize the cost of the
particles to save deployments charges.

The fitness value of each particle Pi is calculated following
equation 3 which is the cost of the particle divided by the score of
the particle.

f itness(Pi) =
Cost(Pi)
S core(Pi)

(3)

If we reduce the cost and increase the score then we minimize
the fitness value and obtain a better solution. The particle with
the lowest fitness value is the best particle, while it has a low cost
with high score. The high score reflects a great improvement of the
response time.

The score value of the particle is calculated following equation 4
which is the sum of the score of each microservice MS k multiplied
by the number of pods of the microservice.

S core(Pi) =
∑

S core(MS k) ∗ NB Pods(MS k) (4)
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The cost of the particle is calculated according to equation 5
which is the sum of the cost unit of each microservice MS k multi-
plied by the number of Pods of the microservice.

Cost(Pi) =
∑

Cost(MS k) ∗ NB Pods(MS k) (5)

5.3 PSO Example

In this section, we explain a concrete example of executing PSO
algorithm. We consider the bookinfo application with the same
workload presented in section 3 which routes requests of reviews
microservice to reviews-v3 pods. In this example, we use 3 particles
and 3 iterations. We follow the algorithm 1.

Figure 9: Summarize of the execution treatment

In the first step, the algorithm initializes the number of pods
needed to the 3 particles randomly. Initially, the best position of
each particle pbest is the particle itself. The fitness value of each
particle is calculated following the equation 3. When we calculate
the cost in fitness function, we consider that all pods have the same
cost as 1 unit of cost. In the first step, the fitness values of particles
0, 1 and 2 are ”0.75”, ”0.538” and ”0.714” respectively. The particle
with the lowest fitness value is the best particle which is Particle 1
with a fitness value of ”0.538”. PSO algorithm selects Particle 1 as
the best particle having the best position gbest in the swarm.

In each iteration, the algorithm calculates the fitness value for
each particle, selects the gbest position and moves particles to new
positions in order to ameliorate particle positions with better fitness
values.

Figure 9. summarizes the execution treatment in this example.
This figure illustrates the best position gbest after each iteration

and its fitness value. We remember that we use 3 iterations in this
example. It is clear that the fitness value of the best solution gbest
is improved in each iteration, as the purpose of the algorithm is
to minimize this value. In fact, if we minimize the fitness value,
we guarantee that the particle position has the minimum cost with
significant gain in response time.

At the beginning, the fitness value of gbest was ”0.538”, this
value was decreased after each iteration, so our algorithm is improv-
ing the solution correctly with the decrease of fitness value. The
lowest value of fitness ”0.357” is presented in the final iteration
and it is the output of the algorithm. This particle has 5 pods for
microservice 0 which is productpage, 2 pods for microservices 1
and 2 which are reviews and ratings microservices respectively, and
1 pod for microservice 3 which is details microservice.

In the next section, we discuss the results of our autoscaler
Docker-C2A based on PSO algorithm and execution history using
this example and we discuss the difference and the contribution
compared to Kubernetes HPA autoscaler.

6 Experimentations

In this section, we discuss the impact of our autoscaler Docker-C2A
compared to Kubernetes HPA autoscaler.

In our experimentations, we use a cluster Kubernetes composed
by 4 virtual machines (VMs). Each VM runs on Ubuntu OS and
contains 4 cores CPU, 8GB memory and 100 GB for disk storage.
We use the same microservices-based application bookinfo detailed
in section 3 composed by 4 microservices: productpage, reviews,
ratings and details. Each microservice is deployed in Kubernetes
cluster as a deployment containing a set of similar pods. We use the
same workload used previously which routes the incoming traffic
of reviews microservice to reviews-v3 instances with a flow of 70
Req/s.

Figure 10 illustrates the difference between Kubernetes HPA
and Docker-C2A behaviors. At the time t=24, we launch these
two autoscalers. Kubernetes behavior is illustrated in Figure 10a.
We detailed the behavior of Kubernetes HPA in section 3 using the
workload of bookinfo application. When Kubernetes HPA detects a
high load it waits 15 seconds to launch autoscaling actions. In each
period of 15 seconds, it calculates and launches the needed number
of pods. Every period, it updates the number of needed pods and
monitor the situation. Kubernetes HPA stops adding pods when the
state of the application becomes stable or it reaches the maximum
number of pods. As a result, HPA autoscaler launches 5 pods for
productpage microservice, 12 pods for reviews-v3 microservice
and 1 pod for both details and ratings microservices. So for this
workload Kubernetes HPA launches 19 pods.

Whereas, with Docker-C2A autoscaler, based on the execution
history and the PSO algorithm, we can manage the same workload
with reduced number of pods. Docker-C2A behavior is illustrated
in Figure 10b. When it detects a high workload, it waits 15 seconds
and launches the action plan issued by PSO algorithm. In this exam-
ple, the output of PSO algorithm is presented in Figure 9. The output
is the gbest particle of the last iteration. This particle contains 5 pods
for productpage microservice, 2 pods for both reviews-v3 and rat-
ings microservices and 1 pod for details microservice. Docker-C2A
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a
(a) Kubernetes HPA Autoscaler behavior

b
(b) Docker-C2A autoscaler behavior

c
(c) Kubernetes HPA Response Time vs NB of Pods

d
(d) Docker-C2A Response Time vs NB of Pods

Figure 10: Kubernetes HPA autoscaler vs Docker-C2A autoscaler

launches in total 10 pods.
If we consider the response time of requests which is presented

with red curves in Figures 10a and 10b, we notice that the response
time is almost the same in Kubernetes or Docker-C2A autoscalers.
While Docker-C2A launches only 10 pods which is 9 pods less than
Kubernetes HPA that launches 19 pods. We summarize the number
of pods and the response time of these two autoscalers in Figure 11.
The response time of requests with Docker-C2A is 9 milliseconds
higher than the response time with Kubernetes. This difference is
negligible and is not considerable as the difference is appreciated
if it is in the order of tens or even hundreds of milliseconds. So,
we have certainly reached our goal with Docker-C2A using the
execution history and the PSO algorithm which gives an optimized
amount of resources with good performance.

Figure 11: Kubernetes HPA autoscaler vs Docker-C2A autoscaler

Also, Docker-C2A takes in average 60 milliseconds to generate
the decision of scaling, which is a short period of time that does not
disturb the elastic treatment. However, Docker-C2A uses a high

amount of resources of about 1.2 cores of CPU to process the PSO
algorithm. The high resource usage is the cost of problem optimiza-
tion and among the weak points of our autoscaler. Moreover, to
run our algorithm, it is recommended to execute up to 4 iterations
as a maximum. Indeed, in our context, PSO algorithm generates
erroneous results from 5 iterations.

7 Conclusion and Future Works

In this paper, we presented our autoscaler Docker-C2A a cost
aware autoscaler for microservices-based applications deployed
with docker containers. Docker-C2A is based on response time
metric. It uses the execution history of the application and PSO
algorithm. Docker-C2A selects appropriate microservices for scal-
ing and calculates the optimal number of containers for each mi-
croservice. We clearly presented the effectiveness of our autoscaler
compared to Kubernetes HPA autoscaler using bookinfo application
as a real case study. We compared with Kubernetes autoscaler as
most of existing autoscalers have the same issues. They neither
select appropriate microservices for scaling nor calculate the op-
timal number of additional containers. As a result, Docker-C2A
optimizes computing resources and reduces deployment cost. And
that is the main purpose of our autoscaler. However, there are some
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limitations of Docker-C2A. In fact, it consumes a high amount
of resources to generate the solution. This fact is caused by the
PSO algorithm which requires high resources and this is the case of
several optimization algorithms.

In future work, we improved Docker-C2A to consume less
resources, either by proposing another particle definition in PSO
algorithm, or by integrating another optimization algorithm instead
of PSO that consumes less resources and generates good results.
Also, in future work, we improved the execution history using other
performance metrics and more execution data in order to analyze
the application behavior in each workload. This greatly helps to
estimate the needed resources with more precision and allows better
optimization of computing resources.
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