
 

www.astesj.com     937 

 

 

 

 

Design and Implementation of DFT Technique to Verify LBIST at RTL Level 

Nagaraj Vannal1,2,*, Saroja V Siddamal3 

1Department of ECE, BVBCET Hubballi, VTU Belgaum,590018, India 

2Technical Lead (Level-2), ASIC Division, Einfochips (an ARROW company) Pvt. Ltd Bangalore, 560095, India 

3School of ECE, KLE Tech University, Hubballi,580031, India 

A R T I C L E   I N F O  A B S T R A C T 
Article history: 
Received: 17 August, 2020 
Accepted: 04 October, 2020 
Online: 08 December, 2020 

 According to IEC 61805 and ISO 26262 standards requirement inclusion of LBIST (Logic 
Built in Self-Test) became mandatory to achieve safety critical application such as 
automotive field. In such systems, once device is switched ON LBIST (Logic Built in Self-
Test) is activated and testing of digital logic is performed. After safety subsystem says that 
the LBIST passed, the SoC (System on Chip) moves into the functional mode otherwise, the 
SoC moves into a safe state. In this entire start-up sequence the LBIST interacts extensively 
with the safety sub-system of the SoC. Startup sequence remains un-verified at RTL 
(Register-Transfer Level) leading to painful ECOs (Engineering Change Orders) and post 
Silicon issues in some cases. LBIST verification can only run if scan chains are present in 
design which is not the case at RTL. The paper describes design of a Design-for-Testability 
(DFT) technique to enable LBIST based system verification with different test approaches 
at RTL which eliminates the possibility of ECOs by catching most of the issues at RTL level. 
Simulation results are demonstrating the feasibility of the approach with emphasizing the 
benefits obtained on significant computational modules. 
 

Keywords:  
DFT (Design for Testability) 
LBIST (Logic Built in Self-Test) 
SoC (System on Chip) 
ECO (Engineering Change 
Orders) 
Netlist 
RTL (Register-Transfer Level) 
ATPG (Automatic Test Pattern 
Generator) 

 

 

1. Introduction 

LBIST became alternative approach for ATPG (Automatic 
Test Pattern Generation) due to increased complexity and test cost 
requirement for functional blocks [1]-[3]. Electronic component 
general safety-critical applications [4] are referenced in IEC 61805 
[5] and Automotive Safety Integrity Level (ASIL) for automotive 
domain is referenced in ISO 26262 standard [6]. 

Latent faults (LFs) detection for automotive systems using 
power on self-test (POST) based on logic built in self-test (LBIST) 
is executed during engine start -up to test safety – critical devices 
before staring any functional operations [7]. POST is having 
limited test application time in automotive systems [8]. Getting 
required LF coverage (>90%) within less test application time is 
primary requirement [9]. 

 the pass/fail comparison of the unit [10], [11]. PRPG (Pseudo 
Random Pattern Generator) is used for generating input stimulus 
for the design, and MISR (Multiple Input Signature Register) to 
capture the compact the response. Test patterns which is supplied 

to internal scan chains are output of PRPG block and response is 
the input to the MISR compaction. Signature is the compacted 
response for that cycle of operation [12], [13]. The LBIST 
implementation is as shown in Figure 1.   

LBIST is based on 'scan' methodology to test digital logic [14], 
this suffers from limitation – The design cycle will be delayed by 
the time the netlist is ready with Scan insertion, X-bounding [15] 
and Test-point insertion done [16]  to perform LBIST verification. 
Performing LBIST patterns gate-level simulations early in the 
design cycle will take weeks to complete since execution is 
performed in series and are large number [17].  

In this paper, we propose an innovative strategy for the in-field 
testing of automotive devices. Methodology to perform parallel 
verification of sub-modules of System on Chip (SoC) is described. 
Section 2 describes proposed design methodology to per-form 
Logic BIST verification at RTL level with dummy netlist. Section 
3 describes implementation details such as scan chain insertion 
steps, dumpy netlist creation and direct mode entry. Simulation 
results with debugging analysis details are discussed in section 4 
and in section 5 conclusion of the work is described. 

ASTESJ 

ISSN: 2415-6698 

*Corresponding Author: Nagaraj Vannal, Email: nagaraj.vannal@gmail.com  
 
 
 

          
        

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 937-943 (2020) 

www.astesj.com 

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology 

 

https://dx.doi.org/10.25046/aj0506111  

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj0506111


N. Vannal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 937-943 (2020) 

www.astesj.com     938 

 
Figure 1: Standard LBIST Implementation 

2. Proposed Design Methodology 

Logic Built-In Self-Test (LBIST) is implemented by several 
LBIST controllers which operate independently on different 
partitions of the device as shown in Figure 2. This is needed to 
fulfil safety requirements about the independence and diversity of 
replicated IP, helps in physical flow and helps to avoid exceeding 
power limits. For applying traditional external scan patterns, 
LBIST controllers are put into trans-parent mode. Typically scan 
chains used for LBIST are shorter than scan chains used for 
compressed ATPG (Automatic Test Pattern Generation). 
Therefore, in LBIST transparency mode, the short LBIST chains 
are concatenated during to longer pro-duction scan chains which 
then are connected to the EDT (Embedded Deterministic Test) 
scan compression IP. 

 
Figure 2: LBIST Architecture 

LBIST controller IP itself will become part of the scan chains 
used for external scan patterns. Certain registers may not change 
value during LBIST operation but should be part of regular ATPG 
scan. These registers are put into one or more separate scan chains 
which are not shifted during LBIST. During LBIST their values 
are not influenced by shifting. These special scan chains are only 
used for ATPG. These registers will be identified during 
implementation. Each of the LBIST controllers is connected 

independently to the STCU (Self-Test Control Unit). The STCU 
can either start all LBIST controllers at the same time in parallel 
or in a sequence defined by the STCU. Only for debug reasons it 
is possible to access and operate each LBIST controller separately. 
This is done via JTAG (Joint Test Action Group) and a path 
through TCU (Test Control Unit) to the selected LBIST controller. 

2.1. LBIST Partitioning  

According to the safety concept eight LBIST partitions are 
implemented. They are numbered A0, A1, B0, B1, C0, C1, P0, P1. 
Each LBIST partition is contained in a separate LBIST island or 
lake as shown in Table 1. List of blocks where LBIST 
implementation is exempted: 

• JTAG Controller 
• TCU 
• IO_top level ((Input-Output) / Pad ring 
• PMU (Power Management Unit)/ PMU-Controller 
• STCU  
• PLL (Phase Locked Loop) 
• XOSC (Oscillator) 

Table 1: Characteristic data of LBIST partitions 

 Characteristics 
Partition Size LBIST 

chains 
PRPG 

size 
Clock 

domains 
Chain 

overhead 

A0 77K 1600 46 System, 
tck 10% 

A1 60K 1100 36 System, 
tck 10% 

B0 24K 500 24 System, 
tck 10% 

B1 60K 1100 36 System, 
tck 10% 

C0 45K 1000 34 System, 
tck 10% 

C1 60K 1100 36 System, 
tck 10% 

P0 26K 600 26 System, 
tck 10% 

P1 60K 1100 36 System, 
tck 10% 

 
2.2. LBIST Integration   

The design is split into several LBIST islands, where each 
LBIST island contains the actual LBIST partition, i.e. the logic to 
be covered by LBIST, a dedicated LBIST controller, dedicated 
clock and reset control blocks as shown in Figure 3. LBIST 
Controller:  

Essential features of the LBIST controller IP used are: 

• External clock control. 
• Serial and parallel interface (to simplify communication, both 

functional and test/debug). 
• Neg-edge lockup registers after PRPG and before MISR (to 

simplify LBIST scan chain timing) 

With the introduction of lockup registers after PRPG and 
before MISR all LBIST scan chains must begin and end with a 
pos-edge flop. With this architecture all LBIST clock domains 
with less than half a cycle clock skew can be handled safely. 

http://www.astesj.com/


N. Vannal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 937-943 (2020) 

www.astesj.com     939 

LBIST Controller Hierarchy: The controller needs to be generated 
with the following parameters: 

set rtl hierarchy -Clk_mux Out -external_clk_enables 
set lbist Controller -programmable_shift_rate ON 

set shift_rate Divisor 8 

This generates the LBIST controller IP in a hierarchy. The 
LBIST clock controller is entirely based on clock enable rather 
than the clocks generated by the LBIST IP in order not to generate 
a new clock path. Figure 4 gives an overview of the generated 
Controller IP and its hierarchy. 

 
Figure 4: LBIST Controller IP Hierarchy 

2.3. LBIST Controller Clocks   

The LBIST controller operates on three different clocks, the 
LBIST engine clocks, bist_clk, and slow_clk, as well as the STCU 
communication clock bist_tck. The LBIST engine clocks bist_clk 
and slow_clk must fulfill the following requirements:  

• The clock source for ‘bist_clk’ and ‘slow_clk’ must be 
identical. 

• The clock source for ‘bist_clk’ and ‘slow_clk’ must be the 
fastest clock used inside the LBIST partition. 

• The clock source for ‘bist_clk’ and ‘slow_clk’ must be the 
clock with the highest clock insertion delay used inside the 
LBIST partition. 

2.4. LBIST Interface Dummy 

The LBIST interface dummy propagates a standard LBIST 
interface into the LBIST partition, to ensure, that all relevant 
signals are present and preserved through synthesis and scan 
insertion. The LBIST interface dummy combines the following 
interfaces / features: 

• LBIST controller IP interface 
• LBIST clock interface 
• LBIST clock gating control (‘ipt_cg_bypass’ and 

‘ipt_se_gatedclk’) 
• Test points that can be connected by the physical team to 

improve coverage if required 
• Production Scan: Launch-Off-Shift (LOS) per clock domain 

and blocking of LBIST control signals for at-speed scan. 

The LBIST interface dummy is protected during synthesis 
because connections to the module are created during scan chain 
stitching and automatic clock gate insertion only. 

2.5. LBIST Interface Dummy 

For direct execution of LBIST, the optional parallel interface 
of Mentor’s LBIST controller is used. It provides the following 
interface signals: 

• bist_run_input- triggers LBIST run 
• bist_done - flags a finished LBIST run 
• misr_value - vector output providing parallel read access to 

MISR value 

Debug and diagnosis require access to LBIST control 
registers. It is done through LBIST’s serial interface. Writing and 
reading control registers happens in a JTAG-like serial mode. The 
LBIST serial debug interface is used by the STCU to con-figure 
LBIST run parameter, such as pattern count. Full debug and 
diagnosis are performed through the TCU only. The interface is 
based on a JTAG-like protocol with shift- and update-DR states. 
Both TCU and STCU share the interface to the LBIST controller 
IP, where the muxing between TCU and STCU is performed 
inside the STCU controlled by ‘tcu_lbist_direct_ctrl’. The actual 
TCU access is performed though the TCU external TDR 
mechanism based on the register selection through the LBIST 
TDR (LTDR). Expected LBIST signatures are kept in the Non-
Volatile Memory (NVM). Through STCU programming the 
required signature is fetched from the NVM for comparison. 

2.6. LBIST Clock and Reset Control  

LBIST Clock Control: All LBIST clocks are controlled 
through the Magic Carpet Clock Gating Logic (MC_CGL) 
associated with each LBIST partition. The clock control by the 
MC_CGL is purely based on clock enables rather than the clocks 
generated by the LBIST IP. Figure 3 shows the modules relevant 
for LBIST clock control for one LBIST partition ‘C0’. 

http://www.astesj.com/


N. Vannal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 937-943 (2020) 

www.astesj.com     940 

The LBIST controller, as well as the blocks 
lbist_clock_control, lbist_cgl_control, and cgl_lake exist local to 
all eight LBIST partitions. The LBIST controller with its modified 
co_clock_control block is connected to the main 
lbist_clock_control module, that combines the shift and capture 
enable signals. The lbist_cgl_control block switches between the 
clock enables generated by the TCU and by the LBIST controllers 
depending on the mode setting. The clock gate inside the 
MC_CGL will generate the slow bist clock based on the enable 
provided by the LBIST IP. The LBIST clock control will provide 
punch out clocks, not 50% duty cycle clocks. 

Slow Clock Generation: The LBIST slow clock 
(‘slow_clock’) is a punch out clock divided down from bist_clk 
(== fast_clk) using a programmable clock divider inside the 
‘sg_slow_clock_gen’. It is used to control several key LBIST 
functions, such as PRPG, MISR, pattern counter etc. The same 
slow clock divider is used to program the shift clock frequency. 
The default divider ratio of the ‘sg_slow_clk_gen’ module is set 
to 8 but can be reprogrammed via the LBIST control registers. 

LBIST Reset Control: To control all resets within the LBIST 
partition, all resets must be routed through the LBIST reset control 
block. The block allows reset control for LBIST, while the system 
resets are not gated. This is to make sure, that a system reset is not 
blocked during device startup. 

LBIST reset requirements are: 

• All asynchronous resets of an LBIST partition must be routed 
through the LBIST reset control block. 

• All functional resets must be in off state during LBIST 
execution. 

• No LBIST partition output to MC_RGM/MC_RSL must have 
an influence on self-test / LBIST execution. 

The original reset control logic provided by the LBIST 
controller IP is an active-high reset (clock) signal multiplexed into 
the functional reset path. With the non-blocking reset control, 
where the functional reset is not blocked by LBIST a new reset 
control is introduced replacing the original one. To pre-vent reset 
glitches from propagating into the LBIST partition in scan mode, 
the LBIST reset control must be bypassed by a scan mode reset. 
The non- blocking reset control dictates, that all functional resets 
are off during LBIST execution, otherwise the LBIST MISR 
becomes invalid. 

2.7. Making the LBIST Partitions LBIST Ready 

The interface of the LBIST partitions need special attention 
to ensure that there is no X poisoning into the LBIST partition. 
All critical signals causing problems in the standard X-bounding 
flow will be X-bound in RTL. Mentor Testkompress fault 
simulation is used to identify missing X-bounds. The decision on 
whether an input is to be X-bounded is taken based on the partition 
input signal categories shown in Table 2. 

The X-bounds inserted in RTL will instantiate a MUX 
controlled by lbist_en from the LBIST controller IP. Whenever 
possible the partition outputs are used as inputs to the MUX. This 
increases coverage as it provides toggling and not constant inputs 
to the MUXes, while at the same time adding observability to the 
partition outputs. 

 
Figure 5: X-bounding to avoid multi-cycle path generation 

Figure 5 shows a concept used to avoid multi-cycle path 
generation on known critical input – output combination. The 
LBIST interface dummy module will include several XOR gate 
FF combinations as shown below. The RTL X-bounding flow 
uses and connects these structures. In a later stage the automatic 
RTL x-bounding flow might also include instantiation of these 
structures instead of using predefined ones. 

Table 2: LBIST partition input categories 

Category LBIST Control Bound 
Reset input Via LBIST reset control No 
Clock input Via LBIST clock control No 

Clock gate control Via LBIST interface 
dummy No 

Common Digital Input  Yes 
Selected Tied Digital Input  Yes 
Unconnected Digital Input None required No 

Digital Input from TCU – no 
influence on LBIST  yes 

Digital Input from TCU – 
influence on LBIST Constant from TCU No 

Bidirectional NA No 

Analog/Special Nets All hard IP in LBIST 
mode No 

LBIST Controls From LBIST control IP No 

3. Implementation Details  

LBIST scan chain insertion and concatenation to top level 
LBIST chains including lockup-FF insertion followed these basic 
steps in the DFT and physical flow. 

1. DFT flow - Generated EDT controllers everything pos-edge 
based w/o lockup-FFs 

2. DFT flow - Generated LBIST Controller and connected 
internal LBIST chains at the BIST controller to form ATPG 
scan chains. Modified LBIST controller to provide ATPG 
chain outputs with LBIST controller interface. Connecting 
ATPG chain inputs and outputs of LBIST controller to EDT 
controllers using IPXACT flow. (Assigned fixed value to 
EDT controller pins for remaining chains outside LBIST to 
protect them in synthesis) 

3. Physical flow -One step scan insertion: Building LBIST 
chains, connecting them to the LBIST controller. Building 
ATPG chains for logic outside LBIST, connect-ed them to the 

http://www.astesj.com/


N. Vannal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 937-943 (2020) 

www.astesj.com     941 

EDT controller using the pins with fixed value assigned by 
IPXACT. 

4. Physical flow - Post processing step to insert lockup FFs, 
including required lockup-FFs in concatenated LBIST chains. 

5. Checked for missing lockup-FFs on 
a. change of clock name or clock polarity in scan cell report - 

DFT flow 
b. clock hierarchy change - Physical flow 

Figure 6 depicts concatenation of four LBIST scan chains to 
form one production chain with input and output available at the 
LBIST controller boundary for hook up to the EDT controller. 
Also shows where lockup FFs are placed by the physical flow. 

 
Figure 6: LBIST chain concatenation and lockup latch insertion 

3.1. LBIST Dummy Netlist Integration at RTL 

Integrating a dummy netlist in the design at RTL level with 
the same number of scan chains, scan clocks and scan resets is 
done.  This dummy netlist should only be visible to the 
verification environment, in the LBIST testcases expect the MISR 
calculated for the dummy netlist. 

Flow: Generate a dummy netlist (with scan chains)  
Generate the MISR value for the same dummy netlist Integrate 
this dummy netlist into the actual design RTL  run the testcases 
for verifying the complete start-up sequence. Details of each step 
are described below: 

Step1: Generate a dummy netlist using “skeleton design creation”. 
create_skeleton_design -o lbist_for_verif -i 

skeleton_design.txt 
Step2: Generate MISR for dummy netlist by doing fault simulation 
using LBIST Architect 

lbistarchitect -fault_simulation \ 
lbist_for_verif.v -verilog \ 
-lib skeleton.fslib -nogui \ 

-dofile lbist_for_verif.dofile 
Step3: Integrate the dummy netlist into the lbist partition using 
“ifdef” 
Step4: Perform RTL simulations for LBIST based start-up 
sequence using the com-pilation argument:   

+define+LBIST_DUMMY_SIM 

3.2. LBIST Direct Control Mode 

For LBIST debug purposes there is a ‘LBIST direct control’ 
mode, where the different LBIST partitions can be run stand alone 

or in parallel. Which LBIST partitions are run, as well as LBIST 
parameters like pattern count, MISR start value etc., are 
programmed via JTAG. The LBIST Direct Test Mode Entry uses 
the LBIST Test Data Register (LTDR) to select the LBIST 
controllers, start the LBIST run. The following sequence shown 
in Table 3 is used in the Teskompress setup as well is in the 
Verilog stimuli for LBIST direct mode verification and pattern 
generation. 

Table 3: LBIST direct mode entry 

Step Description 

1 Common steps to TCU based mode entry 
2 Load and update the Generic TCR 
3 Load and update the RGMTDR to disable gating reset phase 3. 

4 Load and update the CLK TDR to program the PLL0 clock 
source for LBIST execution 

5 
Set LBIST direct control: Load and update LTDR 
LBIST direct mode: tcu_lbist_testmode=1; 
tcu_lbist_direct_control=1; 

6 Turn TEST mode on to be able to program LBIST Controllers 

7 

Program LBIST controllers 
Select the LBIST controllers: Load and update the LTDR: 
ipt_lbist_sel[4:0]=<controller id>Program controller settings like 
pattern start/end counter using the steps in Table V. 

8 Deassert RESET and apply EXTAL clock pulses to get rgm state 
machine to stabilize. 

9 
Start LBIST run on selected controllers: Load and update  
LTDRipt_lbist_sel[3:0]=<selected  controllers> and 
ipt_lbist_run=1. 

10 2 cycles for LBIST finder PRPG and MISR recognition 
11 Deassert RESET_B 

The following Table 4 describes the sequence of Writing to / 
Reading from an LBIST controller register in LBIST direct test 
mode and Table 5 describes the sequence to read out the MISR 
values after completion of an LBIST run in LBIST direct test 
mode. 

Table 4: Writing to / reading from an LBIST controller register 

Step Description 

1 

Write register address to LBIST controller dselect register: 
a. Load and update the LTDR to select dselect register: 

ipt_lbist_reg_sel=1 
b. Send JTAG instruction 6’d5 to access external LBIST 

controller register. 
Write value to LBIST controller dselect register. E.g. ‘0110’ to map 
pattern count end value into data register. 

2 

Write value to / read value from an LBIST controller data register 
a. Load and update the LTDR to select data register: 

ipt_lbist_reg_sel=0. 
b. Send JTAG instruction 6’d5 to access external LBIST 

controller register. 
Write value to / read value from LBIST controller data register 

Table 5: Reading out MISR values 

Step Description 

1 Read the LTDR to observe LBIST done flags lbist_done [3:0] 
2 Turn off EXTAL before switching from bist_clk to TCK 

3 Load and update LTDR: ipt_lbist_run=0. This switches from 
bist_clk to TCK 

4 

Read MISR registers 
a. Select the LBIST controller: Load and update the LTDR: 

ipt_lbist_sel[3:0] 
b. Read the MISR value using the steps in Table V. 

http://www.astesj.com/


N. Vannal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 937-943 (2020) 

www.astesj.com     942 

4. LBIST verification results at RTL 

Verification of all different partitions are carried out with four 
different testcases listed below running parallelly with respective 
MISRs generated during LBIST Fault simulation using LBIST 
Architect tool [18].  

1. Testcase with PLL clock 
2. Testcase with EXTAL clock 
3. Scan chain mask decoder 
4. MISR exposed on PADs 

4.1. Testcase with PLL clock frequency 

LBIST controller logic/integration reset and clocks of the 
respective partitions, mode entries are verified at lbist_fast_clk = 
320MHz & lbist_slow_clk = 80 MHz frequencies. Figure 7 shows 
one of the issues identified for a partition.  

• MISR mismatching is observed after pattern count value 237, 
expected MISR value is 415B3579F4B1C0DA, simulation 
result MISR value is DE2F87E1C111F4D1. 

• Analysis: Capture window for pattern count value after 237 is 
as below but from waveform we can see along with below 4 
clk_domain clk_domain_58 is also pulsed which is causing 
the MISR mismatch. 

clk_domain_1        pulse '10000000' 
clk_domain_18      pulse '00100000' 
clk_domain_39      pulse '00001000' 
clk_domain_30   pulse '00000010’ 

 
Figure 7: MISR mismatch issue caught during RTL verification 

4.2. Testcase with EXTAL clock Frequency 

LBIST controller logic/Integration reset and clocks of the 
respective partitions, mode entries are verified at EXTAL = 
100MHz frequencies.  As shown in Figure 8 MISR is observed 
after pattern count value 260, expected MISR value is 
B8D5_F506_668B_F517, simulation result MISR value is 
B8D5_F506_668B_F517. 

 
Figure 8: LBIST Verification with EXTAL clock frequency 100MHz 

4.3. Scan Chain Mask Decoder Testcase  

LBIST controller logic/Integration, reset and clocks of the 
respective partitions, verified at lbist_fast_clk = 320MHz & 
lbist_slow_clk = 80 MHz frequencies. As shown in the Figure 8 
chain_0 is masked for every LBIST partition and pattern 
lbist_si[980:0] toggles for mask decoder lbist_si[980:1] and 
lbist_si[0] will be static 1.  

 
Figure 9: Scan chain mask decoder testcase result 

4.4. MISR Expose at PAD Testcase 

LBIST controller logic/Integration, reset and clocks of the 
respective partitions, verified at lbist_fast_clk = 320MHz & 
lbist_slow_clk = 80 MHz frequencies along with MISR value is 
exposed at PAD during end of the pattern count using 
lbist_misr_word_sel bit to expose 1st 32 -bit and later 32 -bit 
values respectively. As show in Figure 10 MISR value 
DCCF_7DA6_225C_9279 at program counter value 272 is 
exposed on PAD pins using lbist_misr_word_sel (0/1). 

 
Figure 10: MISR exposed at PAD testcase result 

5. Conclusion 

The proposed methodology for verifying LBIST 
implementations at RTL in SoCs is not a replacement for gate 

http://www.astesj.com/


N. Vannal et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 937-943 (2020) 

www.astesj.com     943 

level verification of LBIST implementations, with this approach 
a significant effort and design cycle time can be reduced by 
moving the verification process early into the SoC design cycle. 
The results are proven with measurable improvements on real 
design where the flow/methodology was implemented and helped 
in identifying the bugs & fixing them before logic freeze, thereby 
avoiding ECOs. 

References 

[1] Andal Jayalakshmi and Tan Ewe Cheong, "A methodology for LBIST logic 
diagnosis in high volume manufacturing," 2012 4th Asia Symposium on 
Quality Electronic Design (ASQED), Penang, 249-253, 2012, doi: 
10.1109/ACQED.2012.6320510.  

[2] K. Butler, “ATPG versus Logic BIST -Now and in the Future," in 2013 IEEE 
International Test Conference (ITC), Baltimore, Maryland, 1181, 2001. doi: 
10.1109/ITC.2001.10048  

[3] P. Maxwell, I. Hartanto and L. Bentz, "Comparing functional and structural 
tests," Proceedings International Test Conference 2000 (IEEE Cat. 
No.00CH37159), Atlantic City, NJ, USA, 400-407, 2000, doi: 
10.1109/TEST.2000.894231. 

[4] S. Carbonara, P. Bernardi and M. Restifo, "A Hybrid In-Field Self-Test 
Technique for SoCs," 2019 14th International Conference on Design & 
Technology of Integrated Systems In Nanoscale Era (DTIS), Mykonos, 
Greece, 1-6, 2019, doi: 10.1109/DTIS.2019.8735075.. 

[5] International Standard - IEC61508 - Functional safety of 
electrical/electronic/programmable electronic safety-related systems, 
International Electrotechnical Commission, 2010. 

[6] ISO Standard 26262, Part 5, “Road vehicles— functional safety,” 24 May 
2016. 

[7] Y. Sato et al., "A circuit failure prediction mechanism (DART) for high field 
reliability," 2009 IEEE 8th International Conference on ASIC, Changsha, 
Hunan, 581-584, 2009,  doi: 10.1109/ASICON.2009.5351352. 

[8] H. Iwata and J. Matsushima, "Multi-configuration Scan Structure for Various 
Purposes," 2016 IEEE 25th Asian Test Symposium (ATS), Hiroshima, 131-
131, 2016,  doi: 10.1109/ATS.2016.32. 

[9] S. Wang, Y. Higami, H. Takahashi, H. Iwata and J. Matsushima, "Automotive 
Functional Safety Assurance by POST with Sequential Observation," in IEEE 
Design & Test, 35(3), 39-45, June 2018, doi: 10.1109/MDAT.2018.2799801. 

[10] Wu-Tung Cheng, Manish Sharma, T. Rinderknecht, Liyang Lai and C. Hill, 
"Signature based diagnosis for logic BIST," 2007 IEEE International Test 
Conference, Santa Clara, CA, 1-9, 2007,  doi: 10.1109/TEST.2007.4437703.  

[11] M. Abramovici, M. A. Breuer, and A. D. Friedman, “Digital System Testing 
and Testable Design”, AT&T Bell Laboratories and W. H. Freeman and 
Company, 1990.  

[12] H. D. Schnurmann, E. Lindbloom and R. G. Carpenter, "The Weighted 
Random Test-Pattern Generator," in IEEE Transactions on Computers, C-
24(7),  695-700, July 1975, doi: 10.1109/T-C.1975.224290. 

[13] G. Kiefer and H. -. Wunderlich, "Using BIST control for pattern generation," 
Proceedings International Test Conference 1997, Washington, DC, USA, 
347-355, 1997,  doi: 10.1109/TEST.1997.639636. 

[14] Y. Maeda, J. Matsushima and R. Press, "Automotive IC On-line Test 
Techniques and the Application of Deterministic ATPG-Based Runtime 
Test," 2017 IEEE 26th Asian Test Symposium (ATS), Taipei, 237-241, 2017,  
doi: 10.1109/ATS.2017.52. 

[15] M. Sadi, G. K. Contreras, J. Chen, L. Winemberg and M. Tehranipoor, 
"Design of Reliable SoCs With BIST Hardware and Machine Learning," in 
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(11),  
3237-3250, Nov. 2017, doi: 10.1109/TVLSI.2017.2734685. 

[16] P. Wohl, J. A. Waicukauski, G. A. Maston and J. E. Colburn, "XLBIST: X-
Tolerant Logic BIST," 2018 IEEE International Test Conference (ITC), 
Phoenix, AZ, USA, 1-9, 2018,  doi: 10.1109/TEST.2018.8624738. 

[17] E. Moghaddam, N. Mukherjee, J. Rajski, J. Solecki, J. Tyszer and J. Zawada, 
"Logic BIST With Capture-Per-Clock Hybrid Test Points," in IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 
38(6), 1028-1041, June 2019, doi: 10.1109/TCAD.2018.2834441. 

[18] LBIST Architect process guide Manual Mentor Graphics, Software Version 
2018.1. 

http://www.astesj.com/

	2. Proposed Design Methodology
	2.1. LBIST Partitioning
	2.2. LBIST Integration
	2.3. LBIST Controller Clocks
	2.4. LBIST Interface Dummy
	2.5. LBIST Interface Dummy
	2.6. LBIST Clock and Reset Control
	2.7. Making the LBIST Partitions LBIST Ready

	3. Implementation Details
	3.1. LBIST Dummy Netlist Integration at RTL
	3.2. LBIST Direct Control Mode

	4. LBIST verification results at RTL
	4.1. Testcase with PLL clock frequency
	4.2. Testcase with EXTAL clock Frequency
	4.3. Scan Chain Mask Decoder Testcase
	4.4. MISR Expose at PAD Testcase

	5. Conclusion
	References


