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 A nonlinear adaptive robust controller is proposed in this paper for trajectory-tracking 
control problems of robot manipulators. On one hand, to effectively approximate the 
systematic dynamics, a simple time-delay estimator is first adopted. On the other hand, to 
minimize the control error, the controller is designed based on a sliding mode structure 
using the obtained estimation results. A fast learning mechanism is then proposed for 
automatically tuning control gains. Another proper adaptation law is furthermore 
developed to support the nominal inertia-matrix selection of the time-delay estimation. 
Effectiveness of the closed-loop system is intensively discussed using Lyapunov-based 
constraints and extended simulation results. 
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1. Introduction 

Nowadays, robots play a crucial role in modern industry 
thanks to excellent performances in conducting complicated, 
repetitive, and dangerous tasks [1–4]. Day by day, high-precision 
intelligent robots are required to fulfill the given demands [2], [5]. 
To design such controllers, two important steps of the controller 
design are taken into account: nonlinearities and uncertainties in 
system models as well as unexpected effects of complex working 
environments have to be tackled to push the closed-loop system 
in a stationary state; in the second step, a driving robust control 
signal is generated to force the control objective stabilizing 
around origin [6–8]. 

Robot dynamics could be derived using Newton-Euler 
analyses, Lagrange formulations or virtual decomposition 
methods [6,9]. Although general systematic models could be 
obtained, but they contain lots of uncertainties due to particular 
structures of robots and disturbances [10,11]. To cope with the 
mathematical problems, soft-computing approaches are 
reasonable solutions [7,8]. Nonlinear uncertain dynamics could be 
well estimated by fuzzy-logic approximators and neural networks 
but heavy-computation burdens along with lots of tuning 
parameters are new obstacles in real-time applications. The time-
delay estimation (TDE) is increasingly adopted as one of the most 
effective tools to reckon unknown dynamics in modern control, 
owing to the simplicity in design and easiness in real-time 

implementation  [12,13]. This  technique  uses  measured 
information of the acceleration and control signals to result in 
offset terms of the dynamics based on predefined nominal values 
of inertia matrices [5,14]. Effectiveness of the TDE methods has 
been gradually confirmed in both theoretical proofs and 
experimental validations [15,16]. 

To effectively complete control objectives in industrial 
applications, a proper control strategy with impressive adaptation 
and robustness ability is next required [17–19]. The sliding mode 
control (SMC) technique has a special attraction to designers 
thanks to the simplicity, widespread applications, and robustness 
to unknown system dynamics [20–23]. However, excellent 
control performances of the SMC controllers may be hard to 
maintain in different working cases. As a solution, gain-adaptive 
SMC schemes have been recently noted for servo systems [18,24–
26]. Driving gains or robust gains were actuated by various 
learning mechanisms to effectively force the control objective to 
zero as fast as possible [25,26]. In these learning schemes, only 
one degree-of-freedom learning law is proposed, and the control 
error is stabilized to a bound around zero [17,24]. In another 
direction, intelligent approaches based on Type-2 fuzzy logic 
theory could be found as possible solutions of the gain adaptation 
[27,28]. Solving optimal problems of the closed-loop system 
under robustness constraints in a horizontal time yields the 
expected gains along with excellent control performances [29]. 
However, intensive behaviors of the gain variation that could 
judge the real-time control quality were ignored.  

This paper is an extension of work originally presented in 
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2019 International Conference on System Science and 
Engineering (ICSSE) [1]. In the previous work, both driving and 
robust gains of a conventional TDE sliding mode controller were 
actively self-tuned subjecting to a minimal control error. Its 
effectiveness was confirmed by intensive simulation results. The 
controller was operated with a fixed nominal value of the inertia 
matrix of the system dynamics. Improperly selecting this term 
could lead to instability of the closed-loop system [15]. An 
excellent control performance is obviously associated with a 
perfect value of the matrix [16]. Nevertheless, the best nominal 
matrix is not same for different running states. As a sequence, a 
dynamical learning mechanism for such the term is the main 
motivation of this research for maintaining high control precision 
in various working conditions. 

In this study, an adaptive TDE sliding mode controller is 
developed for trajectory-tracking control of serial robot 
manipulators with the following contributions:  

• The system behaviors are first approximated by a basic time-
delay estimator (TDE). To support selection of a proper 
inertia matrix in the estimation process, an adaptation rule is 
designed to search the optimal nominal one. 

• The control objective is then realized by a robust sliding 
mode control method. To provide the flexibility in tuning the 
control gains in divergent operation cases, a fast gain-
learning law is proposed. The adaptation mechanism is 
worked as a damping low-pass filter that could yield smooth 
responses of the closed-loop system. Different from the 
previous work [1], nonlinear leakage functions are employed 
to speed up the learning process. 

• Control performances of the overall system are analyzed by 
a Lyapunov-based approach and comparative simulation 
results. 

The rest of this paper is structured as follows. Section 2 
presents system modeling and problem statement. Section 3 
describes design of the proposed controller incorporated with the 
adaptation laws. Section 4 discusses validation results, and the 
paper is then concluded in Section 5 

2. System Dynamics and Problem Statement 

Dynamics of a n-joint robotic manipulator are generally 
expressed as follows [6,9,17,24]: 

( ) ( ) ( ) ( ) dM q q + C q,q q + g q + f q + τ = τ      (1) 

where n∈ℜq,q,q   are the joint angles, velocities, and 

accelerations, respectively, n∈ℜτ  is the joint torques or control 
inputs, n×n∈ℜM(q) is the inertia matrix, n∈ℜC(q,q)q  is the 

Centripetal/Coriolis vector, n∈ℜg(q)  is the gravitational term, 
n∈ℜdf(q), τ  is the frictional torque, and n∈ℜdτ denotes 

disturbances. 

The dynamics (1) could be simply rewritten in a following form:  

+M(q)q v(q) = τ                                (2) 

where n n×∈ℜM  is an proper nominal diagonal inertia matrix,
( ( ) ) n= + ∈ℜdv Cq + g + f + τ M -M q   is a lumped term that is 

defined as a combination of other dynamic terms such as the 
Centripetal/Coriolis, gravity, inertia variation, frictions, 
disturbances, modeling errors and unmodeled terms.  

Remark 1: Assume that the system outputs ( , )q q  are 

measurable and a desired trajectory ( )dq  is bounded and 
differentiable up to the second order. The main objective of this 
paper is to find out an appropriate control signal to drive a tracking 
error of the system output ( )q  and the given profile ( )dq  to zero 
or as small as possible. However, maintaining high control quality 
of the closed-loop system is a not-easy yet interesting work due to 
existence of the uncertain nonlinear dynamics and complicated 
working environments. Additional characteristics of the controller 
are required to be model-free, adaptive, and robust with high 
control performances. 

3. An Adaptive Time-delay Nonlinear Controller 

To accomplish the aforementioned features, the motion 
controller is built up based on a simple sliding mode framework 
incorporated with an adaptive time-delay estimator. Fast learning 
laws are then integrated to search proper control parameters. The 
proposed controller is sketched in Figure 1. 

3.1. Simple Sliding Mode Control 

The main control error is mathematically defined as 

de = q -q  (3) 

A sliding manifold is employed as an indirect control objective 
of the closed-loop system: 

= +s e Λe  (4) 

where Λ  is a selected positive-definite diagonal gain matrix. 

For obtaining high-precision control results, the controller is 
designed with a model-free compensator - that could cope with 
the systematic uncertain nonlinearities and disturbances - and a 
robust control signal, as follows: 

MOD SMCτ = τ + τ  (5) 

Here, MODτ  is a model-dynamical eliminator that is used to 
compensate for unexpected effect of the offset vector ( v ) on the 
control behaviors and other terms of the surface dynamics (4). The 
signal is thus selected as follows: 

( )ˆˆ= + −MOD dτ v M q Λe   (6) 

Note that the estimate ˆ( )v  of the offset dynamics ( v ) is computed 
using the basic time-delay estimator [15,22]: 

ˆˆ
s st -T t-T= −v τ Mq  (7) 
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where the subscript ( )st T−  is a time-delay value, sT  is the 

sampling time, and ˆ ˆdiag( ) n n×= ∈ℜM m  is estimate of the 
nominal matrix M . 

The remaining term SMCτ  is designed to drive the sliding 
manifold from the stationary state back to around zero and stabilize 
thereafter by dealing with a model perturbance δ : 

1 2 sgn( )= − −SMCτ K s K s  (8) 

where | 1,2 1diag( ) diag([ ;...; ])i i i i ink k= = =K k  is positive-definite 
diagonal gain matrices.  

Remark 2: With the robust sliding mode design, excellent 
control outcome can be resulted in by a proper selection of the 
control gains 1 2( , )K K  and nominal inertia matrix ˆ( )M  
regardless of the existence of the disturbances. It is however 
sometimes a challenge to perfectly tune the gains to achieve good 
transient performance and especially ensure high control 
accuracies for unpredictable execution conditions in the real-time 
control. 

3.2. Gain-adaptation Laws 

To treat difficulty of the gain selection, the strategy for gain 
tuning is proposed in that the control gains 1,2( | )i i=K  are 

separated into two terms: nominal gains 1,2( | )i i=K and variation 

gains 1,2( | )i i=K


. The nominal ones are chosen for stability of the 
closed-loop system. The variation ones are automatically tuned for 
the desired transient performance. 

A fast adaptation rule for the automatic control-gain tuning is 
designed as follows: 

( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

12

12
2 2 2

diag( ) diag I+diag sat

diag sgn diag I+diag sat

k

k

−

−

 = −

 = −


1 1 1k Ξ s s η s k

k Ξ s s η s k

 

 

 (9) 
where ( ) ( )2,diag and diag1Ξ η η  are positive-definite diagonal 
constant matrices. 

On the other hand, properly choosing the nominal inertia 
matrix could reduce bound of the system perturbance ( δ ). To 
efficiently support this task, a new learning law is proposed as 
follows: 

( ) ( ) ( )2ˆ ˆdiag( ) diag diag
sm t T m−= − + −dm Ξ s q q Λe η s m        (10) 

where ( )and diagm mΞ η  are positive-definite diagonal constant 
matrices. 

3.3. Stability Analysis 

The theoretical effectiveness of the closed-loop system is 
investigated using the following theorem: 

Theorem 1: Employing the model-free sliding mode control 
signals (3)-(8) to the robot dynamics (2), in which the driving-
robust gains and nominal inertia matrix are automatically updated 
using the laws (9)-(10), asymptotic convergence of the closed-
loop system is resulted in if the following condition holds: 

( )( ) ( )( )
( )

1
1

2 | 1..

min eig max eig 0.25 diag( )

max

m m

i i n ik δ

−

=

 >

 ≥

K Ξ η MM
 (11) 

Proof: 

The time derivative of the sliding manifold (4) along the 
system (2) is expressed  

( )1−= − +ds M τ v -q Λe    (12) 

By substituting the control signal (5)-(8) into the dynamics 
(12), we have 

( )( )1
1 2 sgn( )

st T
−

−= + − − − −ds M δ M q q Λe K s K s     (13) 

where ( )1 2[ ; ;...; ]
s s

n
n t T t-Tδ δ δ −= = − = − − ∈ℜδ v v τ M(q)q v  is 

the system perturbance mentioned above, and 
ˆdiag( ) n n×= = − ∈ℜM m M M   is the estimation error of the 

nominal matrix .M  

Now, we consider a Lyapunov function: 

( )
2

1

1

0.5 0.5 0.5T T T
k i i k m

i

V −

=

= + +∑s MΞ s k k m Ξ Ξ m
 

   (14) 

Substituting (9), (10), and (13) into the time derivative of the 
Lyapunov function leads to 

( )

( )( )
( )
( )

1 2

2 12

1
1 2

1 2

sgn( )

diag( ) I+diag

diag( )diag

diag( )diag

T
K

T
i i i

i
T

k m m

T
k m m

V

−

=

−

−

= − −

 −  
 

−

+

∑

s Ξ δ K s K s

k η s k

m Ξ Ξ η s m

m Ξ Ξ η s m



 

 



 (15) 

From the condition (11), there always exist two positive constants 
andk mα α  such that 

( )( )
( )

2 12
1

1
1 2

diag( ) I+diag

diag( )diag 0

T T
k i i i

i
T

m k m m

V α

α

−

=

−

 = − −  
 

− ≤

∑s ΞK s k η s k

m Ξ Ξ η s m

 


 

 (16) 

Theorem 1 has been proven: 
Remark 3: As seen in Figure 1 as well as stated in Theorem 1, 

the controller is just designed under a simple TDE sliding mode 
control framework to ensure the stability of the overall system. 
However, control performance of the system is significantly 
improved by injecting excellent adaptation laws for the control 
gains and nominal inertia matrix. The proposed controller hence 
possesses strong robustness, model-free, and self-learnable ability. 
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4. Simulation Validation 

4.1. Setup 

To assess tracking performance of the proposed controller, 
extended simulations were carried out on a 2DOF robot. 
Configuration of the robot is depicted in Figure 2. The robot was 
selected to work in the vertical plane in which the gravity force 
was critically affected on the system performance. Dynamics of 
the robot are presented as follows [6,24]: 

( )

( )

2 2 2 2
2 2 1 1 2 2 2 1 1 2 2 1 2 2 2

2 2
2 2 1 2 2 2 2 2

2 1 2 2 2 2 1
2

2 1 2 2 1

2 2 1 2 1 1 1 2

2 2 1 2

1 1

( ) 2 cos( ) cos( )

cos( )

sin( ) 2

sin( )

cos( ) cos( )
cos( )

m l l l l m q m l m l l l m q

m l l l m q m l

m l l q q q q

m l l q q

m l g q q l g q m m
m l g q q

a q

 + + + +
=  

+  
− + 

=  
  

+ + + 
=  + 

=

M

Cq

g

f

  






2 2a q
 
 
 

 

where 1,2q  are the robot joint angles. The detailed parameters of 
the robot model are given in Table 1. 

Another robust-gain-learning TDE controller (RLTDE) was 
also applied to the same system as a benchmark for evaluating the 
effectiveness of the proposed controller.  

The design of the RLTDE controller was referred as in the 
previous work [24], as follows: 

( )
( )

( )

1
1 2

( )1
2

2
1

sgn( )

ˆ( ) ( ), if 0ˆ
( ) otherwise

( ) sgn

s s

c

t-T t-T c c c

t
i i i c i

c i

i i i

s t t k
k

s t

t

θ
ϕ α θ

ϕ α

θ ε

−

−

−

∞

= +


− + + − − −

  > = 

 
 = −

d

s e Λ e

τ = M q M τ q Λ e K s K s

s



  

  

The basic control gains of the two controllers were inherently 
selected as [24]: 

0.001, diag([10;10]);
[0.6;1.57], [4000;3000]; 0.015

s cT
ε

= =
 = = =

Λ
α φ  

For a pair comparison, the RLTDE controller was operated 
with four distinct parameter sets as given in Table 2, denoted as 
RLTDE1, RLTDE2, RLTDE3 and RLTDE4, respectively. 

Table 2: Different Control Parameters Selected for the RLTDE Controller 
Implementation 

Name 
Nominal Inertia Matrix 

( )M  
Control Gain 

1( )cK  

RLTDE1 diag([0.01;0.01])  diag([1;1])  

RLTDE2 diag([0.04;0.04])  diag([1;1])  

RLTDE3 diag([0.01;0.01])  diag([60;60])  

RLTDE4 diag([0.04;0.04])  diag([60;60])  
 

Besides, the additional parameters of the proposed controller 
were manually tuned as follows:  

2 1

4 4

0.001; diag([10;10]),
diag([0.5;0.5]), diag([1;1]);
diag([300;300]); [1;1]

diag([0.003;0.003]); [3 10 ;3 10 ].

s

k

m m

T

− −

= =


= =
 = = =
 = = × ×

1 2

Λ
K K
Ξ η η

Ξ η

 

4.2. Simulation Results 

In the first scenario, reference inputs of the robot joints were 
selected to be sinusoidal signals plotted in Figure 3. By applying 
the controllers to the system, the simulation results obtained are 
presented in Figures 4 and 5.  

As seen in Figure 4, the RLTDE1 provided very good control 
performances, 0.53 (RMS deg)  and 0.44 (RMS deg) of the control 
errors at joints 1 and 2, thanks to employment of the strong robust 
gain (K2) generated by a nonlinear learning algorithm [24]. 
Behaviors of the robust gain adaptation are demonstrated in 
Figure 5. The key purpose of using such the gain in the RLTDE 
control method was to attenuate effect of the incomplete TDE 
estimation. Figure 4 also reveals that the control performances 
were further improved if the more proper control gains were found 
out. When increasing only the nominal inertia matrix ( )M , or 
only the driving gain 1( )cK , or both of them 1( and )cM K , higher 

 
Figure 1: An overview of the designed controller. 

 

 
Figure 2: Configuration of a 2DOF manipulator. 

 
Table 1: Selected Parameters for the simulation model 

Description Parameters Values Unit 
Link length l1, l2 0.2, 0.1 m 
Gravitational 
Accel g 9.81 m/s2 

Friction 
coefficient a1, a2 1  

Mass of links m1, m2 10, 5 kg 
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control accuracies were exhibited such as:  the RLTDE2 
controller obtained 0.17 (RMS deg)  and 0.12 (RMS deg) of the 
control errors at joints 1 and 2, respectively;  the RLTDE3 
controller got 0.2 (RMS deg)  and 0.11 (RMS deg) ones; and the 
RLTDE4 controller provided 0.09 (RMS deg)  and 0.06 (RMS 
deg) ones. It seems larger the control gains would create better the 
control performance. In fact, structures of the RLTDE and 
proposed controllers are almost same.  

 
Figure 3: Reference inputs of the robot joints in the first simulation. 

 
Figure 4: Control errors obtained in the first simulation 

 
Figure 5: Comparative gains learning in the first simulation. 

The core difference is that the proposed controller adopts the 
adaptation rules for the driving-robust gains and optimal nominal 
inertia matrix. Properly searching an optimal set of the driving 
gain and nominal inertia matrix could effectively reduce bound of 
the gain (K2) that could be clearly observed in Figure 5. Hence, 
as shown in Figure 4, the highest control precision, 0.03 (RMS 
deg) and 0.014 (RMS deg) of the control errors at joints 1 and 2, 
was resulted in by the proposed controller. Also noted in Figure 
5, the optimal values did not need to be so large for the best control 

performance: the variation of the driving gain converged back to 
zero and the stationary nominal inertia matrix was found to be 
diag(0.062; 0.021). This implies the flexibility of the proposed 
controller over the previous one. 

In the second scenario, the robot joints were controlled to 
track smooth step signals. Applying the same controllers to the 
system, the simulation results are presented in Figure 6, 7 and 8. 

 
Figure 6: Reference signals of the robot joints in the second simulation. 

 

 
Figure 7: Control errors obtained in the second simulation. 

 

 
Figure 8: Comparative gains learning in the second simulation. 

 
Figure 9: Desired joint angles computed from the eclipse trajectory of the end-

effect in the third simulation. 
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Figure 10: Control errors obtained in the third simulation. 

 

 
Figure 11: Comparative gains learning in the third simulation. 

 

 
Figure 12: Control signal generated in the third simulation. 

 
As shown in Figure 7, the control performances of the 

RLTDE1, 1.1 (MA deg) and 0.73 (MA deg) of the control errors 
at joints 1 and 2, were degraded as comparing to those of the other 
controllers. An improper selection of the nominal inertia matrix 
would make the systematic perturbance ( )δ  become large. 
Meanwhile, the driving gain 1( )cK  was fixed with a small value, 
it means that the control performance was covered only by the 
robust gain 2( )cK . Another reason came from the special 
learning mechanism of the RLTDE: the robust gain 2( )cK  was 
respectively increased and decreased as the sliding surfaces were 
outside and inside of specific regions. It implies that the RLTDE 
control outcome in this case depended on the regions predefined. 
New features integrated in the proposed controller could make the 
system avoid the aforementioned problems: as observed in Figure 
8, the adaptation laws of the inertia matrix and control gains 
worked well to ensure the closed-loop system stabilize at origin 
or force the control error to be as small as possible. Hence, 
outperformance of the proposed controller, 0.005 (MA deg) and 
0.01 (MA deg) of the control errors at joints 1 and 2, over the 

RLTDE1, 2, and 3 has been exhibited in this simulation scenario. 
Interestingly, once the perfect values of the driving gain 1( )cK  
and nominal inertia matrix ( )M  were used, the RLTDE4 
obtained an excellent control accuracy: 0.002 (MA deg)  and 
0.0004 (MA deg) of the control errors at joints 1 and 2. 

 
Figure 13: Comparison of control results in Cartesian space 

In the third verification case, the end-effector of the robot was 
controlled to track an eclipse trajectory. By applying inverse 
kinematic computation for the testing robot, the desired joint 
angles are displayed in Figure 9. Tracking control errors of the 
controllers for the new trajectory are plotted in Figure 10. The 
control results indicate that the RLTDE controllers tried to 
automatically adjust their gains to minimize the control error. 
However, using only one degree-of-freedom adaptation of the 
control gains was not adequate to result in the minimal sliding 
manifold even though they were supported with various control 
gains and nominal inertia matrices fine-tuned. The best control 
quality, 0.024 (MA deg) and 0.015 (MA deg) of the control errors 
at joints 1 and 2, were accomplished by the RLTDE4 which had 
just shown the outstanding performance in the second simulation. 
The control accuracy was significantly improved, 0.004 (MA deg) 
and 0.005 (MA deg) of the control errors at joints 1 and 2, by using 
three degree-of-freedom in the gain learning proposed by this 
paper. 

Indeed, control input data generated by the controllers shown 
in Figure 12 reveal that sharing the robustness burden of the 
control mission into three learning spreads provided a faster 
response and a smaller control error. Its effectiveness and 
feasibility are demonstrated more clearly by plots of the 
comparative end-effector positions obtained by the proposed 
controller and a certain RLTDE one, as shown in Figure 13. 

4.3. Discussion 

The key properties of the proposed adaptation laws could be 
evidently expressed by data shown in Figure 5, 8 and 11: in 
transient time, the closed-loop system needed strong power to 
drive the control objective back to desired position regardless of 
uncertain nonlinearities and disturbances. To serve this mission, 
the driving and robust gains were promptly activated under the 
designed constraint (9), and the optimal nominal gain matrix was 
also searched according to the strategy (10). After that, the whole 
system would relax in steady-state time with the small-activated 
gains. By further considering these figures, much high-frequency 
oscillation could be observed in the learning gains of the RLTDE1 
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controller. In real-time operation with smooth control signals, the 
proposed controller could maintain the lifetime of the actuators. 

Table 3: Statistical Evaluation of the Control Performances in the Simulation 
Scenarios 

Control Error 
Joint 1 Joint 2 

MA RMS MA RMS 

Test 1 

RLTDE1 2.87 0.53 1.98 0.44 
RLTDE2 0.6 0.17 0.26 0.12 
RLTDE3 0.9 0.2 0.38 0.11 
RLTDE4 0.22 0.09 0.11 0.06 
Proposed 0.05 0.03 0.04 0.014 

Test 2 

RLTDE1 1.1 0.25 0.73 0.2 
RLTDE2 0.09 0.03 0.024 0.01 
RLTDE3 0.48 0.13 0.18 0.06 
RLTDE4 0.002 0.0004 0.0004 0.0001 
Proposed 0.005 0.001 0.01 0.007 

Test 3 

RLTDE1 2.02 0.4 0.47 0.09 
RLTDE2 0.39 0.08 1.17 0.2 
RLTDE3 2.2 0.27 0.13 0.03 
RLTDE4 0.024 0.01 0.015 0.009 
Proposed 0.004 0.0018 0.005 0.002 

 
Table 3 summarizes static values of the control errors using 

maximum absolute (MA) and root-mean-square (RMS) 
computation for a specific time (5s to 12s). As seen in the table 
and by recalling the second simulation results, if the optimal set 
of the control gains and nominal inertia matrix were known, an 
exceptional control performance would be achieved. However, 
the optimal one was not same in different working conditions. 
Instead of searching the optimal values with time consuming, the 
designed controller integrated an automatic gain-tuning algorithm 
for suboptimal ones. The statistical data in Table 3 show that the 
proposed controller yielded the excellent MA and RMS results as 
comparing to the RLTDE ones in most of the simulation cases. 
Hence, the influence of such the suboptimal gains and inertia 
matrices on the control performance was acceptable. Here, 
advantages of the proposed controller are confirmed throughout 
both the analytical and validation results. 

5. Conclusion 

In this paper, a new adaptive robust control method is 
developed for position tracking-control problems of robot 
manipulators. The controller design is mainly based on the sliding 
mode control framework. Effect of the systematic uncertain 
nonlinearities and disturbances are well treated by an adaptive 
time-delay estimator. The driving-robust control signal is then 
employed for realizing the control objective. Fast gain-learning 
laws are properly designed to increase flexibility of the controller 
in various working conditions. The control gains are 
automatically tuned to provide both the desired transient 
performance and the steady-state behavior. Effectiveness of the 
closed-loop system is intensively investigated by theoretical 
proofs and comparative simulations. 

Conflict of Interest 

The author declares no conflict of interest. 

References 

[1] D.X. Ba, M.-H. Le, “Gain-learning sliding mode control of robot 
manipulators with time-delay estimation,” in 2019 International Conference 
on System Science and Engineering (ICSSE), 478–483, 2019. 

[2] Y. Park, I. Jo, J. Lee, J. Bae, “A Dual-cable Hand Exoskeleton System for 
Virtual Reality,” Mechatronics, 49(November 2017), 177–186, 2018, 
doi:10.1016/j.mechatronics.2017.12.008. 

[3] T.L. Nguyen, S.J. Allen, S.J. Phee, “Direct torque control for cable conduit 
mechanisms for the robotic foot for footwear testing,” Mechatronics, 
51(August 2016), 137–149, 2018, doi:10.1016/j.mechatronics.2018.03.004. 

[4] G. Chen, B. Jin, Y. Chen, “Nonsingular fast terminal sliding mode posture 
control for six-legged walking robots with redundant actuation,” 
Mechatronics, 50(August 2016), 1–15, 2018, 
doi:10.1016/j.mechatronics.2018.01.011. 

[5] M. Tavakoli, P. Lopes, L. Sgrigna, C. Viegas, “Motion control of an 
omnidirectional climbing robot based on dead reckoning method,” 
Mechatronics, 30, 94–106, 2015, doi:10.1016/j.mechatronics.2015.06.003. 

[6] J.J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed., Pearson 
Prentice Hall, USA, 2005. 

[7] L. Wang, T. Chai, L. Zhai, “Neural-network-based terminal sliding-mode 
control of robotic manipulators including actuator dynamics,” IEEE 
Transactions on Industrial Electronics, 56(9), 3296–3304, 2009, 
doi:10.1109/TIE.2008.2011350. 

[8] Z. Liu, G. Lai, Y. Zhang, C.L.P. Chen, “Adaptive Fuzzy Tracking Control 
of Nonlinear Time-Delay Systems with Dead-Zone Output Mechanism 
Based on a Novel Smooth Model,” IEEE Transactions on Fuzzy Systems, 
23(6), 1998–2011, 2015, doi:10.1109/TFUZZ.2015.2396075. 

[9] W.-H. Zhu, Virtual Decomposition Control: Toward hyper degrees of 
freedom robots, Springer-Verlag Berlin Heidelberg, 2010. 

[10] S. Islam, X.P. Liu, “Robust Sliding Mode Control for Robot Manipulators,” 
IEEE Transactions on Industrial Electronics, 58(6), 2444–2453, 2011. 

[11] W. Kim, C.C. Chung, “Robust output feedback control for unknown non-
linear systems with external disturbance,” IET Control Theory and 
Applications, 10(2), 173–182, 2015, doi:10.1049/iet-cta.2014.1299. 

[12] T.C. Hia, S. Jung, “A Simple alternative to Neural Network Control Scheme 
for Robot Manipulators,” IEEE Transactions on Industrial Electronics, 42(4), 
414–416, 1995. 

[13] S. Kim, J. Bae, “Force-mode Control of Rotary Series Elastic Actuators in a 
Lower Extremity Exoskeleton using Model-inverse Time Delay Control 
( MiTDC ),” IEEE/ASME Transactions on Mechatronics, 22(3), 1392–1400, 
2017, doi:10.1109/TMECH.2017.2687979. 

[14] T.C. Hia, “A New Technique for Robust Control of Servo Systems,” IEEE 
Transactions on Industrial Electronics, 36(1), 1–7, 1989. 

[15] K. Youcef-toumi, O. Ito, “A Time Delay Controller for Systems With 
Unknown Dynamics,” Journal of Dynamic Systems, Measurement, and 
Control, 112(1), 133–142, 1990. 

[16] Y. Wang, D. Yu, Y. Kim, “Robust Time-Delay Control for the DC – DC 
Boost Converter,” IEEE Transactions on Industrial Electronics, 61(9), 4829–
4837, 2014. 

[17] M. Jin, J. Lee, N.G. Tsagarakis, “Model-free Robust Adaptive Control of 
Humanoid Robots with Flexible Joints,” IEEE Transactions on Industrial 
Electronics, 64(2), 1706–1715, 2016, doi:10.1109/TIE.2016.2588461. 

[18] F. Mazenc, P.-A. Bliman, “Backstepping Design for Time-Delay Nonlinear 
Systems,” IEEE Transactions on Automatic Control, 51(1), 149–154, 2006. 

[19] C. Hu, B. Yao, Q. Wang, “Performance-Oriented Adaptive Robust Control 
of a Class of Nonlinear Systems Preceded by Unknown Dead Zone With 
Comparative Experimental Results,” IEEE Transactions on Industrial 
Electronics, 18(1), 178–189, 2013. 

[20] V.I. Utkin, “Sliding Mode Control Design Principles and Applications to 
Electric Drives,” IEEE Transactions on Industrial Electronics, 40(1), 23–36, 
1993. 

[21] J. Zhang, W.X. Zheng, “Design of Adaptive Sliding Mode Controllers for 
Linear Systems via Output Feedback,” IEEE Transactions on Industrial 
Electronics, 61(7), 3553–3562, 2014. 

[22] M. Zhihong, A.P. Paplinski, H.R. Wu, “Robust MIMO Terminal Sliding 
Mode Control Scheme for Rigid Robotic Manipulators,” IEEE Transactions 
on Automatic Control, 39(12), 2464–2469, 1994. 

[23] A. Pisano, M. Rapaic, E. Usai, Sliding modes after the first decade of the 
21st century, Springer-Verlag Berlin Heidelberg: 412, 2012. 

http://www.astesj.com/


D.X. Ba / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 904-911 (2020) 

www.astesj.com     911 

[24] J. Baek, M. Jin, S. Han, “A New Adaptive Sliding Mode Control Scheme for 
Application to Robot Manipulators,” IEEE Transactions on Industrial 
Electronics, 63(6), 3628–3637, 2016, doi:10.1109/TIE.2016.2522386. 

[25] Y. Shtessel, M. Taleb, F. Plestan, “A novel adaptive-gain supertwisting 
sliding mode controller: Methodology and Application,” Automatica, 48(5), 
759–769, 2012, doi:10.1016/j.automatica.2012.02.024. 

[26] C. Xia, G. Jiang, W. Chen, T. Shi, “Switching-Gain Adaptation Current 
Control for Brushless DC Motors,” IEEE Transactions on Industrial 
Electronics, 63(4), 2044–2052, 2016. 

[27] M.H. Khooban, T. Niknam, F. Blaabjerg, M. Dehghani, “Free chattering 
hybrid sliding mode control for a class of non-linear systems : electric 
vehicles as a case study,” IET Science, Measurement and Technology, 10(7), 
776–785, 2016, doi:10.1049/iet-smt.2016.0091. 

[28] N.M. Tri, D.X. Ba, K.K. Ahn, “A gain-adaptive intelligent nonlinear control 
for an electrohydraulic rotary actuator,” Internation Journal of Precision 
Engineering and Manufacturing, 19(5), 665–673, 2018. 

[29] M.H. Khooban, N. Vafamand, T. Niknam, T. Dragicevic, F. Blaabjerg, 
“Model Predictive Control based on T-S Fuzzy model For Electrical 
Vehicles Delayed Model,” IET Electric Power Applications, 11(5), 918–934, 
2017. 

 

http://www.astesj.com/

	2. System Dynamics and Problem Statement
	3. An Adaptive Time-delay Nonlinear Controller
	3.1. Simple Sliding Mode Control
	3.2. Gain-adaptation Laws
	3.3. Stability Analysis

	4. Simulation Validation
	4.1. Setup
	4.2. Simulation Results
	4.3. Discussion

	5. Conclusion
	Conflict of Interest

	References

