

www.astesj.com 96

Using TOST in Teaching Operating Systems and Concurrent Programming Concepts

Tzanko Golemanov*, Emilia Golemanova

Department of Computer Systems and Technologies, University of Ruse, Ruse, 7020, Bulgaria

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 30 July, 2020
Accepted: 15 October, 2020
Online: 08 November, 2020

 The paper is aimed as a concise and relatively self-contained description of the educational
environment TOST, used in teaching and learning Operating Systems basics such as
Processes, Multiprogramming, Timesharing, Scheduling strategies, and Memory
management. TOST also aids education in some important IT concepts such as Deadlock,
Mutual exclusion, and Concurrent processes synchronization. The presented integrated
environment allows the students to develop and run programs in two simple programming
languages, and at the same time, the data in the main system tables can be monitored. The
paper consists of a description of TOST system, the features of the built-in programming
languages, and demonstrations of teaching the basic Operating Systems principles. In
addition, some of the well-known concurrent processing problems are solved to illustrate
TOST usage in parallel programming teaching.

Keywords:
Operating Systems
Concurrent Programming
Teaching Tools

1. Introduction

This paper is an extension of work originally presented in 29th
Annual Conference of the European Association for Education in
Electrical and Information Engineering (EAEEIE) [1].

Operating Systems (OS) is one of the most fundamental
courses in Computer Engineering, Computer Science, and
Information Systems curricula. At the same time, students are
faced with a lot of problems in learning OS basics, due to not fully
understanding the wide range of techniques, strategies, and
architectures involved in OS modules. The complexity and depth
of concepts in this area requires a careful and detailed explanation
from the educator in order to reach a better apprehending.
Developing concurrent programs in an operating system
environment (Unix, Linux, etc.) asks for students to already have
prerequisite skills in both the C-programming and the operating
system. Usually, such level of experience is difficult to be obtained
at an undergraduate degree, thus a preferable approach would be
to use a convenient and effective teaching tool that helps the
students in their uneasy endeavor to apprehend and master the OS
concepts.

We have assigned the widely spread tools for studying OS into
the following two groups:

• Instructional Operating Systems

• Visual OS simulators

The systems from the first group (MINIX [2], Nachos [3], Xinu
[4], Pintos [5], GeekOS [6]) run on real hardware and are too
complicated to install and use. The main disadvantage of the
instructional OS is the requirement students to be familiar with
system-level programming in C, C++, Java or assembly language,
and to be able to study large program codes (more than 4K program
lines of Geek-OS and 15K of MINIX). Most of these systems do
not have graphical visualizations, which makes them not very
suitable for teaching purposes. In such cases, students spend a lot
of time learning the systems themselves and how to use them
properly.

In contrast, the visual tools from the second group (SOsim [7],
SchedulerSim [8], CPU Sim [9]) are easier to use and convenient,
however, they present rather restricted and pre-specified abilities
(e.g. simulation of just one OS module or subsystem). For
example, the TROJAN [10] simulator helps in teaching
multiprocessor organization, the cache utilization, and the network
traffic issues, while SIME [11] visualizations focus on memory
management, but without shared memory concepts. Additionally,
some of these systems (Proc OS [12], Alg OS [13]) do not connect
theoretical concepts to a running code. Others present simulations
of only one example problem (e.g. the Producer/Consumer
problem [14]).

The authors propose a newly-developed by them OS teaching
system named TOST (Teaching in Operating Systems Tool). It has

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Tzanko Golemanov, Ruse University, Ruse, Bulgaria,
tgolemanov@uni-ruse.bg

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology

https://dx.doi.org/10.25046/aj050610

http://www.astesj.com/
mailto:tgolemanov@uni-ruse.bg
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050610

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 97

been created in response to the requirement of the educational tool
to be straightforward to use, yet powerful enough, allowing the
students to not only experiment with OS settings, architectures,
and strategies but also to create and run any concurrent programs
they want. This imposes the need for TOST to be developed as an
integrated environment consisting of a code editor, a high-level
language compiler, a virtual processor emulator, an interface for
setting and modifying OS parameters, and a visualization of the
content of the main OS tables.

The structure of the paper is as follows: Section 2 is an
introduction to TOST giving an overview of the TOST interface,
the grammars of the built-in programming languages, the manners
to develop and execute concurrent processes, as well as the ways
to set and modify system options, and to monitor the system tables’
data. Section 3 is devoted to teaching Operating System basics,
such as Process Management, Process Scheduling, and Memory
Management. Section 4 describes the use of TOST in teaching
Concurrent Programming concepts, specifically Mutual Exclusion
(Dekker's algorithm, Peterson's algorithm, Test_And_Set
instruction, and Semaphores), Interprocess Synchronization
(Sleeping Barber problem), and Deadlock (Dining Philosophers
problem). In Section 5, a student evaluation is presented. We
conclude in Section 6 and discuss some further improvements to
TOST.

2. The TOST System

The main objective of an educational tool in OS is to give
students an inside view of the operating system. At the same time,
in our opinion, the tool should meet the following basic
requirements:

• to operate on an accessible hardware and software platform

• to support multiprogramming and concurrent processes

• to be with a well-known interface

• to support well-known programming languages with
concurrency features

• to allow students the experimentation with the basic OS
parameters and options.

TOST has been developed with exactly this idea in mind. It
allows students to develop and execute concurrent processes, while
at the same time they can change the basic settings of the OS (CPU
scheduling, Quantum size, Memory management, Virtual memory
strategies, etc.) and to monitor the main system tables (Processes,
Blocked, Ready, Semaphores, etc.).

The proposed integrated environment includes:

• a multi-tasking, and a multi-window operating system

• editors and compilers for two simple programming
languages

• a virtual processor emulator.

The last TOST version is developed with Embarcadero®
Delphi within Embarcadero RAD Studio 10.3.3 Rio. It has no
installation procedure, the executable file of the tool is very small
in size (less than one MB), and it operates on any MS Windows
environment. TOST is easy to learn and use, and allows students

to become familiar with the capabilities and the limitations of the
built-in programming languages within a short time (about an
hour).

The first TOST environment is introduced in [15], while the
focus of [1] is on using TOST in teaching mutual exclusion,
synchronization, and deadlock. This paper expands the application
area of TOST, describing its usage for teaching and learning OS
concepts.

2.1. Programming in TOST

A general view of the current TOST main menu is depicted in
Figure 1.

Figure 1: TOST interface

Using TOST, students can develop and execute concurrent
programs in two simple programming languages - PASCAL-style
and C-style. The grammars of these languages, consist of roughly
twenty grammar productions only, which are presented in Figure
2 and Figure 3 in Extended BNF (ISO/IEC 14977).
program = "void" "main" "(" ")" body
body = [{ type identifier { "," identifier } }] block
type = "int" | "char" | "bool" | "shared" | "semaphore"
block = "{" statement { ";" statement } "}"
statement = block | assignment | if | while | read | write | lock | unlock |

init | wait | signal
assignment = identifier "=" expression
expression = expr [("<" | ">" | "==") expr]
expr = term { ("+" | "-" | "or") term }
term = factor { ("*" | "/" | "and") factor }
factor = ["not"] (identifier | constant | random | "(" expression

")")
constant = number | """"" char """" | "#" ascii_code | "true" | "false"
random = "random" "(" expression ")"
if = "if" "(" expression ")" statement
while = "while" "(" expression ")" statement
read = "cin" ">>" identifier
write = "cout" "<<" expression { "<<" expression }
lock = "lock" "(" identifier ")"
unlock = "unlock" "(" identifier ")"
init = "init" "(" identifier "," expression ")"
wait = "wait" "(" identifier ")"
signal = "signal" "(" identifier ")"

Figure 2: C-style language grammar productions

program = ["program" identifier ";"] body "."
body = ["var" { identifier { "," identifier } ":" type ";" }] block
type = "integer" | "char" | "boolean" | "shared" | "semaphore"
block = "begin" statement { ";" statement } "end"
statement = block | assignment | if | while | read | write | lock | unlock |

init | wait | signal
assignment = identifier ":=" expression
expression = expr { ("<" | ">" | "=") expr }
expr = term { ("+" | "-" | "or") term }
term = factor { ("*" | "/" | "and") factor }

Run

Programming

Pause / Resume
System Watch

System Options

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 98

factor = ["not"] (identifier | constant | random | "(" expression
")")

constant = number | "'" char "'" | "#" ascii_code | "true" | "false"
random = "random" "(" expression ")"
if = "if" expression "then" statement
while = "while" expression "do" statement
read = "read" "(" identifier ")"
write = "write" "(" expression { "," expression } ")"
lock = "lock" "(" identifier ")"
unlock = "unlock" "(" identifier ")"
init = "init" "(" identifier "," expression ")"
wait = "wait" "(" identifier ")"
signal = "signal" "(" identifier ")"

Figure 3: PASCAL-style language grammar productions

Figure 4: Process editing and executing in TOST

In the text bellow we will use C-style only for the programs’
definition.

The programming languages in TOST are exclusively for
learning purposes and while they are quite simple, there are some
features that need to be addressed:

2.1.1. Types of variables

Only a few standard simple data types integer, char and
boolean are available for local variables, nevertheless, some data
types for concurrent programming purposes are also provided.
Variables from the shared type can be declared in a TOST
program. These variables become common for all concurrent
processes running in the system. A shared variable is unified, i.e.
it can accept any integer, char or boolean values, as well as any
data can be extracted from it. As a result, passing through such

variable can also be used in order to convert data from one type to
another.

Another type of data used in parallel programming is the
semaphore. In TOST we implement the original Dijkstra's
semaphores concept [16]. A semaphore variable S consists of two
properties - S.value and S.queue. The property S.value is a non-
negative integer, while S.queue is a FIFO list of identifiers of the
blocked processes (process ID).

Figure 5: Semaphore’s structure

2.1.2. Statements

Although TOST languages maintain only basic statements like
assignment, conditional, loop and input/output, some statements
for concurrent programming purposes are also available.

The semaphore operations init, wait, and signal, which are
defined below, are functions from the OS kernel:

Figure 6: Semaphore operations

Students can investigate the advantages and disadvantages of
using the special assembly language instruction Test_and_Set [17]
through the statements Lock (CS) and Unlock (CS), where CS
(Critical Section) is a boolean shared variable.

Function random(expression) which returns a random integer
value from 0 to expression-1 can also be used in some
synchronization primitives’ implementations.

2.2. Processes Execution Management in TOST

After the successful compilation, an object code file is
generated (with COD extension) and it is ready to be run in the
environment. The compiled processes can be started from the Run
at the main menu (as well as from the editing windows).

Figure 7 presents the general system view where in the Run
dialog box students can select an object file to be executed, and set
the initial parameters of the running process.

S.queue

blocked processes
semaphore S

S.value

if (S.value > 0)

 decrement S.value;

else

 block this process and add it’s ID in S.queue

if (S.queue is empty)

 increment S.value;

else

 unblock the first process from S.queue

S.value = value

init (S, value)

wait(S)

signal (S)

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 99

Figure 7: Process running

Priority spin-edit box sets the initial process priority while the
total process execution time (used in some scheduling strategies)
can be entered in Time. By checking Background the students can
specify the process visual mode (execution in a separate window
or behind the scenes). Pressing the RUN button multiple times will
cause the start of several concurrent processes.

If detailed monitoring of running processes is required, a
temporary "freeze" can be performed via Pause / Resume at the
main menu.

2.3. TOST System Options

Some basic OS parameters can be set and modified while
several processes are executed in a concurrent mode.

Figure 8: System Options dialog box

In System Options dialog box (Figure 8) students can modify:

• Quantum Size: system time sharing quantum size in ms

• Delay time: processes speed control

• Memory scanning time: time interval of RAM scanning

• Dispatching: current scheduling strategy

• Memory Management: current memory management
strategy – Real Memory, Virtual Paging or Swapping

• Job Placement: jobs placement strategy in real memory
mode

• Page Replacement: page replacement strategy in virtual
memory mode

These modifications of system parameters allow real-time
monitoring of how each of them affects the processes executed.

2.4. TOST System Watch

For achieving an OS inside view, while several processes are
executed in parallel mode, students can monitor the information
dynamics in selected system tables (Figure 9): Processes, Ready,
Blocked, Memory Allocation map and Semaphores info. The
information from each of the system tables is presented in a
separate window, as it is shown in Figure 10.

Figure 9: System tables Watch

2.4.1. Processes

The Processes table (Figure 10) contains the current Process
Control Block of each of the existing concurrent processes.

Figure 10: Processes execution and system tables monitoring

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 100

The information is presented in five fields:

• File Name: the name of the compiled object file

• Process ID: an integer unique identifier of the process

• State: current process status – Ready, Running or Blocked

• Priority: a real value determining the process priority

• Remaining Time: the time remaining until the process
completion.

In this table, students can manipulate the priority or the
remaining time of the selected process.

2.4.2. Ready table

The Ready table contains IDs of all processes with status
"Ready”. It is possible (according the settings in System Options)
to have up to 5 priority queues. Thus, students can experiment with
scheduling strategies like Round Robin (one queue only) or
Multilevel Feedback Queue [18] for the separation of the
processes with different behavior (with more I/O operations or
with more computations).

2.4.3. Blocked table

The identifiers of blocked processes and the names of
semaphores/events, related to their blocking are presented in the
Blocked table. In fact, these are FIFO-queues with blocked
processes of all semaphores used. The information in this table is
especially helpful when students have to monitor semaphores
usage in processes synchronization, mutual exclusion and
deadlock prevention cases.

2.4.4. Memory Allocation map

Important information about memory allocation and
referencing is given by Memory Allocation Watch. When this
submenu item is selected, the system periodically scans the TOST
RAM and displays results in a separate window. This feature
allows students to monitor a map of the memory blocks, where the
occupied blocks are marked with the process’ ID. The detailed
referencing of the pages in the virtual memory is also displayed.

2.4.5. Semaphores information

Semaphores Watch submenu item can be selected for
monitoring all semaphore variables' current values in a separate
window. This helps students to master the mechanism of using
both binary and counting semaphores.

3. Teaching Operating System Basics

3.1. Teaching Process Management

A process [2] is basically a program in execution. During its
existence, the process goes through several different states, and the
basic three are Ready, Running, and Blocked.

Once students run several processes, they can monitor (as
shown in Figure 10) their life cycles in the Processes (ID, the
current State and the state changing), Ready (ID list of all ready
processes), and Blocked (ID list of all blocked processes, and the
event each process is waiting for) tables.

3.2. Teaching Process Scheduling

The act of choosing which of all the ready processes should
be moved to the running state is not a trivial task [19]. It is known
as Process Scheduling and is performed by OS Dispatcher.

There are several goals of the process scheduling system:

• to maximize the fairness according to the processes
priorities

• to keep the CPU busy at all time

• to maximize throughput and to deliver minimum response
time for all processes

• to minimize resource starvation

• to support a lot of interactive users

• to minimize system overheads (OS CPU time, OS RAM).

In fact, very often these goals contradict with each other, so the
Dispatcher should implement an appropriate compromise [20].
Through experimentation, students are expected to gain
understanding in the scheduling strategies and to be able to choose
the most appropriate one, depending on the user's needs and
objectives. In TOST students can change (at any time) the current
scheduling strategy using Dispatching radio-buttons in System
Options (see Figure 8).

Scheduling disciplines of the two general categories are
supported in TOST:

Non-Preemptive Scheduling: once the OS assigns the CPU to a
process, the process does not release the CPU until it has finished:

• FIFO: Simplest scheduling algorithm with only one queue
(see queue q1 in Ready). New processes are appended in q1
where context switches only occur upon running process’
termination. Then the top placed process in q1 becomes
Running. Students can monitor:

o scheduling overheads are minimal

o throughput can be low

o no starvation

o waiting time and response time can be high

o no prioritization occurs

o interactive users are not allowed

• Priority: Whenever a scheduling event occurs, the
Processes table will be searched for the process with the
maximum priority number (the most important one), which
will be the next one to be scheduled for execution. Students
can monitor:

o scheduling overheads are low

o throughput can be low

o starvation can occur in a busy system with many high-
priority processes in the Ready table

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 101

o waiting time and response time can be high

o interactive users are not allowed

• Shortest Job First (SJF): Dispatcher selects the process
with the least estimated processing time to be executed. The
estimated processing time in TOST can be set while process
is initialized (Figure 7). Students can monitor how the
algorithm increases throughput, and how the starvation can
become a problem, in a system with many short processes
in the Ready table.

• Highest Response Ratio Next (HRRN): is a dynamic
priority discipline proposed by Brinch Hansen to mitigate
the problem of the large processes starvation. When CPU
becomes free, Dispatcher calculates the priorities of all
ready processes according to:

Priority = 1 + waiting time / processing time

and selects the high priority process to be executed.
Students can monitor the priority calculations (in Processes
table) which gives preference to short processes, but with
each subsequent recalculation the priority of the large ones
grows and they can be selected as well.

Preemptive Scheduling: Dispatcher can interrupt a running
process any time in middle of the execution and the process is
returned back in the Ready table:

• Shortest Remaining Time (SRT): is a modification of SJF
with a preemption. When a new shortest process arrives
Dispatcher interrupts the current process and assigns the
CPU to the new one. Students can monitor that this
discipline achieves maximum throughput in most cases,
and the starvation is possible for large processes where a lot
of small processes arrive.

• Queues: By specifying the number of queues (Figure 8),
students can set two strategies:
Queues (1): Round-robin (RR): is a FIFO modification
with the process preempting where Ready table is a queue.
Dispatcher assigns a small time interval (Quantum) per
process, then interrupts and appends it at the end of the
Ready queue. When students set Delay time in System
Settings they can monitor processes preempting in the
Ready table in detail. When students run processes with
different priorities, they can monitor how the more
important processes are with proportionally larger quantum
and get a better service, and the starvation can never occur.
Queues (2-5): Multilevel feedback queues: In this case,
processes are grouped according to their behavior -
interactive processes vs batch processes, and processes with
more I/O vs. computational processes. In order to obtain a
balance in system’s resources utilization Dispatcher has to
provide better service for interactive and I/O processes.
Students can monitor in detail how processes pass into the
multilevel set of priority queues (from 1 to 5) in Ready
table.

3.3. Teaching Memory Management

In general, when discussing the topic of memory management
[2], [19] the focus is on the virtual memory organization. However,
before reaching this point, students need to understand in detail
what the issues are in using the real memory organization. Only
then they can comprehend why this kind of organization has been
replaced everywhere by the virtual one.

3.3.1. Real Memory

Real memory organization is a classical (one of the oldest)
memory allocation model according to which the process is placed
in a consecutive memory blocks [21]. Each process takes up
exactly as much memory as it needs, and due to the fact that the
memory blocks have sequential addresses, process loading,
executing and the memory releasing are extremely fast. Then
"Where is the problem?" comes to be the next instructor’s question
towards the students.

Students are instructed to develop and try to run several large
processes. Later, they run five small processes and with using the
TOST feature Memory Allocation Watch, monitor the memory
map with real memory organization. Then students kill the first,
second and fourth process, so these memory blocks are freed.
Figure 11 shows how the memory blocks occupied by a process
are marked with its identifier.

Figure 11: Memory allocation map

Following these instructions, students quickly realize the
deficiencies of the real memory:

• A process cannot be started if it is even one byte larger than
the available physical memory.

• There is a low CPU utilization, due to the low degree of
multiprogramming (number of ready processes loaded in
physical memory).

• The occurrence of memory fragmentation: In high
dynamics of started and finished processes, the free
memory area is broken into small parts, in which none of
the ready processes can be allocated. Thus, a lot of memory
blocks can remain unusable.

In order to minimize the problem of memory fragmentation,
the placement strategies First-fit, Best-fit and Worst-fit can be
applied (Figure 8). To assess their usefulness students can run a
new process and monitor its placement in the memory.

Processes 1 and
2 were here

Process 4 was here

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 102

3.3.2. Virtual Memory

Although the problem of memory fragmentation can be solved,
other serious problems of real memory remain: small maximum
process size and low degree of multiprogramming.

Virtual memory organization allows each process to be divided
into blocks (pages) while only a small part of the code and data
(that are currently needed) are located in the physical memory. The
physical memory is divided into blocks, which are called frames.
Figure 12 illustrates a moment in the execution of a large process
where Virtual Memory as Memory management is set (Figure 8).

At that stage, students can monitor the occupation and
references to the blocks (pages) in progress, with the memory
scanned at a certain interval (0.5s for example). When the process
starts, only a small part of its blocks are loaded - those that are
needed at the beginning. Later, the OS loads additional blocks into
the memory, those which are needed by the process but are not
available. The blocks that the process refers to during the scan
interval are colored red.

Figure 12: Memory allocation and pages referencing

Memory allocation map allows the instructor to clarify the
principles of the locality [22] - Temporal locality and Spatial
locality.

Principles of the locality can be used for anticipatory paging
(swap prefetch) to increase processes’ execution speed. These
principles are useful when the optimal replacement strategy has to
be chosen.

In TOST students can set (Figure 8) and examine various
replacement strategies such as Least Recently Used (LRU), Least
Frequently Used (LFU) and FIFO.

4. Teaching Concurrent Programming Concepts

Even if the students are familiar with the theoretical aspects of
parallel programming, in order to gain intuition about the subject,
it is vital to be provided with examples of incorrect operation of
competitive processes. Therefore, our approach is to firstly
develop concurrent programs without any protections and then,
analyze the faulty actions of the processes. Consequently, modify
the programs in order to achieve correct results. In addition, to
strengthen this knowledge, we solve and program some of the
well-known toy-problems in concurrent processing.

Representative examples of using TOST in teaching Mutual
Exclusion, Interprocess Synchronization and Deadlock are
considered in the next sections.

4.1. Teaching Mutual Exclusion

The parts of the concurrent processes where they access a
shared resource are called Critical Sections (CS) [23]. Critical
Sections must be protected by synchronization primitives, assuring
only one of the processes can be in the CS.

Figure 13 presents programs with no protection of the critical
section. Students develop and execute an initialization process
(init.txt), and two concurrent processes (p1.txt and p2.txt),
incrementing the shared variable C 1000 times. After finishing the
processes, the students can see the final result value of C = 1839,
instead of the correct value of 2000.

Figure 13: Concurrent processes with Critical Section

After examining the reasons for the wrong result, the students
transform the programs gradually, seeking the correct solution for
synchronization primitives. Thus, they examine program versions
with one, two, and three shared variables, and at last, they come to
the consideration of the Dekker's algorithm (Figure 14).

The Peterson's algorithm [24] is another well-known
algorithm that students can try and compare with Dekker's
algorithm. A simple solution of CS protection by the Peterson's
algorithm is given in Figure 15.

In Figure 16 a simple example of CS protection, using
primitives Lock and Unlock, based on the hardware instruction
Test_And_Set, is presented.

The last example considered is the use of semaphores to protect
the critical section (Figure 17).

Empty memory blocks

Process 1 starts

“Spatial
locality”

Additional pages loading

Referred pages (in red)
within the memory
scanning interval:

“Temporal locality”

Memory
scanning

time
(interval)

Ti
m

e

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 103

(a) Initialization process (b) Process 1

Figure 14: Critical Section protection by Dekker's algorithm

(a) Initialization process (b) Process 1

Figure 15: Critical Section protection by Peterson's algorithm

(a) Initialization process (b) Process 1

Figure 16: Critical Section protection by Test_And_Set instruction

 Figure 17: Critical Section protection by a semaphore

Figure 18 presents the contents of two main OS tables
(Processes and Blocked) during the concurrent execution of three
identical processes with the source code of Figure 17. Processes
P1_S and P2_S are blocked, while the ready process P2_3 is inside
the critical section. Students also have the possibility of monitoring
the semaphore variable CS in a separate window

Figure 18: Monitoring TOST system tables

After finishing the processes, the value of the shared variable
C is correct and equal to 3000.

4.2. Teaching Interprocess Synchronization

A good illustration of the Interprocess Synchronization is the.
Sleeping Barber problem [25] depicted in Figure 19. As soon as
the Barber or Client process reaches a certain point in the
execution, it must stop and wait for an event to occur.

Figure 19: Sleeping Barber problem

void main()
shared C, ReqP1, ReqP2, Turn ;
{
 C = 0;
 ReqP1 = false;
 ReqP1 = false;
 Turn = 1;
}

void main()
int I;
shared C, ReqP1, ReqP2, Turn ;
{
I = 0;
while (I < 1000)
 {
 ReqP1 = true;
 while (ReqP2 == true)
 If (Turn == 2)
 {
 ReqP1 = false;
 while (Turn == 2) ;
 ReqP1 = true;
 };
 C = C + 1;
 ReqP1 = false;
 Turn = 2;
 I = I + 1;
 }
}

void main()
shared C, ReqP1, ReqP2, Turn;
{
 C = 0;
 ReqP1 = false;
 ReqP1 = false;
}

void main()
int I;
shared C, ReqP1, ReqP2, Turn ;
{
I = 0;
while (I < 1000)
 {
 ReqP1 = true;
 Turn = 2;
 while (ReqP2 and (Turn == 2)) ;
 C = C + 1;
 ReqP1 = false;
 I = I + 1;
 }
}

void main()
shared C, CS;
{
 C = 0;
 CS = false;
}

void main()
int I;
shared C, CS ;
{
I = 0;
while (I < 1000)
 {
 Lock (CS);
 C = C + 1;
 Unlock (CS);
 I = I + 1;
 }
}

void main()
semaphore CS;
shared C;
int I;
{
 I = 0;
 while (I<1000)
 {
 wait (CS);
 C = C + 1;
 signal (CS);
 I = I + 1;
 }
}

void main()
semaphore CS;
shared C;
{
 C = 0;
 init (CS, 1);
}

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 104

The problem can be stated as follows: In a barbershop, there is
а barber chair and an area for the waiting clients with five chairs.
The algorithms of the concurrent processes of the Barber and the
Client include the following steps:

Barber:

1) The barber signals that he is ready to work (free).

2) The barber sits on the barber's chair and sleeps, waiting for a
new client (indoor bell).

3) The barber gets up and waits for the client to sit on the barber's
chair.

4) The barber begins the haircut and signals when he completes
the work.

5) The barber waits until the client leaves the barbershop
(outdoor bell).

6) Go to 1.

(a) Initialization

(b) Barber (c) Client

Figure 20: Sleeping Barber solution

Client:

1) The client checks if there is a free chair in the waiting room
and eventually waits until a chair is available.

2) The client signals that there is a new client (input bell).

3) The client is waiting for the barber to be free.

4) The client frees the chair in the waiting room.

5) The client sits on the barber's chair and signals that he is ready
for a haircut.

6) The client is waiting for the barber to complete the haircut.

7) The client gets out of the barber's chair and leaves the
barbershop (output bell).

The first thing students have to do is to identify processes
synchronization events and implement one semaphore variable for
each of the controlled events. Then they develop three programs -
Initialization (for setting semaphore values), Barber, and Client
(Figure 20).

The implementation of the synchronization of one barber’s
process and eight clients’ processes are depicted in Figure 21.

Figure 21: Sleeping Barber execution monitoring

According to the information in TOST system tables:

• the barber is busy (Semaphores: Barber = 0)

• a client is seated in the barber chair (Semaphores: Sit =
1) and waiting for the barber to complete the haircut
(Blocked: Finish)

• five new clients are in the waiting room (Semaphores:
Clients = 5) and all the chairs are occupied (Semaphores:
Chairs = 0)

• all five new clients are waiting for the barber (Blocked:
Barber)

• two clients are waiting for a chair outside of the barbershop
(Blocked: Chairs).

4.3. Teaching Deadlock

The Dining Philosophers toy-example [26], depicted in Figure
22, is often used to analyze the synchronization and deadlock
problems in the concurrent processes execution, as well as to
demonstrate the approaches for solving them.

The students solve this problem by developing five programs
(for the philosophers) while the correct access (mutual exclusion)
to the shared objects (forks) is implemented by semaphores. The
example programs for the first two philosophers are presented in
Figure 23.

void main()
semaphore Chairs, Barber,
 Client, Sit, Finish,
 Out;
{
 init (Chairs, 5);
 init (Barber, 0);
 init (Client, 0);
 init (Sit, 0);
 init (Finish, 0);
 init (Out, 0);
}

void main()
semaphore Chairs, Barber,

Client, Sit, Finish,
Out;

{
 while (true)
 {
 signal (Barber);
 wait (Client);
 wait (Sit);
 signal (Finish);
 wait (Out);
 }
}

void main()
semaphore Chairs, Barber,
 Client, Sit, Finish,
 Out;
{
 wait (Chairs);
 signal (Client);
 wait (Barber);
 signal (Chairs);
 signal (Sit);
 wait (Finish);
 signal (Out);
}

There are 5 chairs available
The barber is not available
No new client
No one is sitting in barber's chair
The barber has not finished work
The client has not come out

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 105

Figure 22: Dining Philosophers problem

Figure 23: Phil_1 and Phil_2 program samples

Figure 24: Dining Philosophers execution

TOST allows students to monitor (Figure 24) how philosophers
are waiting for the forks (in Processes and Blocked) and how they
take and put the forks on the table (in Semaphores).

Another aim of the Dining Philosophers problem is to
demonstrate the prevention of Deadlock.

Students can monitor how in the case of all philosophers taking
a fork with their right hand, while expecting the release of a second
fork, a Deadlock occurs (Figure 25 and Figure 26).

Figure 25: Dining Philosophers Deadlock example

Figure 26: Dining Philosophers Deadlock example (Circular Wait)

Students have to find a solution and save philosophers from
starvation dead. One idea is to break the fourth necessary condition
for Deadlock - Circular Wait [27]. Students apply this approach
by reprogramming Phil_1 (Figure 27) and introducing the general
requirement for all processes to request resources in ascending
order only.

wait for the fork occupy the fork

void main()
semaphore FORK5, FORK1 ;
{
while (true)
 {
 cout << "T" << #13;
 wait (FORK5);
 wait (FORK1);
 cout << "E" << #13;
 signal (FORK1);
 signal (FORK5);
 }
}

void main()
semaphore FORK1, FORK2 ;
{
while (true)
 {
 cout << "T" << #13;
 wait (FORK1);
 wait (FORK2);
 cout << "E" << #13;
 signal (FORK1);
 signal (FORK2);
 }
}

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 106

Figure 27: Phil_1 program – before and after changes

5. Students’ Opinion

Trying to improve the quality and usefulness of the integrated
environment TOST, moreover to get better results from its usage,
we also rely on end-users’ opinions. For this reason, in a span of
two consecutive years, we conduct qualitative surveys with
students at the end of the course. The survey used a 5-point Likert
scale and is based on a relatively small sample of 131 bachelor
students. The summary data for user acceptance of the presented
tool are in Table 1.

Table 1: Opinion Survey Results

Survey questions A B C D E

I like TOST environment 2 13 30 55 31

TOST is easy to learn 0 3 15 40 73

I think that programming in
TOST is complex

75 29 11 12 4

TOST is visually very attractive 7 22 26 61 15

Overall, I am satisfied with the
TOST approach to studying
Operating systems

5 11 15 41 59

Overall, I am satisfied with the
performance of the TOST
environment

9 9 12 21 80

The installation process of
TOST is quick and easy

0 0 3 5 123

TOST often freeze, crash, or
does not behave as expected

106 9 11 4 1

Overall, I am satisfied with the
experimenting with TOST
example solutions in
understanding concepts related
to Mutual Exclusion,
Synchronization, Deadlock, and
Operating system in general

4 2 3 111 11

I think the interface of the TOST
environment is user-friendly

8 5 39 57 22

TOST is successful and effective
in stimulating Operating system
algorithms and strategies

0 0 0 95 36

A: strongly disagree
B: disagree
C: undecided
D: agree
E: strongly agree

Based on the data presented, it can be assumed that the
responses are positive. According to the majority, the TOST
environment is easy to learn and use, user-friendly, useful, and
supportive for their understanding of the fundamental concepts of
operating systems and the problems concerning concurrent
programming.

6. Conclusions and Further Research

Learning the concept and basic principles of Operating systems
poses a great challenge to Computer Systems and Technologies
students. In this paper, the authors present an integrated
environment named TOST, specially designed to be used in
Operating systems and Concurrent programming courses at Ruse
University. A description of the TOST environment and a
demonstration of how it can be very effectively used in teaching
Operating systems principles are discussed, as well as some of the
TOST features that address the learning of Mutual Exclusion,
Interprocess Synchronization, and Deadlock.

The TOST includes a time-sharing operating system with
compilers for two simple and easy to use programming languages.
There are shared variables and semaphores variables for
concurrent algorithms development. The ability to monitor the
real-time information from basic OS tables allow students to gain
a better apprehending of the algorithms, concepts, and theories
behind the design, construction, and insights of operating systems.

The presented environment might be extended in the following
directions:

• developing a built-in file system with a set of file allocation
methods and management strategies;

• developing a spooling system for mediation between a
process and slow peripheral devices;

• implementing complex data types and subroutines for the
programming languages integrated.

We have been using TOST for several years in the Department
of Computer Systems and Technologies at Ruse University and the
student’s feedback and results are positive. The lack of any
installation procedure, the small size, and the ‘copyleft’ license
allow TOST to be obtained and used without limitation and with
full inclusivity.

Conflict of Interest

The authors declare no conflict of interest.

Acknowledgments

This work/paper is supported by project 20-FEEA-01 “Methods
and tools for multimedia content analysis and automated
document and big data processing”, funded by the Research Fund
of the “Angel Kanchev” University of Ruse.

References

[1] T. Golemanov, E. Golemanova, “Using TOST in Teaching Mutual
Exclusion, Synchronization, and Deadlock,” in 29th Annual Conference of
the European Association for Education in Electrical and Information
Engineering (EAEEIE) 2019, Ruse, Bulgaria, 2019,
doi:10.1109/EAEEIE46886.2019.9000441.

[2] A.S. Tanenbaum, A.S. Woodhull, Operating Systems Design and
Implementation (Second ed.), 2011.

[3] W. Christopher, and T.A. S. Procter, “The Nachos instructional operating

void main()
semaphore FORK5, FORK1 ;
{
while (true)
 {
 cout << "T" << #13;
 wait (FORK5);
 wait (FORK1);
 cout << "E" << #13;
 signal (FORK1);
 signal (FORK5);
 }
}

void main()
semaphore FORK5, FORK1 ;
{
while (true)
 {
 cout << "T" << #13;
 wait (FORK1);
 wait (FORK5);
 cout << "E" << #13;
 signal (FORK1);
 signal (FORK5);
 }
}

http://www.astesj.com/

T. Golemanov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 96-107 (2020)

www.astesj.com 107

system,” in 1993 Winter USENIX Conference, San Diego, California, 1993,
doi:10.5555/1267303.1267307.

[4] D. Comer, Operating System Design: The XINU Approach, Prentice-Hall,
1984.

[5] B. Pfaff, G. Romano A. and Back, “The Pintos Instructional Operating
System Kernel,” in SIGCSE 2009, Chattanooga, TN, 2009,
doi:10.1145/1539024.1509023.

[6] D. Hovemeyer, J.K. Hollingsworth, B. Bhattacharjee, “Running on the bare
metal with GeekOS,” ACM SIGCSE Bulletin, 36(1), 2004,
doi:10.1145/1028174.

[7] L.P. Maia, F.B. Machado, P.J.A. C., “A Constructivist Framework for
Operating Systems Education: a Pedagogic Proposal Using the SOsim,” in
ITiCSE’05, Monte de Caparica, Portugal, 2005,
doi:10.1145/1067445.1067505.

[8] T.W. Chan, “A Software Tool in Java for Teaching CPU Scheduling,”
Journal of Computing Sciences in Colleges, 19(4), 257–263, 2004,
doi:10.5555/1050231.1050269.

[9] D. Skrien, “CPU Sim 3.1: A tool for simulating computer architectures for
computer organization classes,” Journal on Educational Resources in
Computing (JERIC), 1(4), 2001, doi:10.1145/514144.514731.

[10] D. Park, R.H. Saavedra, “Trojan: A high-performance simulator for shared
memory architectures,” in Proceedings of the 29th Annual Simulation
Symposium. IEEE, 1996, doi:10.5555/829528.831210.

[11] A.R. Lopes, D.A. de Souza, J.R.. de Carvalho, W.O. de Silva, S.V.L. P.,
“SIME: Memory simulator for the teaching of operating systems,” in
Computers in Education (SIIE), 2012 International Symposium on. IEEE,
2012.

[12] P. Gayet, B. Bradu, “Procos: A real-time process simulator coupled to the
control system,” in Proceedings of ICALEPCS, Kobe, Japan: 794–796, 2009.

[13] A. Garmpis, “Design and development of a web-based interactive software
tool for teaching operating systems,” Journal of Information Technology
Education, 10(10), 1–17, 2011, doi:10.28945/1357.

[14] B. Mustafa, “Visualizing the modern operating system: simulation
experiments supporting enhanced learning,” in Proceedings of the 2011
Conference on Information Technology Education. ACM, 209–214, 2011,
doi:10.1145/2047594.2047650.

[15] T. Golemanov, E. Golemanova, “A Teaching in Operating Systems Tool,”
in CompSysTech’06, 2006.

[16] E.W. Dijkstra, “Cooperating sequential processes (EWD-123),” Center for
American History, University of Texas at Austin, 1965,
doi:10.5555/1102034.

[17] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst.
13(1), 1991, doi:10.1145/114005.102808.

[18] A.C. Arpaci-Dusseau, Remzi H.; Arpaci-Dusseau, Operating Systems:
Three Easy Pieces, Arpaci-Dusseau Books, 2014.

[19] A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts. 9., John
Wiley & Sons, Inc., 2013.

[20] P. Krzyzanowski, Process Scheduling: Who gets to run next?, 2015.
[21] D. Samanta, Classic Data Structures, Prentice Hall India Pvt, 2004.
[22] S. William., Computer organization and architecture : designing for

performance (8th ed.), Prentice Hall, Upper Saddle River, NJ, 2010.
[23] M. Raynal, Concurrent Programming: Algorithms, Principles, and

Foundations, Springer Science & Business Media, 2012.
[24] G.L. Peterson, “Myths About the Mutual Exclusion Problem,” Information

Processing Letters, 12(3), 115–116, 1981, doi:10.1016/0020-
0190(81)90106-X.

[25] H.M. Deitel, P.J. Deitel, D.R. Choffnes, Operating systems,
Pearson/Prentice Hall, 2004.

[26] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall
International, 2004.

[27] J. Coffman, Edward G., M.J. Elphick, A. Shoshani, “System Deadlocks,”
ACM Computing Surveys, 1971, doi:10.1145/356586.356588.

http://www.astesj.com/

	2. The TOST System
	2.1. Programming in TOST
	2.1.1. Types of variables
	2.1.2. Statements
	2.2. Processes Execution Management in TOST
	2.3. TOST System Options
	2.4. TOST System Watch
	2.4.1. Processes
	2.4.2. Ready table
	2.4.3. Blocked table
	2.4.4. Memory Allocation map
	2.4.5. Semaphores information

	3. Teaching Operating System Basics
	3.1. Teaching Process Management
	3.2. Teaching Process Scheduling
	3.3. Teaching Memory Management
	3.3.1. Real Memory
	3.3.2. Virtual Memory

	4. Teaching Concurrent Programming Concepts
	4.1. Teaching Mutual Exclusion
	4.2. Teaching Interprocess Synchronization
	4.3. Teaching Deadlock

	5. Students’ Opinion
	6. Conclusions and Further Research
	Conflict of Interest
	Acknowledgments
	References

