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 3D city modeling may be considered as one of the key applications, that are provided by 
the Automated Feature Extraction (AFE) techniques from LiDAR data. The authors attempt 
to prove that with growing availability of LiDAR surveying methods the resulted 3D city 
models become the most significant modeled features for any urban environment. Our 
paper represents the conceptual multifunctional approach within the AFE frameworks, that 
has been introduced through consequent steps of the phased methodological flowchart with 
its two branches: High Polyhedral Modeling (HPM) and the Low Polyhedral Modeling 
(LPM) of buildings. Both branches result in the heavyweight models, and in the lightweight 
ones, correspondingly. The research purpose of this paper is to outline our multifunctional 
approach (functionalities of Building Extraction, Building Extraction in Rural Areas, 
Change Detection, and Digital Elevation Model Generation) to the fully automated 
extraction of urban features, and present our original contributions to the relevant 
algorithmic solutions within both HPM, and LPM pipelines, as well as represent desktop, 
web-, and cloud-based software elaborated for these intentions. Original enhancements 
and optimizations of the adopted AFE-techniques have been bounded to the phases of the 
methodological flowchart, while some derivative results have been presented not only as 
the software description, but also in the discussion chapter. Joint implementation of various 
functionalities in a web-based application (the Server) is presented with several interface 
samples of research in urban block and district scopes, while a cloud-based application 
(the Geoportal) is an Internet-toolbox for solutions in the scope of a whole city.  
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1. Introduction 

This text is a significantly changed extension of the work firstly 
presented as a conference paper [1].                       

The global world has been already transferring into the 
information society for several recent decades. It is quite 
acceptable to consider a Geographic Information System – GIS as 
one of the core tools of such transfer together with the relevant 
technologies of remote sensing, including LiDAR (Light 
Detection and Ranging) technique. It has been remarkable for few 
recent decades that exactly this period also has been featured by 
the continuing urbanization process, that still takes place 

nowadays in many developing countries. Numerous facts and 
phenomena indicate, that we may face the largest urban growth 
wave within the whole human history, which also concurs with 
prompt development of information technologies, remote sensing, 
computer sciences, geoinformatics, and GIS-platforms / modules. 
All listed entities could and should be involved in resolving of 
those drastic problems arisen within the urbanized areas, for 
example, by considering these territories as the hierarchical 
urban geosystems and making the corresponding decision support 
recommendations [2, 3]. Thus, even several highly challenging 
issues relevant to the Smart City development can be met in this 
way [4]. Moreover, the rapid growth of both remote sensing 
technique and GIS-technological involvement in surveying 
environmental consequences of the urbanization process has been 

ASTESJ 

ISSN: 2415-6698 

*Corresponding Author: Sergiy Kostrikov, sergiy.kostrikov@karazin.ua 

 

 

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 72-95 (2020) 

www.astesj.com   

Special Issue on Multidisciplinary Innovation in Engineering Science & Technology 

 

https://dx.doi.org/10.25046/aj050609  

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050609


S. Kostrikov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 72-95 (2020) 

www.astesj.com     73 

clear evident over the past few decades [5], while quite a few both 
approaches, and methods, as well as user interfaces have been 
developed [6-15].     

Urban features can be accepted as the core constituents of any 
virtual presentation for each digitally simulated city. A 3D City 
Model is the key formalized entity of the mentioned city content, 
and it enables effective and accurate 3D modeling of the 
urbanized environment with respects to housing sets and 
infrastructures [16-23]. Within the urban studies perspectives it 
can be possible to accept a 3D object / feature model as a work-
flow key issue of the GIS output completed from the urban remote 
sensing input. This assumption may be even more evident, while 
the discrete objects are considered as those modeled results, which 
are intended for a customized solution within the framework of 
one only, or several urban applications. In this meaning 3D 
modeling appears to become a key component within the common 
geoinformation paradigm [24]. It is considered be possible to 
accept a 3D city model of urban area as that entity, which 
corresponding environmental analog is placed within 3D urban 
environment described by routine urban features and structures 
with buildings as the dominant objects among them.   

Exactly for a couple of latest decades LiDAR (Lidar) data 
collecting processing technique has become an alternative (to 
areal imageries) data source for generating a 3D representation of 
natural landscapes and housing environments as well as the 
overall human-environment intercourse [25, 26]. Being able to 
collect directly the accurate 3D point clouds of various density 
over urban territories, the LiDAR technique proposes an effective 
and beneficial data source in this meaning. By the way, this is 
illustrated further in this text.     

There are Airborne (ALS), Terrestrial (Mobile - MLS), and 
UAV-LS (Unmanned Aerial Vehicle Laser Scanning) LiDAR 
techniques within the common remote sensing technology, that 
measures distances on the base of the time intervals between the 
laser signal transmitting / receiving. All ALS / MLS /UAV-LS 
mapping are surveying and mapping tools based on hardware 
platforms and software solutions [27-30]. The ALS lidar normally 
completes low-average density measurements of the underlying 
topographic surface, that result in the georeferenced, but 
unstructured set of points – lidar Point Clouds, while the MLS 
technique usually captures the walls – with a high resolution of 
façade details for buildings of different sizes. The UAV-LS lidar 
accomplishes high density measurements and can provide surveys 
that may be considered as hybrid ones, since it combines those 
output data, which can be provided by both ALS, and MLS Lidars.  

The automated feature extraction (AFE) methods are the 
derivatives of ALS / MLS / UAV-LS Lidar remote technique. 
AFE-procedures produce 3D city models mentioned above, that 
are positioned in three dimensions just because of the AFE-
method implementation. Since a common three-dimensional 
urban model may be a subject of more, than one hundred 
applications in various industrial domains [24], the AFE-
methodology itself can be hardly overvalued. Municipal 
management, urban emergency services, noise and other hazard 
mapping, visibility analysis city infrastructure inventory, 
population and energy demand estimation with building models 
are those key urban applications, in which 3D models obtained 

from LiDAR data through AFE procedures are in an evident 
growing marketing demand according to the obvious reasons. To 
meet this demand requirements an AFE-model should be of high 
accuracy [31], what in some cases implies a hybrid data source. 
The latter means either a “LiDAR + areal image” hybrid [32], or 
additional involvement of MLS / UAV-LS data processing 
procedures for detailed extractions of building façades [33].  

The main research purpose of this text is to outline with the 
phased methodological flowchart our conceptual multifunctional 
approach to the fully automated extraction of urban features, and 
present the original contribution to relevant algorithmic solutions 
within the modeling pipeline, as well as represent the web- and 
cloud-based software elaborated for these intentions.  

2. Previous Works Done due to Building Detection, 
Extraction, and 3D Reconstruction from LiDAR Data 

Fully Automated Feature Extraction, building Point Cloud 
segmentation, rooftop modeling, and 3D reconstruction of 
buildings, all have been among the main topics of thematic 
discussions in the remote sensing community through the relevant 
papers and on forums of various scales especially for the latest 
decade [26, 32, 34-42].   

Now, AFE is still a vitally crucial part of what is being done 
and what researchers and other professionals are attempting to do 
better within the LiDAR surveying / processing domain. How has 
it further been progressed with its technique recently? We may 
consider as a key issue for efficient AFE-results a provision of a 
bridge between MLS / UAV-LS lidars, from one side, and ALS 
lidar, from another, one and vice-versa. Without any further 
explanations just in this paper section, we may only express a 
somewhat trivial idea, according to which the composite models 
of urban features extracted may be considered as the most 
effective ones [43]. 

2.1. Overall AFE issues 

Because of ALS / MLS / UAV-LS joint surveying methods 
the automated feature extraction as a generating procedure for 3D 
urban models has become an evident alternative to the urban 
photogrammetry. It is a well-known fact, that besides various 
direct processing of aerial images, the Urban Remote Sensing 
(URS) (e.g., multispectral, hyperspectral ones [44]) traditionally 
provides the 3D building model generation from airborne-mobile-
drone photogrammetric point clouds, but the lidar surveying / 
processing approach deals with similar dataset structures. 
Moreover, the novel sensor technology with its lower cost in 
comparison with previous hardware has expedited Lidar 
involvement in urban studies. Significant pros for such solution 
may be that fact, according to which ALS / MLS / UAV-LS 
sensors can deliver point datasets with densities of huge range 
(from one up to several thousand points per sq. meter). Even with 
the lower edge of this density range, it is feasible to detect urban 
structures, their approximate boundaries, and other various man-
made features. Those models can be generated, which correctly 
resemble both wall, and roof structures. Many relevant methods 
for ALS / MLS / UAV-LS surveyed data processing have been 
proposed due to building extraction, detection, and 3D 
reconstruction [45-54]. 
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Once we already commonly classified the automated feature 
extraction approaches on the base of an input data source [1]. The 
first approach means processing the high-resolution airborne 
imageries with additional including of digital elevation models 
(DEM) into an AFE-pipeline [7, 55]. Although some significant 
results have been obtained, the “only aerial imagery” approach 
may be considered as that one, which does not perform well 
enough in the densely built-up urban areas, primarily because of 
shadows, landscape gaps, and unsatisfactory contrasts in various 
urban configurations. According to this, the AFE procedures 
based exclusively on the first approach may not be fully reliable 
for the robust practical usage [33, 56]. The second approach 
straightforwardly employs LiDAR data and produces improved 
AFE-results, if compared to the imagery-only methods [31, 35, 37, 
56]. What is more, this second approach implies an employment 
of very different techniques for processing ALS point clouds [57-
59]. Methods applied within the third approach combine in a 
common case both aerial imageries, and all kinds of LIDAR data 
(ALS / MLS / UAV-LS) so that to employ the complementary 
information from all data sources [33, 60]. 

The AFE complete algorithmic content implies the ground and 
vegetation detection, while the man-made feature AFE-technique 
has to use either single-, or multi-return ALS / MSL / UAV-LS 
range and intensity information with application of the various 
thematic algorithms, e.g., as: neural networks [61]; RANSAC (the 
RANdom SAmple Consensus algorithm) approach for extraction 
of feature plains [62] with its key modifications [63, 64], that have 
been successfully employed by the Polygonal Surface 
Reconstruction  method (the PolyFit) for feature reconstruction 
[65]; 3D Standard / Randomized Hough Transform (SHT / RHT) 
methodology that generally consists of three main steps: building 
points’ detection, detection of building planes, and these planes’ 
refinement [66-68]; implementation of knowledge-based entities 
[69]; the multi-scale approach [70].     

Besides all algorithmic solutions mentioned above it may be 
reasonable to emphasize the hierarchical terrain recovery 
algorithm, that may robustly provide distinguishing between 
ground and non-ground points within an input point cloud by 
implementing the “adaptive and robust filtering” method [50]. 
Within this approach it is necessary to consider the whole range 
of input data to evaluate a DEM of high resolution for further 
feature extraction steps using this relevant hierarchical strategy. 
Thus, road linear features can be identified by classifying signal 
intensity and elevation data. Not only discrete building boxes, but 
also network features can be detected and extracted then. For 
example, man-made features of the road networks can be derived 
using a customized transformation technique, and then validated 
with road lines and topographic shapes obtained from an initial 
Lidar point cloud. Further one can obtain the attributes of road 
segments such as their widths, lengths, and slopes by computing 
some derivative information and enhancing existing metadata in 
this way. Other man-made features, firstly, building models are 
created with the higher level of accuracy, which would correspond 
to various Levels of Detail (LODs), beginning from LOD1 
simplified box models and up to the models with internal 
partitions [71]. City Geography Markup Language (CityGML) is 
employed as a geoinformation data standard for presentation of 
the geometry and geographical data in digital models related to 
city buildings.  

We have already presented the High Polyhedral models (HPM) 
of buildings and the Low Polyhedral ones (LPM) [1]. These two 
categories not only are the components of the authors’ Lidar data 
processing methodology but also they are mentioned in the 
surveying section of this text only because HPM / LPM 
definitions reflect two significant mainstreams in the existing 
automated feature extraction. Obviously, these two dominant 
trends can be named with other titles by different authors.     

Mostly a literature survey already completed above concerns 
exactly the HPM issues. The latter imply the generation of 
building models consisting of numerous polyhedrons, and 
because of this the relevant modeled entities can be accepted as 
“heavy ones” – the heavyweight (HW) models, which are 
produced by the High Polyhedral Modeling approach. It means, 
an HPM-building model may be generated from up to more, than 
one hundred thousand of Lidar points. It may be reasonable to 
state that the HPM-procedures are primarily based on the Lidar 
point classification that one, which is not directly associated with 
clustering, while the LPM-operations – on the Lidar point cloud 
segmentation through clustering.   

The common work-flow of the HPM building model 
generation can be outlined as follows on the base of those 
literature sources that we have already referred to.  

At its first stage, the building footprints (building base 
boundaries) are detected by segmenting DEM data obtained from 
LiDAR for two general classes: ground class and non-ground 
ones. The bare ground as a grid is delineated upon this step. A 
well-known, so called “sequential linking technique” is often 
suggested to reconstruct building footprints into regular polygons. 
These polygons then are improved so that to reach the 
cartographical standards [52, 72].  

The so-called prismatic models are generated for those urban 
structures, which roofs are flat, and polyhedral models are created 
for those structures, which roofs are non-flat, at the second stage. 
At last, at the third stage, the vertical wall rectification operations 
should be applied, if there are sufficient MSL / UAV-LS or other 
correcting data in a relevant geodatabase for processing of this 
area-of-interest (AOI).  

These three introduced stages may overlap almost any LiDAR 
data processing workflow. Most urban attributes of these building 
models are obtained from ASL / MSL / UAV-LS data. All 
corresponding HPM AFE-algorithms, that conclude the three 
stages workflow referred to above, should be tested using several 
geodatabases of varying earth surface type, vegetation coverage 
type, urban area type and LiDAR point density. Afterwards, 
normally the most effective algorithm should be chosen.    

If we complete the general summary even for several 
overviewed HPM AFE-algorithmic results, this summary may 
demonstrate that in many urban territories the derivative DEMs 
accumulate most topographic details and remove non-ground 
features reliably enough. The transportation infrastructural 
network features are also depicted mainly satisfactorily even 
within densely built-up city districts. The extracted building 
footprints demonstrate to have enough positioning accuracy. 
Their estimated values may be equal to the accuracy obtained 
from data surveyed in field monitoring, while this traditional 

http://www.astesj.com/


S. Kostrikov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 72-95 (2020) 

www.astesj.com     75 

surveying technique in many cases is a routine procedure of Lidar 
processed result accuracy evaluation [73, 74].  

2.2. Detection, Segmentation, and Reconstruction of Building 
Roofs 

The relevant modeling software tools can provide by a Point 
Cloud segmentation and clustering procedures of building 
detection and extraction the models of low-rise buildings 
preferably through rural areas and suburbs [1]. Simulating 
procedures stay within the Low Polyhedral Modeling approach, 
which is based on procedures of planar segmentation of Lidar 
point clouds rather, than on their classification (the case of HPM). 
The LPM building models produced are composed of not many 
polyhedral facets, and the number of points intended for a single 
model generation is limited approximately by a range from five 
and up to thirty thousand points maximum. Thus, the low 
polyhedral models can be considered as the lightweight (LW) ones. 
Overall low polyhedral modeling frameworks adapted to our 
LPM methodological approach proceed from the series of seminal 
papers in roof segmentation and reconstruction, therefore we have 
named this algorithmic technique as the SAS-methodology (the 
title has been abbreviated according to the authors of the initial 
approach) [35, 37, 75-77]. 

Methodologically we can reasonably define HPM as the 
automated extraction of a whole building, while LPM – the 
automated extraction of this building roof. A segmentation 
procedure of roof plains may be a key one within a corresponding 
AFE-pipeline titled for this section of our paper. This data-driven 
procedure was initially adapted for Lidar data from imagery 
processing [78]. Segmentation normally starts with applying 
clustering methods to Lidar point clouds [37, 76, 77].   

The automated extraction of a whole building can be normally 
fulfilled by three similar sub-procedures outlined above for roofs, 
i.e., building detection, building segmentation, and building 
reconstruction [50, 59, 70, 79]. Although, contrary to roof 
extraction, all three sub-procedures, which are related to a whole 
building, may not be evidently less distinguishable. The case is a 
completely automated process of a whole building extraction may 
not yet be reliable enough from a practical point of view, because 
of the great complexity of actual urban environment with 
tremendous variety of its configurations. Thus, a whole building 
fully automated processing may need to pass a longer distance to 
provide wider usage of available supplementary data sources, for 
instance, city ground plans or municipal architecture schemes, so 
that to significantly enhance an ultimate processed result.  

Somewhat more simplified methods, which provide roof 
extraction as equal to roof detection, are based on a Digital 
Surface Model (DSM). This model contrary to a DEM includes 
not only the ground, but the discrete features also. According to 
existing references, the DSM is calculated using an imagery and 
feature pyramids [80]. The finalized surface is refined then on the 
base of local adaptive regularizations. The roof detection step is 
grounded on the fact that a roof should be higher, than the 
neighboring ground – the topographic surface. This is normally 
estimated applying tools of the mathematical morphology to this 
DSM. The sliding window size technique involves the input 
information about the maximum roof size in its existing 
geographical extent.  

This “only DSM involved” method has been further specified, 
when the building roofs are segmented depending on their 
estimated complexity, and in the same way finally reconstructed 
[81]. Usually, two types of parametric models are used for simple 
building roofs in those cases, when a building possesses either a 
flat, or a symmetrically sloped roof [50, 82]. Within other variants 
prismatic models are applied for complex separate roof structures 
or to connected building roof sets.   

Two general classes of the roof extraction approaches are 
either the data-driven technique (e.g., SaS-methodology already 
mentioned above, and this technique also known as a generic of 
polyhedral technique), or the model-driven one (also known as a 
parametric technique). The latter implies some assumptions about 
topological and geometrical properties of a whole building model, 
generally, and due to a roof model, particularly. Two 
methodologies can contrast one to another in a categorical 
perspective: the data-driven method can be accepted as the 
geometrical approach (due to creating the roof geometry from the 
points of a given cloud), and the topological one. It is necessary 
to emphasize, that there is no a clear boundary between these two 
approaches [83]. Some researchers report the Hough transform 
technique within the model-driven segmentation methods [37], 
while other scientists recall it as one from the key data driven 
approaches together with region growing and RANSAC [66]. By 
the way, in the opposite case some fully automated approach has 
been clearly defined as a model-driven one, which applied for the 
3D model reconstruction with prototypical roof templates 
(CityGML LOD2) [84].     

The invariant moment technique has been applied for 
generation of the roof template library according to various 
building classes [46]. It is a quite known fact, that the model-
driven approach may fail, when the inhomogeneity of feature 
distribution within a point cloud leads to biased parameters. 
Therefore, extracted models of complicated, not ordinary building 
roofs are produced by using data-driven algorithms. These 
algorithms are normally based on segmented intersecting planes 
and operate with triangulated point clouds [35-38, 62-68, 85].   

It is a commonly known fact for the data driven approach, that 
most critical errors occur upon the determination of a total 
building roof outline, when trees are placed near a building box 
[62, 64, 66-68]. To avoid this issue various algorithmic 
approaches have been modified independently based on the 
detection and outlining of planar facets, e.g. [46]. A facet plane is 
normally determined by the point clustering procedure. A roof 
scheme is outlined by a connected component analysis. A key 
related assumption is that all the geometric model boundaries for 
roof segments are either parallel, or perpendicular to the main 
building disposition.   

Thus, it is necessary to emphasize onсe more, that it may be 
not reasonable at all to distinguish whole building modeling from 
its roof reconstruction, while only ALS data are involved. It can be 
the same or, at least, very similar procedure, if only façades are not 
generated from MSL / UAV-LS data sources. Also, this procedure 
may be both within the HPM, and the LPM frameworks.  In the 
mentioned context various researches suggested a boundary-based 
building / its roof extraction and corresponding TIN-based 
modeling and reconstruction [50, 86]. The buildings and their roofs 
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are reconstructed within this approach by triangulating each point 
cluster of identified facet candidates and clustering those 
fragmentary triangles into small patches, concluding piecewise 
planar fragments. Finally, the reciprocal intersections of the 
summarized planar facets are employed for extraction of building 
corners and for definitions of corresponding extracted feature 
orientations. A quite resembling technique have been used in our 
high polyhedral modeling for the building extraction [1].  

It may sound reasonable to conclude this literature review by 
mentioning again, slightly more in details, the Hough transform 
and RANSAC algorithms and making references to so-called 
“global solutions to building extraction and reconstruction” [87]. 
Most earlier reports of the Hough transform (HT) applications 
mainly concerned 2D mapping of point clouds, until the 
“extending generalized HT” was proposed that provided detection 
of 3D features in a point cloud [88]. Standard and Randomized 
Hough Transform methods are ones among the most popular 
techniques of plane detection [68], and it can be employed for the 
determination of more, or less precise roof plane parameters – the 
triplets selected are accepted as possible roof planes [89]. 
Comparison of one of the Hough methods – RHT with RANSAC 
demonstrates a significant advantage of the RHT in the processing 
accuracy versus computing time tradeoff [68]. 

The classic RANSAC (FB81 according to [65]), as it was 
already mentioned above extracts primitives from point datasets 
[62]. The high-quality geometric instances extracted are a subject 
for further polygonal surface reconstruction of various features 
with 3D geometry. Nonetheless there are still no proved evidence 
that either Hough, or RANSAC optimizations have been 
successfully applied for modeling urban areas [68], but even 
optimized RANSAC methods may lead to the numerous false 
plains [37]. Probably it would be right to affirm that RANSAC is 
that approach, which has faced almost the greatest number of its 
optimizing solutions among other point cloud detecting / 
segmenting methods. Even early optimizations of this algorithms 
provided the removal of up to a half the outliers resulted from a 
given data set [90]. Probably the best overview of this algorithm 
improvements together with one more original optimization has 
been given in [63].     

Despite all optimizations followed by rising algorithmic 
efficiencies, both HT, and RANSAC still hardly could be applied 
to more, or less significant urbanized areas, e.g. to the city district 
scope. To meet such challenge among number of other purposes 
sophisticated methods have been elaborated within the paradigm 
of “global solutions to building segmentation and reconstruction” 
[87, 91]. Roof segmentation and reconstruction have been 
consequently developed within the frameworks of this 
methodology. Both these two stages should be recognized as a 
solution of the appropriate energy functions’ minimization 
problem. Firstly, after an initial segmentation completed, every 
Lidar point has been accurately assigned to its optimal plane by 
minimization of a global energy function [87]. It was named “a 
global solution”, because the method could define multiple roof 
plains concurrently. After it, on the base of the segmented in this 
way roof planes another “global solution” has been developed and 
applied already for the roof reconstruction stage. The building box 
has been partitioned into volumetric cells, what allows to construct 
the roofs of the sustainable topology and the correct geometry [91].   

2.3. Generalizing LiDAR-Based Solutions in 3D Building 
Modelling  

We have finalized with building reconstruction reviewing 
AFE steps in the previous subsection of the text, while shortly 
mentioning in subsection 2.1 processing integrated data sources. 
According to number of references, reconstruction of buildings 
can be accepted as a complicated procedure of the digital 
presentation generation for those physical urban features, that can 
be extracted from Point Clouds and transformed into effectively 
structured 3D models with various attributes, while the quality of 
these models should be evaluated further [58, 86, 92, 93]. 
Generalizing or hybrid solutions in the mentioned extent mean not 
only the data fusion involvement [94, 95], but also using this basis 
for footprint extraction in the automated mode and its boundary 
regularization, since both operations are the basis for a roof 
reconstruction, and even for wall raising, when MSL data are not 
available.   

Four following groups of authors almost independently 
developed some interesting hybrid approach lied within the 
following workflow of five major algorithmic steps [37, 38, 96-
98]: A density-based algorithm of clustering for the individual 
building segmentation, which begins with footprint delineation; A 
rectified boundary-tracing algorithm is applied; A hybrid method 
for footprint planar patches segmentation developed; these 
methods select so-called “seed points” in the parametric space and 
generate the regions in usual (spatial) space; A boundary 
regularization approach that examines point outliers; Finally, 
reconstructing procedures are accomplished due to the topological 
and geometrical information about building roofs and using the 
intersections of footprint planar patches. 

This hybrid approach proceeds from that fact, according to 
which there are two main classes of methods applied to trace 
building footprint boundaries: raster-based method and vector- 
based one. By the raster-based technique, the point clouds are 
usually transformed into a regular grid, after it the image 
processing methods are employed to indicate, trace, delineate, and 
regularize the boundary and footprint edges [99, 100]. Upon the 
vector-based approach, that was developed quite long before, a 
simple string delimits the exterior boundary, while other 
parameters, representing the inner boundaries, are extracted from 
raw LiDAR data [101]. 

3. Original Methodological Approach 

3.1. Phased Methodological Flowchart 

While introducing the methodological basis of our complete 
R&D cycle (from raw ALS data processing to solutions of use 
cases with building models),  we stand on that broadly accepted 
point of view, according to which LiDAR remote sensing can be 
defined as the research and technological approach primarily used 
to obtain for further processing the information about the 
topographic surface, vegetation, and various features of the human 
infrastructure at a certain distance from an observer’s point 
(buildings, bridges, roads, powerlines, etc.) [25-27, 31].   

Due to the options and the necessities to cover large areas in the 
cities the ALS surveys obtain data from very different urban 
configurations,  that  can  be  distinguished,  initially,  by  building  
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Figure 1: Phased flowchart of the overall methodological approach 

geometries and by densities of sets of buildings. Probably two key 
types of the mentioned urban configurations are high-rise buildings 
of city downtowns and other central districts, on the one hand, and 
low-rise buildings of city suburbs / outskirts and neighboring rural 
areas, on the other hand. Two methodologically different AFE-
techniques outlined in the previous chapter of literature review – 
the High Polyhedral Modeling of buildings and the Low Polyhedral 
Modeling – should be applied to these two urban configuration 
types exclusively – HPM to high-rise building sets, and LPM – to 
low-rise ones. We can emphasize as a strong point of our overall 
R&D approach just this joint employment of these two technically 
different methods within the united building detection, extraction, 
and modeling methodology, what is resulted further in the relevant 
software elaboration with two different tools – Building Extraction 
(BE, for a case of HPM), and Building Extraction Rural Area 
(BERA, for a case of LPM). Some common features of both 

approaches and relevant software tools have been already presented 
in some of our previous publications, although we have not made 
yet an emphasis on an allocation of both HPM, and LPM within a 
unified workflow [1, 4, 43, 102]. Since in many cases Airborne 
LiDAR survey relies on existing territorial regularities of urban 
areas, it is often provided consequently – from city central parts to 
outskirts. According to this, if presenting our general approach as a 
phased methodological flowchart, it would be reasonable to accept 
the HPM as Previous AFE-Phase and the LPM - as Subsequent 
AFE-Phase (Figure 1): 

It is shown in Figure 1, that an activity diagram combines both 
HPM, and LPM issues, while an input is a raw LiDAR Point Cloud 
(Phase 0). Analyzing & Preprocessing phase implies evaluating 
point densities, survey induced and filtering induced errors, as well 
as checking a for a point cloud proper georeferencing. Two key 

Phase 0: Initial LiDAR 
Point Cloud Analyzing & 

Preprocessing  Phase 1: Choosing either 
HPM (by default), or LPM 

due to conclusions on 
Phase 0    

 

Phase 2: Provision of HPM with DEM generation by processing 
only ALS data and with the building footprint extraction for the 

relevant heavyweight (HW) models (Figure 2)  

Phase 4: If Phases 2, 3 are skipped, provision of 
LPM by processing only ALS data and using the 

third-party footprints for lightweight (LW) models  

Is heavyweight model 
quality acceptable? 

yes 

Phase 3: HPM 
with both ALS, 
and MLS data 
involved (Figure 3) 

no

Phase 5.HW: If Phase 4 is skipped, 
placing smoothed multilevel LOD2 

HW-models to a configured dataset in 
a proper location on the Geoportal   

Phase 4.1.: Roof Point Cloud segmentation either 
with restructured SaS- , or with optimized 

RANSAC-technique  

Phase 4.2.: Provision of roof planar segments’ 
adjacency with optimized SaS-technique  

Phase 4.3.: Building reconstruction from adjacent 
planes using either SaS building reconstruction, 

or PolyFit approach for generation of LW models 

Is lightweight model 
quality acceptable? 

Phase 5.LW: placing LOD2 gable and 
pitched roof models to a configured 
dataset in a proper location on the 

Geoportal   

no

yes 

Phase 6: Solution of 
thematic use cases on the 
Geoportal with HW- / LW -

building models 
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factors, that determine a solution to be made on Phase 1 (either 
HPM, or LPM chosen) are the territories of specific urban 
configurations, that are overlapped by .LAS files, and if the third-
party (OpenStreetMap, Microsoft, etc.) footprints are available for 
a given area.  

Phase 2 implies a provision of the phased flowchart HPM-
branch by processing only ALS data with extraction of the original 
footprints and with generation of HW-building models, which 
surfaces consist of numerous polyhedral facets. The output model 
quality is estimated by several algorithmic evaluating parameters, 
and in the web-software UI (a user interface of the Detailed Viewer 
tool) by comparison of building surfaces’ allocation in 3D space 
with their neighboring Lidar points. A procedure of such 
evaluation is illustrated further in this text. If model quality is 
accepted as either good, or satisfactory, it may be necessary to go 
directly to Phase 5.HW, since both Phase 3 (involvement of MSL 
data in addition to ALS ones), and Phase 4 (a whole LPM-branch) 
have to be skipped in this phased flowchart scenario. Phase 3 is 
accomplished, if MLS data employment can substantially 
contribute to the quality of HPM-building models with not only 
precise reconstruction of their facades, but also with increasing of 
overall sustainability of the high polyhedral model of a building 
by adding supplementary facets of its minor surfaces. Phase 5.HW 
is also a further target, if acceptable model quality is obtained on 
Phase 3, and, in general, if the most of HW-models are of 
acceptable quality. Then on Phase 5.HW these models are place 
to a configured dataset to a proper location on our Geoportal. A 
digital elevation model is generated within the HPM branch only.    

Phase 4 provides the LPM-workflow, which starts from Phase 
4.1, within which surface normal determination as an initial step 
of roof surface reconstruction within the SaS-approach, is 
accomplished. It is followed by a roof point cloud segmentation 
either in the updated SaS-methodological frameworks, or by a 
segmentation provided with the optimized RANSAC-technique. 
Both these choices are described further in the text. Phase 4.2 
represents preliminary solutions for the LPM-building 
reconstruction stage with our original contribution to building a 
matrix of roof planar segment adjacency. Phase 4.3 finalizes the 
building reconstruction stage by combining a building from 
geometric primitives extracted from a point cloud on the previous 
stages. If the most of LW-models of buildings with gable and 
pitched roofs are of acceptable quality, upon Phase 5.LW they are 
placed to a configured dataset of models to the Geoportal (it is 
defined further in this text). If the quality of the LPM output results 
is not acceptable, the HPM-pipeline is attempted as an alternative, 
and a repeated workflow starts again from Phase 2. The LPM 
branch of our overall methodological approach does not support 
the DEM generation functionality. 

An accomplishment of the overall approach is normally 
finalized on Stage 6 by solutions with HW- / LW- models of the 
thematic use cases on the Geoportal, what is briefly illustrated 
further in our paper.                    

Optimal LiDAR point density values that were empirically 
defined for processing techniques involved on Phases 2 and 4 are 
between 5 and 140 ALS points per sq. m. If MSL / UAV-LS data 
are added to our HPM AFE-pipeline, these data are thinned out to 

acceptable values by sophisticated thinning algorithms, although 
Phase 3 deals with up to several hundred of MSL points per sq. m.   

A sketch of our core algorithmic workflow of High Polyhedral 
Modeling is depicted in two flowcharts below (Figures 2, 3).  It has 
been elaborated within the frameworks of the integrated Building 
Extraction (BE) / Change Detection (CD) / Digital Elevation 
Model-Generation (DEM-G) pipeline of ALS / MLS / UAV-LS 
data processing. The complete algorithmic workflow depicted on 
the first flowchart (Figure 2) intends to extract both topographic 
surface, and urban features from ALS data arrays only, what 
corresponds to Phase 2 of the overall methodological flowchart 
(Figure 1).  

 

3.2. High Polyhedral Modeling for Building Extraction – 
Heavyweight Models  

Thus, a flowchart depicted in Figure 2 does explain the 
thematic content of the Phase 2 block of the phased 
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methodological diagram (Figure 1). Detailed consideration of this 
phase shows that initially the necessary preprocessing is 
accomplished within the first algorithmic block (ALS Range…). 
Then all Lidar points are separated for those, that belong to ground, 
and for other ones, that belong to non-ground features (block 
Ground detection…).  

Delineation of the original building footprints (as a valuable 
alternative to the third-party ones) is a crucially important 
component of the HPM pipeline (Phases 1-3, 5 Figure 1), and it 
is completed within the third block of the HPM ALS algorithmic 
flowchart (Footprint boundary detection) – Figure 2. The 
footprints extracted are a self-sufficient entity for a whole HPM-
ALS pipeline of Phase 2, and the following block (Building 
footprint boundary reconstruction) predefines modeling of a 
whole building, but the preliminary to this reconstruction 
procedures of footprint boundary optimization and more precise 
allocation have to be accomplished according to three sub-blocks 
of this block indicated by the bulleted records (Reconstruct 
footprint rectangles, Reconstruct footprint polygons, Simplify 
complex footprint boundaries). Thus, through processing upon 
this fourth algorithmic block building footprints are determined 
as quadrangles, rectangles, or routine polygons. Then “pretended” 
walls are arisen from the defined boundaries of footprints 
(Vertical walls…block). 

With the next algorithmic block (Building roof 
reconstruction….) the rooftops of buildings may be raised from 
these delineated boundaries and then corrected by the data of the 
same ALS point cloud used upon all five previous blocks of this 
flowchart (Figure 2). A building which has a flat roof is modeled 
in prismatic geometries (a bulleted record for a subblock 
Prismatic modeling – flat roof reconstruction). If a building 
possesses some complicated shape of its rooftop, it is modeled as 
a polyhedron (a bulleted record for a subblock Polyhedral 
modeling: non-flat roof reconstruction). As it was already 
mentioned above “HPM” means that initially reconstructed 
building facets consist of many polyhedrons and represent HW- 
models contrary to that solution (“LPM”), while LW-models can 
consist of few polygons only. According to the understandable 
reasons, HW-models are normally constructed and visualized as 
comparably heavier entities (from 20 to 150 thousand of points 
are processed per model). Thus, mandatory smoothing and noise 
removing should be evidently provided. For these aims our 
original contribution to a Delaunay refinement algorithm [100] 
has been employed. The corresponding “covering Delaunay TIN” 
is involved to algorithmic sub-blocks Polyhedral modeling: non-
flat roof reconstruction, then – to a subblock Remedy building 
walls.  

In the presented way we have just introduced the thematic 
content of Phase 2, which is in our methodological flowchart 
(Figure 1). As it has been emphasized above, if the output model 
quality (the finalized algorithmic block Models of 3D buildings 
with many polyhedrons) for the results based on the ALS data only 
is not acceptable Phase 3 of the phased methodological diagram 
should be involved.     

The initial input data for the HPM ALS / MLS / UAV-LS    
algorithm, which is core content of Phase 3, and which flowchart 
is presented in Figure 3, are as follows: 

• The points that have been received by ALS (x, y, z 
coordinates and RGB color attributes) Lidar survey. It is 
geoprocessed as a set of 3D point layers; 

• The points that have been received by either MSL, or by 
UAV-LS scanning, or by both (x, y, z coordinates and RGB 
color attributes). It is also geoprocessed as a set of 3D points 
layers;  

• The regular earth surface (a grid layer - a DEM), that has been 
generated upon the first algorithmic steps with existing gaps 
within those locations, where ground data are absent, is also 
accepted as an initial input for further processing;  

• The smoothed regular earth surface (a refined grid layer) as a 
DEM with gaps removed by chosen algorithmic procedures, 
therefore this surface is a continuous one.   

On the base of points’ distance to a smoothed DEM the HPM 
ALS / MLS algorithm of Phase 3 (Figure 3) separates raw Lidar 
points into two categories, as it is done in those procedures 
completed by the HPM ALS algorithm of Phase 2 (Figure 2). The 
first one contains the ground points that form “a ground level of 
this building footprint”. The second category contains non-ground 
points that are clustered with this building footprint. The relevant 
point cluster normally represents a single building or a tree. The 
upper blocks of the ALS / MLS algorithmic flowchart display all 
preliminary pre-processing / classifying steps that are provided 
(Detection of non-ground and ground points; Pre-processing; 
Classifying based on points’ coplanarity; Delineation of 
preliminary footprints) (Figure 3). On further classifying steps 
any Lidar point is assigned to be either a building point, or a non-
building one. According to this binary labeling the primary 
footprint extraction is implemented as a technique of obtaining 
building footprint polygons from ALS data exclusively, thus this 
procedure is completely the same in both algorithmic workflows 
(Figures 2 and 3). This operation is normally performed in two 
steps: generating preliminary footprints from existing grid gaps 
and extracting the exact finalized footprints from these 
preliminary ones. The preliminary footprints are extracted as No 
Data holes in a grid. It is reasonable to examine this extraction 
slightly more in details in comparison with other components of 
both algorithmic workflows. It is the content of the flowchart 
block ALS footprint (preliminary, exact) model (Figure 1). The 
following modeling-extracting steps are performed for 
preliminary footprints: 
1) An initial grid is divided into the blocks of a size not more 

than 4’000’000 cells. Neighboring blocks possess an 
intersecting part of the size, that is specified by the Max 
building size parameter. After this step each building block is 
processed detachedly;  

2) Each cell either is marked as a ground (where the surface grid 
contains some value), or not classified at all (where a grid has 
no data); 

3) Thus, assuming expandCount = (params-> 
MaxCorridorSize / (2 * cellSize) + 1; We expand the ground 
class on expandCount units in the urban metrics. Afterwards 
we expand No Data class on expandCount; This step 
separates single long buildings in their ribbon sets connected 
by urban corridors; 

4) Assuming expandCount  = params-> MaxCorniceSize / 
cellSize + 1, we expand No Data class on expandCount to 
join semi-attached buildings; 
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5) Consequently, we find gaps in a grid through 1)-4) and each 
of these gaps retrieves its own index. In this way, only those 
holes that are completely isolated, i.e. surrounded by the bare 
ground, are expected to be found; 

6) Afterwards, we should check each of gaps and store only 
those ones, that possess an area larger, than a certain 
threshold value specified in the preferences; 

Thus, we obtain the areal boundary for each gap considered to 
be a preliminary footprint. The exact footprints are generated 
proceeding from the preliminary ones and from some 
supplementary information of this point cloud. For every “exact 
footprint” several following steps are provided. 

1) All the points delineated by a geographical extent of some 
boundary (its size is the algorithmic parameter, which is 
equal to MaxCorniceSize) are selected for processing;  

2) All Lidar points, that are above the ground surface, but lower 
than 2 m above are classified as the ground points; 

3) After this, through all points the triangulated network is being 
built. Within this network all edges, which possess at least 
one junction, that has been classified as the ground, should be 
deleted.  

4) This triangulated network is divided for several connected 
segments by removing all the edges, that are longer than 
MinDistanceBetweenBuildings. All network segments that 
have an area more, than a minimal building footprint value 
(that is the algorithmic parameter), are assumed to be the 
footprints or building parcels;  

5)  The next algorithmic step is filtering trees. There are three 

possible customized options in this procedure:  
a) Tree filtration is turned off. In such a case this step is skipped; 
b) Applying preliminary filtration. The information about trees 

or non/trees is obtained from the classified source Lidar file; 
c) Applying to a point cloud our own classifying technique. 

Upon this fifth algorithmic step, the triangulated network is 
normally built through all points that are located inside those 
previously created footprints (preliminary ones). Then all vertical 
edges associated with this extracted from a point cloud entity are 
removed. The edge is supposed to be vertical, if its horizontal 
slope is more, than a certain threshold – a minimal angle, that is a 
parameter of the algorithm. After this procedure completed, the 
triangulated network is partitioned for several connected 
components. Then the points from components, which area is less 
than MinBuildingPartArea, are designated as non-building points, 
and are removed from the footprint entity. 

6) At the next algorithmic step, a new triangulated network is 
built through the points that belong to building parcels only; 
moreover, those vertical edges, which 2D length is longer 
than MinWallSize (the key algorithmic parameter) should be 
removed. The jointed polyhedrons with their aggregated 
areas, which are more than minimal building parcel area, are 
accepted as the footprints. 

7) The final step of the exact footprints extracting is expanding 
of their preliminary templates obtained through 1)-6). This 
step is necessary, since some building and infrastructural 
units, that are above the ground or above other constructive 
parts, are filtered out on the previous algorithmic step. To 
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expand a footprint template the iterative algorithm is applied. 
Upon every step of this algorithm those points, that have not 
been classified yet as a constructive building or the ground, 
are classified as a building in a case, when this point is nearer 
to a footprint, than some assigned threshold distance. 
Afterwards, all these points are added to a footprint, and the 
new expanded footprints are built as an external boundary, 
that crosses all points that were previously classified as 
building points. 

After all exact footprints are extracted from the preliminary 
ones (footprint templates), each of them should be checked for 
intersection with a source preliminary footprint so that to avoid 
topology errors. All those ones that do no intersect have to be 
filtered out. At the end of the block ALS footprint (preliminary, 
exact) model all Lidar points, that are located inside the examined 
parcels, and that do intersect, should be marked as the building 
points (in this way avoiding an extraction of other footprints that 
may be located within the same area). Finally, we accept the exact 
footprints as some planar parcels. The algorithmic step of their 
refinement is completed at the next algorithmic block A complete 
ALS model. The procedure of the planar segment refinement is 
quite lengthy therefore it may be a subject of description in 
another text. Thus, summarizing all stated above, we should 
emphasize that a preliminary footprint is an entity, which is 
extrapolated through the ground points without filling 
corresponding gaps at perspective footprint locations.  The exact 
footprints are built proceeding from preliminary ones and by 
providing outlined algorithmic steps.  

Just as in the HPM ALS algorithmic pipeline of Phase 2 
(Figure 2) our update of a Delaunay refinement algorithm has 
been employed. The relevant “covering Delaunay TIN” creation 
is completed in the flowchart blocks of Planar segment 
refinement, Footprint model / Pyramidal model, A complete ALS-
model (Figure 3). All algorithmic blocks mentioned above are 
provided for processing ALS data only and reconstructing only 
HPM-building roofs and some other supplementary constructive 
components.   

 The HPM AFE results of both Phase 2, and Phase 3 obtained 
by the Building Extraction software tool is a set of building 
models, each of them, as a rule, consists of few façades. The 
textures may be placed on these façades. Each of these 
heavyweight models is stored by .OBJ /.B3DM (“Batched 3D 
Model”) /.KML formats, but in the relevant software environment 
the main inner format is .OBJ. Each HW-model has its six 
mandatory components: 

• A footprint. It represents a smoothed 2D polygon, which 
allocates a building footprint; 

• A pyramidal model that is not draped. This model consists of 
several horizontal polygons at different levels. From every 
layer a vertical building wall is dropped to the previous level. 
From the lowest level the walls are dropped to the ground 
level; 

• A draped pyramidal model. This model is  the previous one, 
but each of its polygons has a texture. ALS points are only 
used for creating textures due to quasi-horizontal polygons 
(“roofs”). As far as creating textures for vertical polygons 
(“walls”) is concerned, preferably the MSL points should be 

applied to support a desirable level of details (LOD); 
• A complete model. This model is generated either by using of 

the detailed TIN techniques on the Airborne Lidar points only 
(A complete ALS model block – Figure 3), or by combining 
ALS results with the wall segments reconstructed on the base 
of MSL data and obtaining a combined model (ALS-MLS 
models merged); 

• Texture Mapping: draping textures on an ALS-MLS merged 
model; 

• Detailed and precise reconstruction and visualization of the 
finalized model with 3D building façades. 

The reconstructing operation for building façades is exposed 
by the MLS model completion block of the flowchart in Figure 3. 
The latter provides a necessary “noise clipping” procedure for 
building wall surfaces.Since if the distance threshold value, that 
means a metric length from a given Lidar point to an extracted 
façade, is either lower, or approximately equal to the points’  
density value, the reconstructed planar surface may be a set of 
outliers, e.g., small peaks. Exactly in this case a procedure of noise 
clipping should be provided.  

As it has been aforementioned already, the ALS models, on 
the one hand, and the MLS models, on the other hand, are merged 
at a certain point of the flowchart in Figure 3, just after the Planar 
segments refinement and the MSL model completion blocks, and 
before the Texture mapping block. This block means the 
penultimate  algorithmic step – texture draping on a merged 
model. In this way, for each modelу component, every polygon in 
the pyramidal model, the textures are being built. All those Lidar 
points that are located near the texture extent can be found. These 
points are projected on the roof / façade plane, and the coloring of 
the texture pixel is initiated.  All predeccor algorithmic blocks in 
the flowchart of are ended by the Detailed 3D reconstruction of 
building façades one. Finally, the results are being delivered into 
.OBJ and .B3DM formats, and a composite high polyhedral model 
can be displayed by the relevant visualizing software tools 
developed by the authors (Figure 4). It can be seen, that the HPM 
AFE  results in numerous polygonal segments, which represent 
quite a rough surface, only while zoomed in. Even a model of 
numerous polyhedrons can be impressively displayed by our 
provided visualizing technique. 

After completing the HPM-algorithmic workflow, a user 
obtains building models for display either in the ElitCore desktop 
application, or in the web-based  ELiT (EOS LiDAR Tool) Viewer 
with three levels of detail (LODs): LOD 0 represents a model 
footprint as its projection on the plane;  LOD 1 is a 3D object that 
exposes a building as a set of prisms - a pyramidal model;  
LOD 2 displays smoothed multilevel models in minute details 
(Figure 5). We have expressed an idea in the introduction to this 
text, that the composite (ALS / MLS-UAV-LS) model of 
extracted features may be the most effective one, primarily, with 
respect to user’ various applications in many industrial domains. 
Such a typically smoothed multilevel model of LOD2, a HW- 
model, may be like follows in the ElitCore desktop UI (a user 
interface) (Figure 5). Thus, despite visualizing rough building 
surfaces, if significantly zoomed in, while applying to the LiDAR 
data intentionally selected and refined by the ALS / MLS 
algorithmic workflow on Phase 3 of the overall methodological 
flowchart (Figure 3).   
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Figure 4: Results of the HPM ALS / MLS workflow displayed in the viewer of the web-based applications – building roofs of many polygonal segments.                             
The downtown of New Orlean, USA (a dataset from the EOS LIDAR Tool landing page: https://eos.com/eos-lidar) 

 
Figure 5: Model of one the historical buildings from the Ottawa downtown in the ElitCore desktop user interface 

The presented methods of the HPM on Phases 2, 3 is a 
completely original AFE-methodology elaborated by the authors. 
It has been implemented in Building Extraction (BE) (Figures 4, 
5) and Change Detection (CD) (Figure 6) functionalities of our 
both desktop, and web-based applications.  

3.3. Low Polyhedral Modeling for Building Extraction in Rural 
Areas – Lightweight Models  

3.3.1. Common issues 

Oppositely to the High Polyhedral Modeling technique our 
another AFE-approach is the Low Polyhedral Modeling method,  
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Figure 6: Results of the CD functionality application: new buildings (labeled as Changes in dark green color) as urban changes that appeared within one year’s time. 
Models of both new, and old buildings (labeled as Models in light grey color) are placed on a DEM generated. An area of Indianapolis, Indiana, USA (a dataset from 

the EOS LIDAR Tool landing page: https://eos.com/eos-lidar)   

On the finalizing building reconstruction stage theoretical 
basics of the PolyFit [65] have been effectively implemented in 
the applied solutions with web-software (Phase 4.3).  

We have mentioned already, that initially the LPM is intended 
to extract low-rise buildings in either rural areas, or city suburbs.  
Nonetheless, it has been successfully applied to various urban 
configuration even within central parcels of the large city areas. 
Because of the segmenting / clustering procedures that drastically 
decrease a number of polyhedrons as constituents of a model 
extracted, such model is titled as ”low polyhedral” one. We 
emphasized already, that these models are extracted, 
reconstructed, and visualized as the LW-models (approximately 

from 5 to 40 thousand of Lidar points processed per one entity). 
After completion these models are composed of only few 
polygonal planar segments. Models are reconstructed in this way, 
and each of them represents a lightweight modeled feature as a 
final solution.  

 Building reconstruction of low-rise constructive features is 
implemented as a finalizing procedure of building modeling (Phase 
4.3). This algorithmic stage begins with the adjacency matrix of 
roof plains generation, that exposes the connectivity of the 
delineated planar segments. Our original contribution to the 
formation of the plane adjacency matrix is described in the one of 
the following subsections of this text.  

Both roof interior, and exterior vertexes are determined. 
Topologically consistent and geometrically correct building models 
are obtained through implementation of the extended boundary 
regularization approach. The latter is based on multiple parallel and 
perpendicular line pairs, and just this approach expedites an 
achievement of the reliable building models.  The model precision 
can be effectively tuned, despite it understandably still depends on 
the data precision. In any case the model precision may meet the 
strict customer requirements. The low polyhedral model 
implemented corresponds to LOD 2 of the City GML standards [17, 
19, 22]. The following visual presents the main content and some 
attribute information of this LPM algorithmic result in the interface 
of our cloud-based software (Figure 5). A number of acceptable 
models among all LW-models generated is a criterion of going 
either to Phase 5.LW  with model output to the Geoportal, or Phase 
2 so that to repeat processing and modeling by shifting to the HPM 
branch (Figure 1).   
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Figure 7: The LW-models of buildings with gable and pitched roofs (pointed to by grey arrows) in a small town. The city of Lubliniec, Poland                                                         

(a dataset from the EOS LIDAR Tool landing page: https://eos.com/eos-lidar) 

3.3.2. Enhancing SaS-segmentation by restructuring its pipeline 

It is an initial content of Phase 4.1 of the phased methodological 
flowchart (Figure 1).  

2. To Assign unclassified points to the clusters. An addition of 
formerly unassigned points to a proper cluster might be a key 
procedure for various configurations of roof individual segment 
delineation. Some of these points might not be assigned to any 
cluster due to noise impact (a roof segment under a tree), or because 
of neighborhood nonplanarity on a seam between two or more roof 
slopes.   

3. To Separate parallel planes inside each cluster. Surface 
normal vectors are being clustered initially. A clustered entity with 
the same normal vector is created.  Thus, primarily a cluster is a set 
of planes, and a distribution of parallel planes into separate clusters 
inside this primary cluster takes place just on this step. The 
parameter D (from Item 1) is being computed for all points, and the 
latter are clustered. The output is a set of planes with the same 
normal vector, but on the different distance from the center of 
coordinates.  

4. To Split coplanar clusters using the Voronoi neighborhood. 
A segmented plane may combine those roof segments, that are not 
connected spatially, but other segments are between them. Such 
coplanar planes are separated on this step. Commonly, these Items 
5 and 6 correspond to the Separation of Parallel and Coplanar 
Planes step in [37]. 

5. To Remove small clusters (optionally – using the Voronoi 
neighborhood).  Small area segments can be left after separation of 
parallel and coplanar clusters. These features should be eliminated 
as the noise and clustering errors.  

6. To Remove the near-vertical clusters, because the modeling 
technique does not use them due to their unreliability.  

It is reasonable to emphasize intentionally that the Phase 4.1 
initial content steps 1-6 can be completed only for a point cloud of 
some robust density, that may lie within the earlier mentioned range 
of 5-140 ALS points per sq. m. 

3.3.3. Providing RANSAC enhancements                                           

It is another content of Phase 4.1, and the optimized RANSAC-
technique can be employed for a roof plane segmentation as an 
alternative to the SaS-approach, which has been somewhat 
restructured in comparison with an original issue in Item 1-6 in the 
previous subsection. We have already mentioned in the reviewing 
section of this text, that the RANSAC algorithm is able to extract 
a manifold of geometric primitives with different types of their 
shapes. RANSAC can deal with large number of outliers in the 
initial data, since this resampling method uses the smallest 
number of points necessary for estimation a given geometric 
primitive [62-64, 89, 103, 104]. Thus, the corresponding 
geometric primitives are obtained, if they approximate definite 
majority of points.    

Some debatable issues present in the initially attempted SaS-
segmentation, which appeared to be drastically sensitive to 
various outliers in the point clouds like, e.g., overhanging (above 
a building) trees. Because of this and due to the Lidar induced 
errors usually caused by sharp changes in the heights for the 
points belonging to the same feature, we have finally employed 
RANSAC with some editing of its general scheme. It may assist in 
meeting the challenges mentioned. For example, when the most 
points do not have the planar neighborhood, while the normal 
surface vectors, that are nonetheless found for the point minority, 
are located randomly, and this does not allow to delineate a 
corresponding point cluster for plane extraction.  

In the outlined case, the RANSAC shape extraction strategy 
gives an opportunity to delineate a planar segment even facing the 
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challenges mentioned, because the sufficient condition is a 
randomly drawn point set, that can be quite feasible for this 
drawing, and employed then for constructing planar segment 
primitives. 2D planar points and 3D non-planar points can be 
separated ones from others using this technique. Figure 8 shows 
the example of a building model, which planes have been 
segmented with the optimized RANSAC from a point cloud with 
numerous outliers. Then this model has been refined and 
efficiently reconstructed, and even an overhanging tree, that is 
comparable in its size with a building, has been removed. 

We have selected a following number of the basic RANSAC 
enhancements practicable for the ALS point cloud segmentation 
and implemented it in the relevant algorithmic pipeline embedded 
in our web-based software: 

• Number of iterations upon the planar facet-candidate 
selection is not a constant, but it depends on a qualitative 
value that is the Best Current Candidate Plane Index 
(BCCPI), a total number of Lidar points involved, and 
number of attempts completed yet. The purpose of the 
BCCPI value introduction is somewhat resembling to the 
RANSAC “score of the shape” [63], that also provides 
formalized estimation for the candidates of planar facets.    

• Any BCCPI value is defined as number of points within the 
delta-neighborhood of a plane minus the “penalty 
charges” for the point dispersion. Thus, the less is point 
scattering from a detected plane, the higher is a qualitative  

 
Figure 8: A building model reconstructed from the plains detected and 

segmented by the optimized RANSAC. A model is visualized by the Matplotlib 
python library. A building located in the city of Lubliniec, Poland 

 
value of a candidate plane; the bigger is the scattering, the 
lower is a value mentioned. This technique reasonably 
allows to prefer those candidates, which approximate well 
even a relatively small point cluster, but not those random 
plains, that cross a whole extent of a model and overlap a 
big number of points in its delta-neighborhood. It is quite 
significant especially for the gable roofs with minor angles 
between its two slopes, or for pitched roofs with small 
angles within each pair of this roof slopes. 

 in point clouds with low data noise, but instead, a 
threshold for the BCCPI values may be intentionally 
decreased for overlapped strips resulted upon the airborne 
laser scanning, when a flight changes surveying direction. 

• According to the improved RANSAC basics the point 
sampling for a plane-candidate may proceed from a whole 
point cloud with associated normal vectors, and the 
technique output is a set of planar primitives with 
corresponding point sets [105]. Such procedural content 
may cause some significant inaccuracy itself, while 
attempting to detect a plane, which may cross a whole 
cloud as explained above. Instead, we introduce the point 
sampling from a randomly chosen limited neighborhood. 
On the one hand, with this selection we still have the 
chances to approximate a big planar facet, if one does exist, 
on the other hand, we are expected to approximate some 
relatively small planar segment precisely enough, if a big 
one does not actually exist. If sampling neighborhood 
reduction is not provided, the probability that all three 
points, a point triple, would approximate (a key criterion of 
plane detection) one small planar facet has a low value. 

• A point triple should be checked for the degeneracy: if an 
area of their triangle is too small, then the probability of 
processing error is high enough, and the whole computation 
cycle may fail. Therefore, such triple is rejected, and   
another one is sampled.  

The overall structure of our optimizations of RANSAC is 
presented in the following Algorithm Pseudo-Code (Figure 9):  

1. Main cycle: 

working_set := input_points 
result_planes := [] 
WHILE len(working_set) < threshold: 
  plane_parameters, remaining_points := fit_plane_ransac(working_set) 

result_planes.append(plane_parameters)                                            
working_set := remaining_points 

 
2. Selecting candidate plane function (fit_plane_ransac) 
best_sample_quality := 0 
best_sample_size := 0 
best_sample := None 
iteration := 0 
WHILE probability(best_sample_size, points, iteration) < 
quality_threshold: 
  IF iteration >= iteration_threshold: 
    reduce_dispersion_influence_on_quality_estimation() 
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    IF check_quality_limit_reached() 
       BREAK 
    iteration := 0 
  p1, p2, p3 := select_candidate_points(points) 
  iteration := iteration + 1 
  IF NOT check_candidate_area(p1, p2, p3): 
    CONTINUE                   
  candidate_sample, candidate_quality := get_best_candidate(p1, p2, 
p3, points) 
  IF candidate_quality > best_sample_quality: 
    best_sample_quality := candidate_quality 
    best_sample_size := size(candidate_sample) 
    best_sample := candidate_sample 
 
3. Assessing candidate quality function – BCCPI value 
(get_best_candidate)  
plane_parameters, sample_points := fit_plane(p1, p2, p3, points) 
points_distance := get_distance_to_plane(plane_parameters, 
sample_points) 
distance_dispersion := mean(points_distance) 
quality := quality_influence * (len(sample_points) / len(points)) + (1 - 
quality_influence) * (1 - dispersion / plane capture_distance) 
 

Figure 9: The Pseudocode of the optimized RANSAC 

It has been determined that the optimal initial value of 
quality_influence may be 0.4, while the iteration step in 
reduce_dispersion_influence_on_quality_estimation is 0.1.      
 
3.3.4. Optimizing SaS-reconstruction by Voronoi Neighborhood 

One of our key contributions to the SAS-methodology 
corresponds to Phase 4.2 of the phased methodological diagram 
(Figure 1). It consists in the refinement of the optimized adjacency 
matrix obtainment on the preliminary stage of building 
reconstruction. This matrix is the most significant issue for the 
delineation of the adjacent planar segments in the model 
generated. Thus, we have enhanced the SaS-workflow by the 
extensive use of the Voronoi neighborhood for computation of the 
roof segment cluster adjacency on the building reconstruction 
stage. Although the authors of the original workflow referred to 
the Voronoi diagram only on the point cloud segmentation step – 
the Voronoi neighborhood Vp has been employed for the surface 
normal computation only [37, 76]. Applying to the Voronoi 
diagram on the building reconstruction stage, we remove both 
horizontal, and vertical gaps in the processed data, as well as 
mitigate the nonhomogeneous point density of a primary point 
cloud.  

The Voronoi diagram has been applied for the roof cluster 
adjacency determination and for separation of coplanar clusters, 
while the limited Voronoi diagram has been used for avoiding the 
side effects of the cluster adjacency determination. Also, the 
Voronoi diagram has been applied for the reliable identification 
of some traditional architectural constituents such as building 
awnings and or building overhands [102].   

The Voronoi neighborhood for the roof cluster adjacency 
determination means the obtainment of the planar segment 
optimized adjacency, on the condition that these segments are 
preliminary delineated. The authors of the SaS-methodology use 
the Voronoi diagram while providing eigenvalue analysis, and 

each point of neighbors are being delineated. Nonetheless upon 
computing the cluster adjacency these authors apply a routine 
distance between all pairs of points using the following formula 
[37, P. 1562]:   

  
d (P,Q) = min (d (pi,qj)) ∀pi ∈ P; ∀qj ∈ Q,                    (1) 

 
where: d(pi,qj) is a distance between any pair of points pi and qj , 
which belongs to two different  clusters P and Q correspondingly. 
The problematic issue of the SaS-approach like presented with (1) 
proceeds from a case of nonhomogeneous point cloud density that 
is a subject for clustering and segmenting.  E.g., a sparse point 
cloud, which is also worsened by the faults of surveying technique, 
reasoned the case, according to which clustered points appear far 
from the boundary of a cluster. In such a case a distance value 
(from (1)) fails to be proved, if it is checked by a threshold 
parameter. Consequently, this may be a reason for the errored 
adjacency determination and for the consequent   wrong model 
reconstruction.  Nonetheless, it may be not so wrong to conclude, 
that because there are no Lidar points between two delineated 
planar segments, which would belong to other clusters, these two 
segments are sooner adjacent, than not and their seeming “non-
connectivity” might be caused by the gaps and outliers in Lidar 
data only. This problem may be resolved by the adjacency 
determination with the Voronoi neighborhood. 

The possible solution can be based on the following 
assumption. Even in a case, when two points lie far from each 
other, and there are no those points between them, which may 
belong to the third cluster (besides a given pair of clusters), and 
the Voronoi cells of these two points have common edges, then 
this pair of points can be determined by their Voronoi neighbors. 
In another case, when there are points of one more cluster between 
a given pair of points, these points are not considered as the 
adjacent ones even, if they pass a comparative test by applying a 
threshold parameter large enough.  

On the base of all mentioned above and referring to an existing 
relevant example [106], we assume to consider as adjacent ones 
only those clusters, which points are neighbors within the 
Voronoi neighborhood. The only criterion is a case, when their 
Voronoi cells possess a common edge. Thus, we both solve a 
problem of data scarcity, gaps / outliers, and find a solution for a 
sparse point cloud. What is more, we get rid of a necessity of the 
enlarged threshold value introduction, but implement its 
definition by interpolating technique instead, since this value 
should be both big enough (not to remove the actual adjacent 
clusters), and small enough (not to define non-adjacent clusters as 
adjacent ones). In this way, we can significantly increase the 
applicability of our approach, and decrease its narrowness, e.g., 
when it strongly depends on point density and on the equitability 
or at least on the similarity of spatial distribution of the points that 
belong to two clusters. Moreover, the search of the Voronoi 
neighbors can be completed faster with such approach, because 
each point has a computed list of neighbors to be checked for their 
spatial acceptability. Thus, the overall algorithmic efficiency can 
be increased. It is only the first aspect of the overall LPM 
optimizing. The second one, that is not a less important solution, 
is introduced in the following paragraph. 
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While arranging the matrix adjacency in the frameworks of the 
SaS-technique, we define the distance between two clusters of 
planar points d (P, Q), as the minimum of all point possible 
combinations between two clusters distance (1). Then, m =| P | is 
a point number in the first cluster, and n =| Q | - a point number 
in the second cluster. Hence, a whole number of possible 
combinations to be computed in such a case is the m · n value, the 
product of the point numbers. 

 
Figure 10: A lightweight model of a building with the pyramidal roof and an 
outhouse reconstructed at the ElIT Geoportal in the location of the city of 

Lubliniec, Poland 

At this algorithmic step we suggest an alternative solution: to 
extend each of two clusters of planar points up to their mutual 
intersection, while a relevant linear segment of the cluster 
intersection is generated. Then we compute the distance between 
two clusters as the minimal distance of all possible measured 
combinations between points belonging to each of two clusters, 
from one side, and this linear segment of a cluster intersection, 
from another one. The statistical significance of difference 
between two mentioned values can be estimated. A combination 
number in this case becomes substantially fewer: the m + n value 
only, the sum, but not the product. It defines the significant 
simplification of the overall LPM algorithmic complexity from 
the quadratic complexity O (n2) (a case of the point product that 
defines number of combinations) to the linear complexity O (n) 

(a case of the point sum, that defines number of combinations). 
Decreased complexity provides the overall enhancement of the 
LPM-algorithmic efficiency.  

It is evident, that the better a roof segment matrix is optimized, 
the more sustainable number of geometric primitives (e.g., 
vertices) is necessary for the robust building roof reconstruction. 
The introduced update of the adjacency matrix computation 
provides the definition of some threshold levels between two 
clusters of coplanar points within a footprint boundary, which is 
accepted as a geometric analogue of the roof edge. These clusters 
should never intersect, and this circumstance causes an indefinite 
exit of computing guaranteed, if the traditional approach is 
attempted to provide. Otherwise, the updated LPM technique, in 
its turn, completes the modeled topological sustainability and 
geometric correctness of a building footprint and of its roof as 
shown in Figure 10. It displays a model example from a fragment 
of one from modeled CityGML LOD2 locations placed at our 
internet-resource – ELiT (EOS LiDAR Tool) Geoportal 
(http://elit-portal.eos.com/). The presented lightweight model has 
been selected for display, just because the relevant point cloud 
possesses quite a few non-intersecting planar segments, that is 
why the routine SaS-algorithm of reconstruction has failed while 
processing this data, but its update has succeeded – Figure10. 

Phase 4.1 and partially Phase 4.2 examined above deal with 
the point cloud segmentation stage in an overall processing 
workflow. Correspondingly, our prime LPM-concern has been a 
set of the roof segmentation operations, as it has been previously 
discussed for these two phases of the methodological diagram.  
Phase 4.3 provides the finalized stage of building modeling – its 
reconstruction, while Phase 4.2 grounds some substantial 
premises for it. We consider the urban feature reconstruction stage 
as presentation of building geometry and topology within a certain 
LOD with a defined number of feature segments.  That is why we 
have attempted to implement in Phase 4.3 one of the most 
interesting among other relevant theoretical technique – the 
polyhedral (polygonal) surface reconstruction (the PolyFit 
approach already mentioned in the literature review) [65, 107]. 

 
Figure 11: The PolyFit page selected among a list of other AFE-techniques in the menu TOOLS of the web-based software interface 
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This approach demonstrates, that reconstruction of geometric 
primitives from a point cloud can be treated as a binary labeling 
problem (what is, by the way, close enough to “global solutions” 
in the point cloud processing [87, 91]).  The method proceeds 
from the hypothesizing and selecting strategy and provides 
intersecting the building planes already segmented, then seeking 
for a necessary combination of intersected planes and getting a 
manifold polygonal surface model. Since in its segmentation stage 
the method is strongly based exactly on the RANSAC algorithm 
for plane detection, then by enhancing RANSAC plane primitive 
extraction and refinement, what has been introduced in this text 
above, we understandably contribute to making the PolyFit 
solution more robust.   

Therefore, constructing a whole pipeline for the PolyFit 
implementation in our web-based software, we attempted to 
employ on a relevant segmentation step both the original advances 
of the SaS-approach, and possibilities of enhanced RANSAC. Thus, 
the PolyFit appears to become one more AFE-option in the 
relevant menu option of our web-software package (Figure 11).  

4. Results: Software Elaborated for AFE Purposes 

The applied software solutions, that can be elaborated on the 
base of the presented multifunctional methodological approach to 
the generation of heavyweight and lightweight AFE-models 
(Figure 1) can be introduced as the robust results of this research. 
These software solutions are completed with the functionalities, 
which can provide the efficient support and realization of all three 
groups of advantages referred to above.  

4.1. Desktop and Web-Based Applications  

The ELiT (EOS Lidar Tool) Web-Based software is both a 
separate web-based (network) generator - ELiT Server (a landing 
demo-page available at https://eos.com/eos-lidar/), and an 
integrated component of EOS Platform-as-a-Service software - 
ELiT Cloud. The latter is the basis for ELIT Geoportal - a type of 
web portal used to find, access, and process LiDAR geospatial 
information, both primary, and resulted one, as well as provide 
the associated geographic services (display, editing, analysis, etc.) 
though the Web (http://elit-portal.eos.com/). Few examples of the 
ELiT Server interface have been already presented above (Figures 
4, 6,7, 10, 11). 

The congeneric to these two products is our desktop ElitCore 
package, which possesses even somewhat broader functionality, 
but can produce only the heavyweight polyhedral models (Figure 
5). The Building Extraction functionality implemented in the 
standalone ElitCore provides detection, extraction, and 
reconstruction of heavyweight models according to our general 
methodological workflow of the HPM AFE (Figure 1) and its 
algorithmic content of Phases 2 and 3 (Figures 2 and 3). It 
normally results in a DEM (“a bare ground class” delineated from 
an initial point cloud) and a set of urban features which are the 
discontinuous objects.     

All three mentioned software products are based on the 
sophisticated HPM / LPM solutions based on those complicated 
algorithms for Lidar data processing that have been introduced in 
the previous section of this text. Both ELiT Server, which has been 
implemented as a distributed information system, and ELiT 

Geoportal usually operate from the Web browser installed on a 
user's workstation.  

ELIT 3D city models as many other 3D models appear to be 
predominantly used for display; however, they are being 
increasingly employed in number of subject areas and for a large 
range of tasks beyond the visualization. In our previous 
publications, we sought to understand and present several use 
cases regarding their presentation not only on the ELiT Server, but 
also on the ELiT Geoportal with further utilization of these City 
GML LOD1 models for some tasks within and beyond model 
display [4, 102]. 

Our web-based software implies provision of the following 
ELiT tools as the functionalities of the distributed information 
system (these tools are shown in Figure 11 above): 

• The Building Extraction (BE) tool (a sub-page Building 
Extraction of the Tools page – Figure 11) provides the HPM 
building detection, extraction, and reconstruction through 
various sub-procedures pursuing the final sub-procedure of 
building reconstruction for high-rise buildings, preferably in 
city downtowns. Thus, the BE-functionality accomplishes the 
generation of heavyweight models, which have been already 
grounded and presented above (Figures 2-4, 6). The building 
extraction functionality is that option, according to which any 
single building construction may be detected, extracted, and 
reconstructed as a heavyweight model with further 
visualization by the open source Cesium 3DTiles library with 
a certain LOD and with relevant spatial, geometric, and 
semantic attributes. Key components of the massive urban 
environment can be simulated as the heavyweight models 
with minor details (Figure 12); 

 

 
Figure 12: A historical building in a downtown of Ottawa, Canada, visualized in 

the ELiT Server interface 
• The Building Extraction with Footprints (BEwFP) tool (a 

sub-page Building Extraction with Footprints of the Tools 
page – Figure 11) accomplishes the same HPM building 
extraction as the BE-tool producing the heavyweight building 
models. Oppositely to the previous tool, the BEwFP-
functionality involves the third-party data – building 
footprints (global maps as Open Street Maps, ESRI Imageries, 
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Microsoft footprints, etc.) instead of accomplishing its own 
ELiT footprint delineation described in 3.2 Section of this text. 
Normally the footprints input is an archived ESRI SHP vector 
file; 

• The Building Extraction Rural Area tool (BERA - a sub-page 
Building Extraction Rural Area located on the Tools page – 
Figure 11) provides “a classical pipeline”, by which we 
implement the SaS point cloud segmentation / building 
reconstruction methods [37] of low polyhedral modeling 
introduced in Phase 4.3 of the methodological flowchart 
(Figure 1). According to the SaS-pipeline and to its 
optimization described in subsections 3.3.2 and 3.3.4 the 
BERA tool accomplishes the hierarchical segmentation of a 
Lidar point cloud, refinement, and separation of extracted 
planes with further building reconstruction in rural areas and 
urban suburbs. As it has been already mentioned above 
(Subsection 2.2), the generated lightweight building models 
consist of not so many facets, and number of points involved 
in a single model generation is limited by a number from five 
to thirty thousand. Necessary limitation may be met by 
adaptive thinning at the cost of modeled details, if an initial 
value ranks over this quantity. The correspondence of a 
resulted model to an initial point cloud can be visually 
assessed for a conclusion, if it is modeled accurately or not, 
and if it is allowed to go to Phase 5.LW , or it is necessary to 
go back to Phase 2, and provide HPM instead of  with LPM 
(Figure 1). This quality estimation is provided with the ELiT 
Detailed Viewer (Figure 13). In case of acceptable quality, 
the point locations should not deviate on more than a certain 
distance threshold value from the modeled surfaces. An exact 
threshold is introduced, basing on the point cloud 
characteristics, e.g., on its density.   

• The Building Extraction Rural Area Polyfit tool (BERA-P  - 
a sub-page Building Extraction Rural Area Polyfit located on 
the Tools page – Figure 7) implements somewhat another 

algorithmic pipeline in comparison with the BERA tool. The 
RANSAC optimized clustering and segmentation is used on 
the initial building modeling (subsection 3.3.3). The 
hypothesizing and sampling strategy of the PolyFit basics 
[65] together with its finalized reconstruction of polyhedral 
models is applied to concluding building modeling. Our 
optimization of the RANSAC segmentation described above 
is embedded in the relevant workflow, that fulfils the BERA-
P tool. Its processing may take somewhat longer time, than 
the “ordinary” BERA tool does, but usually provides an 
increase of number of topologically correct and 
geometrically precise models among all output models in a 
dataset.  

• The Change Detection tool (CD - a sub-page Change 
Detection, which is on the Tools page – Figure 11) 
automatically detects block-, district-, and city- scope 
alterations in an AOI selected. Changes in urban architectural 
morphology usually happen through city areas over some 
significant period, if only it is not any catastrophic event of 
either environmental, or social demolition. The ELiT CD tool 
detects locations of changes in positions and shapes of 
buildings and infrastructures as 3D models with additional 
spatial information. Usually two Point Clouds (the 
temporally primary, and the temporally secondary ones) are 
compared. It is not BERA, but the BE-functionality is the only 
one that is involved in preparing two resulted modeled sets. 
The difference between two input point clouds is computed 
as the BE-output of the high polyhedral modeling (Figure 6).  

 
All those already listed ELiT functionalities are supported by 

the relevant web-API and by the Front-end web-interface for 
routine procedures of uploading, processing, and analyzing the 
initial data and for further downloading derivative data. The sets 
of modeled .OBJ and. B3DM entities (the latter are Cesium 3D 

 

 
Figure 13: The Detailed Viewer Tool for examining accuracy of a lightweight model according to point cloud content 
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Tiles component) have to be delivered to 3D models, and can be 
stored and visualized in .COLLADA, .KML, and glTF formats. 

According to the content of 3D Tiles specification a .glTF  is 
employed by .B3DM as its payload for delivering 3D building 
geometry. If data processed by ELiT Server, the results of all 
functionalities, BE, BEwFP, BERA, BERA-P, and Change 
Detection, are displayed by the ELiT Viewer.   

• The DEM Generation tool (DEM-G - a sub-page of the 
Tools page Figure 11) runs a generation of a field of topographic 
heights making a DEM / DSM grid (Figure 17). It means we can 
create a gridded surface from sample data, what is commonly 
referred to as the interpolation. According to the contemporary 
basics of topographic modeling the most accurate uniformly 
spaced DEM matrix can be compiled directly either from 
photogrammetric processing of remote sensing imageries, or by 
processing results of LiDAR surveys [8].  In other words, a series 
of irregularly spaced height points are acquired, from which 
uniformly spaced elevation benchmarks are interpolated. A 
created DEM we understand as a synonym of a digital terrain 
model, which simulates the bare earth surface with uniformly 
spaced z-values of heights within a DEM neighborhood. Our 
automated processing for generation of a DEM of high precision 
provides modeling topography of various genetic types, e.g., 
sand-eolian (as shown in Figure 14), glacial, fluvial, volcanic, 
topography of human impact, etc. Results of the DEM-G 
functionality are visualized in ELiT Viewer by the 
TerrainProvider option of the open source Cesium JavaScript 
library (Figure 14). 

4.2. Cloud-Based Application – ELiT Geoportal 

A common definition of the EliT Geoportal (EGP) as a cloud-
based application has been already done in the previous 
subsection of this text. We already explained in one of our 
previous publication the necessity of a geoportal as a robust 
solution for the web-GIS software promotion [102]. EGP is a kind 
of web portal used to transform occasional visitors of the EOS 
LiDAR web-site into the warm leads. The EGP site can be used 
to find and access the derivative Lidar information and relevant 
services for number of thematic use cases, that can be resolved 
through geospatial modeling, visualization, and GIS-analysis.  

 
Figure 14: Topography of sand dunes in Brazil visualized in the ELiT Viewer 

interface  (a dataset from the EOS LIDAR Tool landing page: 
https://eos.com/eos-lidar) 

Thus, the Geoportal can be also defined as the Internet-toolbox 
for resolving local, regional, national, and even globalized urban 
problems, i.e., by performing at very different scales. A routine 
Web-based map-server software usually allows only backups of 
mapping results. Nonetheless, for various domains of Urban 
Studies, which can be provided with our research and modeling 
technique [1], we do need a Geoportal Internet-toolbox associated 
with a web-based Geodatabase, that would allow us to sort, query, 
update, and delete both different features and data associated with 
these features. Such architectural and structural web-software 
scheme differs towards its more efficiency if compared with 
solutions of a common case.  Within these solutions some web-
based GIS application generator is developed, and it provides on 
the base of the routine database scheme the number of web scripts. 
Then it deals with a map interface and with a database, as well as 
with provision of interactive maps defined by a user [19, 108, 109]. 
Otherwise, the EGP may support an effective integration of a Web-
based GIS interface with a Geodatabase chosen within a web-
architecture. Spatial references and 3D regional layers are 
automatically chosen for a given territory. What is more, semi-
automatic generation of Web 3D Scenes according to a selected 
AOI can be provided. Owing to this architectural scheme, series of 
thematic EGP use cases are provided (http://elit-portal.eos.com/): 
Population estimation in an AOI based on 3D building models; 
Energy consumption estimation based on 3D building models; 
Visibility analysis in urban environment for various city 
development scenarios’ evaluation and comparison.          

5. Discussion 

Choosing either the high polyhedral modeling, or the low 
polyhedral one with corresponding generation of either HW-, or 
LW-models may be selected as introductory topic of the 
discussion, which summarizes our research.  

As explained above, in a common case, Phase 1 of the 
methodological flowchart (Figure 1) suggests either one, or 
another option according to environmental and urban 
configurations of a selected AOI.  

The LW-models are built exclusively on the base of ALS 
surveys together with input of the third-party footprints (Figure 7). 
The lightweight model accuracy exclusively depends on the 
segmentation quality and the reconstruction robustness. What is 
more, exactly clustering / segmenting procedures significantly 
define consequent LM-results. Application of the originally 
optimized RANSAC (Figure 9) has resulted not only in removal of 
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a point cloud outlier caused by a tree (Figure 8), but also in 
predetermined appearance of a building outhouse on the 
reconstruction stage in a finalized model, what cannot be 
guaranteed with the routine approach of segmentation (Figure 10). 

The comparative evaluation of optimized 
clustering/segmenting technique with both restructuring SaS-
pipeline (subsection 3.3.2), and with enhancing RANSAC 
(subsection 3.3.3) has been provided on the base of several ALS 
data surveys accomplished over the territory of the city of 
Lubliniec, Poland, in 2017-2018 (Figures 7, 8, 9). Table 1 is 
produced to compare the modeled results of the methods 
mentioned. Three different values of the key RANSAC parameter 
from Figure 9, plane capture distance (PCD), are used in meters, 
evaluating the position uncertainty for each Lidar point. 
Consequent iterations are completed for PCD=0.1, 0.2, and 0.3. 
The model quality is evaluated both by a visual comparison with 
a processed point cloud (as in Figure 13), and by customized 
estimating of algorithmic parameters. Modeling warnings 
designate partially correct models that have some flaws.  

Table 1: Comparison of the modeled results depending on clustering and 
segmenting method (a LiDAR point dataset on Lubliniec, Poland)   

# Method of 
clustering / 
segmentation  

Pro-
cessing  
time 

Total                                         
number  
of 
models 

Correct 
models 

In-
correct 
models 

Modeling 
warnings  

1 Original SaS 8 h 45 
min   

934 534 289 111 

2 Original 
RANSAC 

12 h 11 
min   

934 577 248 109 

3 SaS with 
restructured 
pipeline 

11 h 24 
min   

934 588 243 103 

5 Optimized 
RANSAC with 
PCD=0.1 

15 h 57 
min   

934 662 167 105 

6 Optimized 
RANSAC with 
PCD=0.2 

10 h 42 
min   

934 677 147 111 

6 Optimized 
RANSAC with 
PCD=0.3 

7 h 42 
min   

934 699 133 102 

Shown in Table 1 are the comparative statistics, which has 
stipulated the necessity development of the BERA PolyFit 
building modeling tool described above. The total number of 
models column has the same value for all records, since it is a 
number of building footprints obtained from a data provider for 
this AOI. Another almost constant column for all methods is 
number of partially correct models (Modeling warnings). The 
table shows, that for all other records the evidently best results are 
demonstrated by the optimized RANSAC with PCD=0.3 (Method 
# 6). The accuracy of the segmented roof planes follows from a 
selected clustering-segmenting method thus it does predefine 
either a success, or not on the stage of reconstruction. Therefore, 
this technique has been selected for the BERA-P tool. Briefly the 
most efficient RANSAC method according to Table 1 can be 
illustrated in the following way, if examining only one model (# 
43) from a dataset, what from Table (1) (Figure 15). 

Two different iterations of Method # 6, which present 
resembling results (the same number of up to seven face 
candidates), are illustrated, because it is the only method, that 
produces an acceptable number of similar results through various 
iterations. Lidar point as color-coded segments have ratios for 
each coded class. Ratio numerator is the number of break-line 
(non-planar points that do not belong to this segment due to the 
PCD value) points, while ratio denominator – planar points (they 
satisfy the PCD threshold). Methods ##1-6 (Table 1) have been 
compared with respect to similarity of various iterations like in 
Figure 15. Method # 6 meets criterion of the best efficiency in this 
respect.  The following illustration shows that this technique is the 
only tool (among all other from Table 1), that can provide the 
clustering-segmenting premises for reconstruction of a 
problematic roof slope, that belongs to model # 21 in the 
considered Lubliniec dataset (Figure 16). All other five 
techniques missed this roof slope.   

The finalized illustration of this text demonstrates an increase 
for up to 27% (41 acceptable among 62 all models versus 30 / 62 
ratio)  in a number of acceptable models for a small urban area in 
Washington, D.C. by providing Method # 6 as a software solution 
(Figure 17). 

 
Figure 15: Two different clustering / segmenting iterations of Method # 6 (Table 1) to a point cloud of model # 43, that demonstrate resembling results   
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Figure 16: The roof slope pointed by arrows segmented by Method # 6 for 

further reconstruction. A CAD model built from a Google imagery (to the right) 
is compared with a point cloud with quite weak correlation for this building 

segment, while ELiT LW-model reconstructed is to the left  

6. Conclusion 

Our paper focuses on the conceptual multifunctional 
(functionalities of Building Extraction, Building Extraction in 
Rural Areas, Change Detection, and DEM Generation) approach 
within the AFE frameworks, that has been introduced through 
consequent steps of the phased methodological flowchart. In 
general, a workflow presented that has been completely 
automated for building detection, extraction and modeling by 
processing ALS and MLS point clouds. Two approaches of the 
high polyhedral modeling, and the low polyhedral one, have been 
proposed as two phased branches of a united overall workflow. 
These two modeling mainstreams have been compared on the 
base of their resulted models: the heavyweight models generated 
together with their original footprints within the HPM 
frameworks, and the lightweight models that employ the third-

party footprints – with the LPM technique. With modeled results 
illustrated we have attempted to prove that the HPM branch can 
be appropriate for high-rise building reconstruction with either 
flat, or pitched roofs in densely build-up urban areas. The LPM 
branch – for modeling low-rise buildings with gable, or pitched 
roofs in either rural areas, or in city suburbs, as well as in small 
towns, i.e., in areas with thinned build-up. 

A plot of our overall AFE workflow has been presented as the 
content of the methodological flowchart phases, while its high 
polyhedral modeling branch has been described by the relevant 
core algorithmic pipeline separately for phases of ALS and MLS 
data processing. The ALS block of footprint extraction and 
delineation has been presented in details. Visual samples of HPM-
results processed by the Building Extraction and the Change 
Detection desktop and web-software tools have been provided.  

The low polyhedral modeling has been explained as the 
technique consisting of two consequent stages: the point cloud 
clustering / segmenting stage, and the stage of building 
reconstruction. Our methodological flowchart has presented 
detailed phases of the LPM implementation. The SaS, RANSAC, 
and PloyFit approaches have been adopted, and selectively 

enhanced for implementation in the web-software as Building 
Extraction Rural Areas and BERA-PolyFit tools:  

SaS-segmentation has been enhanced by restructuring its 
pipeline; RANSAC-segmentation has been optimized by both the 
introduction of the key BCCPI parameter, and by the adaptive 
alterations of rules due to the plane candidate “penalty charges”, 
as well as by introducing the point sampling from a randomly 
chosen limited neighborhood; the optimized RANSAC-
segmentation method with a certain parameter has been selected 
as the most efficient one among six compared methods on the base 
of results obtained for our key dataset; 

 

 
Figure 17: Comparison of modeled results, the number of acceptable models, produced by the BERA Polyfit Tool (with Method # 6 in clustering / segmenting 
algorithmic core - the left visual), on one hand, and by the BERA Tool (the right visual), on the other hand. A small urban parcel in Washington, D.C., USA 

http://www.astesj.com/


S. Kostrikov et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 72-95 (2020) 

www.astesj.com     93 

SaS-reconstruction has been optimized by the Voronoi 
neighborhood introduction, and thus obtaining the enhancement 
of overall algorithmic efficiency and the better optimization of the 
roof plane adjacency matrix. The Voronoi diagram can be 
accepted as a natural neighborhood without the necessity to 
specify its size. This property can be crucial for employing 
Voronoi neighbors within the reconstruction stage, while in the 
original methodology its usage is strictly limited to the stage of 
segmentation; 

PolyFit approach has been implemented in the BERA-P web-
software tool and proved to be as the most efficient one on the 
reconstruction stage if based on the optimized RANSAC. This 
issue has finalized our contributions to the low polyhedral 
modeling. 

Besides all mentioned above functionalities the graphic user 
interface of the original family of software products for LiDAR 
data processing has been introduced as desktop, web-based, and 
cloud-based solutions: ElitCore, ELiT Sever, and ELiT Geoportal, 
correspondingly. 

As far as future works are concerned the suggested algorithmic 
optimization and enhancements should be exercised through 
much more urban configurations, e.g., on those locations already 
placed on the ELiT Geoportal. Routine GIS-data consumers may 
employ the ELiT Server to search, access, and process their own 
Lidar data by the multifunctional tools in both block, and district 
scopes, and the data delivered to them by a provider. In such case, 
the ELiT Geoportal, as an Internet-toolbox, may serve an 
increasingly significant role in sharing derivative LiDAR 
information on the structure and spatiotemporal development of 
large human settlements, i.e., provide solution in a whole city 
scope. 
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