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In this paper we study a cell division cycle modeled by a system of partial differential equations
with an age structure. This model translates the many regulatory mechanisms within the cell
cycle where it introduces the notion of phases. The individual cell can be either in I phases
where the transition between theses phases are ordered and unidirectional. The model is related
to the suns and stars caluculus via the dual semigroups of operators that are considered as
solution of an abstract integral equation equivalent to a Volterra type equation of the form
w(t) = Φ(wt). We will determine the core operator Φ and prove that the semigroup solution of
the model possesses the asynchronous exponential property. The model permits different types
of controls where the provided framework allows better control on the model parameters and
yields the characterization of the intrinsic rate of natural increase through properties of the
core operator Φ. Finally, we demonstrate that the asymptotic behavior of the model is governed
by the simple dominant eigenvalue and its associated eigenvector, that leads to the dispersion of
the cell structure through the future generations.

1 Introduction
This paper is considered as an extension of the work originally pre-
sented in 2019 International Conference of Computer Science and
Renewable Energies ICCSRE [1], that represents more refined work
where we investigated the long time behavior of a cell cycle model
using a well founded mathematical theory.
The cell cycle is an ordered set of molecular events that a cell under-
goes until it divides into two daughter cells. It has been recognized
that the cell cycle can be divided into two major phase: The in-
terphase and the mitosis phase denoted by M. The interphase is
commonly composed of three phases : G1, S , and G2. It is the
longest part of the cell cycle and is devoted to duplication of the
cell’s component. During the S phase, the chromosomes are du-
plicated. It is known that throughout the M phase, the cell split,
producing two daughter cells [2]. In each phase the progression in
the division cycle is reglemented by a serial of molecular regulation
events which are ordered, directional and punctuated by check-
points. These latter make use of some protein dephosphorylation
and degradation where they are under control of the molecular circa-
dian clocks. In fact, several animal experiments showed that the role
of these clocks are essential to exert a rhythmic regulating control
of each step [3], [4]. These steps are intracellular cascades which

ensures the smooth conduct of the proliferation. The extracellular
factors such growth factors play an important role in the controling
strategy which ensures the environmental requirements are adapted
to the proliferation of the cell. Thus, the regulation of the cell cycle
is a crucial process to the survival of the cell. It is known that there
exists two key classes of regulatory molecules: cyclins (regulatory
subunits) and cyclin dependent kinases (catalytic subunits) denoted
by CDKs where through phosphorylation activates or inactivates
target proteins to permit entry in the next phase of the cell cycle.

Through the cell cycle, there exists different restriction points. The
first one is called start checkpoint. It regulates the progression in the
G1 phase. The transition from G1 to S is regulated by CDK4/cyclin
D and CDK6/cyclin D where CDK is expressed in cells and cyclin
D is synthesized due to the growth factors. Various cyclins are
produced at each phase: S , G2 and M, resulting in the periodic
formation of distinct combinations of cyclin-CDK complexes that
trigger the cell cycle events [2, 5].

These various mechanisms of regulation are showed to be inefficient
in cancer cells. In addition, the disruption of circadian clocks is
showed to enhance the tumour growth [6]–[8]. In fact, the circadian
rhythms play an important role in the cell cycle control where they
contribute to the cell cycle regulation by the synchronisation of the
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control system. However, these dynamics have still to be understood
and investigated. Further, various speculation tried to explain this
phenomenon which give rise to the concept of synchronisation, that
is, to the speculation that less synchronised phases are within cell
population, the faster is proliferation. It is known that circadian
proteins control CDKs and theses latter control phase transitions.
In the following, we want to investigate the question if circadian
clocks control the proliferation of the cell population.
The paper is concerned with a system of partial differential equa-
tions (PDE) describing the case of a multi transition phases cycle
[9] in which cells can transit from one phase to the next one. The
cell cycle is assumed to be divided into I different phases where the
individual cell can be distinguished from one another according to
their age a. These cells can growth, die and transit to the next phase
where the rates describing the associated physiological process de-
pend only on the cell’s age. Then, the model read as follows (see
figure 1)

∂

∂t
pi(t, a) +

∂

∂a
pi(t, a) = −µi(a)pi(t, a) − Ki→i+1(a)pi(t, a)

pi(t, 0) =

∫ ∞

0
Ki−1→i(a)pi−1(t, a)da for 2 ≤ i ≤ I

p1(t, 0) = 2
∫ ∞

0
KI→1(a)pI(t, a)da

(1)

Here pi(t, a) is the density of the population of cells at the ith phase
of age a at the instant t, that is,

∫ a2

a1
pi(t, a)da is the number of cells

at the ith phase with an age in the interval (a1, a2) at the instant t.
The transition from the state i to the state j is given by the rate
Ki→ j(a), that is Ki→ j(a)dt is the probability that a cell having an
age a at instant t in the phase i transit in the time interval (t, t + dt)
to the phase j, in which they start with age 0, the last phase when
i = I refer to mitosis as it is expressed by the boundary conditions
in (1). At the ith state, the cells go to apoptosis at the rate µi(a),
that is µi(a)dt is the probability that a cell having age a at instant t
die in the time interval (t, t + dt) in the phase i. Since the effective
separation of the mother cell into two daughter cells, that is, since
the cell birth, the individual cell can quantitated by a continuous
variable corresponding to cell age.

Figure 1: Flow chart of the model describing the evolution of cells along each phase
of the cycle and the transition to the next phase between the cell densities. Here I=4,
this corresponds to G1-S-G2-M.

It is known that cells transit through the cell cycle with variabil-
ity in intermitotic times which correspond to different biological
processes such the proteic (G1 phase) or DNA (S phase) or mi-
crotuble (M phase) synthesis . As contrary to the model given in
[9], the progression speed is assumed to be constant, that is one
does not take into account the external growth factors. Indeed, the

progression speed can be enhanced by the external growth factors
in the early of the G1 phase.
The authors in [9]–[16] considered a partial differential equations
modeling a proliferating cell population with taking into consid-
eration their external controls which can be hormonal, circadian,
pharmacological . . . that leads to investigate the consequences of a
periodic control on these models. Their results assert that the effect
of circadian control on tumour proliferation is indirect.
Here, the death rates are supposed only age dependent. However,
the case time-periodic death rates studied in [10, 11], using the Flo-
quet theory, had shown a higher first eigenvalue and thus enhanced
proliferation of the population.
For the one phase cell transition model [16, 17], it has been proved
that if we influence the cell cycle with some control of a periodic
function, we obtain that cells with cell cycle duration slightly lower
than the control function period are selectively more advantageous,
in addition, they hypothetize that the effect of disruption of circadian
rhythms on tumour growth enhancement is indirect. The model for
I phases was first introduced in [9], where the authors studied the
long time behaviour of this model with the effect of a circadian
control using an entropy method. Their results show that it imposes
a circadian rythm to the cell cycle.
Mathematical cell cycle models have been treated since the 1960s by
authors such as Fredrickson, Bell, Sinko and Streifer. These models
were traditionally formulated as partial differential equations for the
age and/or size distribution of the cell population. Diekmann et al.
[18] used semigroup methods to give conditions for when there is,
and also when there is not, asynchronous exponential growth of the
population in a constant environment. More recently, Diekmann and
coworkers have argued in favour of using (abstract) integral equa-
tions for the birth rate instead of PDE, also, and in particular, for the
nonlinear models resulting from interaction via the environment.
The purpose of this paper is to create a mathematical framework for
the analysis of this type of models by using the theoretically well
established semigroup method based on the suns and stars calulcus
using the perturbed dual semigroups of operators on the spaces of
the form E := L1((−h, 0),F ). These semigroups are solutions of the
integral equation [19]–[21] of the type :

p(t) = P0(t) f +

∫ t

0
P�∗0 (t − τ)Φ(p(τ))dτ, for t ≥ 0 (2)

where h > 0, F is a Banach space and Φ : E → Z and Z is
some bigger Banach space. It has been proved that this method is
well suited for applications, in particular in the field of cell biology
models [22, 23].
In the following, the main result is to provide necessary and suffi-
cient conditions on the parameters building the cell division cycle
model (1) in order to yield the property of asynchronous exponential
growth.The asynchronous exponential property is explained mathe-
matically by the fact that a simple dominant eigenvalue govern the
spectrum of the infinitesimal generator of the semigroup solution of
the model. In the context of the semigroup theory, this operator will
be the associated infinitesimal generator. We can say that the asyn-
chronous exponential growth occurs when the following estimate
‖e−λ0t p(t, ·)−Pp0‖ decreases to 0 exponentially as t tends to infinity,
where the vector population is defined by p(t, a) = (pi(t, a))tr

1≤i≤I and
p0(a) is the initial given distribution of the population. This latter
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means that when the cell population is multiplied by an exponential
factor, know an asymptotic stabilization around a unidimensional
projection. It is noted that this projection is only dependent on the
initial structure of the concerned population.
We will use the theory developed in the works [19]–[21] to exhibit
the link between the solutions of the model and the perturbed dual
semigroups. First, we determine the operator Φ. Secondly, we
derive different results, only based on the properties of the operator
Φ ranging from existence to qualitative properties and particulary
give a characterization of the Malthusian parameter as a spectral
radius of some bounded operator.
Throughout this paper, the two parameters Ki→ j(a) and µi(a) are
supposed to satisfy the assumption

(
HK ,µ

)
:

(1) The rates Ki→ j, µi defined from (0, ā) to R are
continuous.
(2) K , µ ∈ L∞((0, ā),R) such that there exists

0 < K̄ < ∞ where 0 < Ki→ j(a) ≤ K̄ andK . 0
in addition there exists µ̄ > 0 such that 0 ≤ µi ≤ µ̄

2 Well posedness
In this section, the mathematical analysis of the multi phases prolif-
erating cell cycle model will be provided using the theory developed
for the perturbed dual semigroups [24]–[27] associated to the equa-
tion of Volterra type :

p(t) = φ(pt) (3)

where the Hale notation pt(s) := p(t + s) is used (see [28]–[35]),
and the operator φ : E := L1((−h, 0),F ) → F . Our construction
will permit to link the solutions of the model (1) to the solutions of
the integral equation

p(t) = P0(t) f + j−1
(∫ t

0
P�∗0 (t − s)Φ(p(s))ds

)
(4)

where P0 satisfies the properties of a semigroup of bounded linear
operators on E with E� ⊂ E∗(⊂ stands as the linear subspace) on
which P∗0 yields the strong continuity, that is,

E� = { f ∗ ∈ E∗ : lim
t↓0
||P∗(t) f ∗ − f ∗|| = 0}

It can be shown that this subspace is closed in the norm topology of
E∗ and weak* dense subspace on E∗ [24]. In addition, the semigroup
on E� is denoted by P�0 := P∗0|E� . It is obvious that this restriction
build a semigroup that is strongly continuous on the subspace E�.
Since we consider an element of E as a bounded linear functional on
E�. We can embed E into E�∗ via the map q of E into E�∗ defined
by :

< f �, q f >=< f , f � >, for f ∈ E, f � ∈ E�

It is obvious that q(E) ⊂ E��. When q(E) = E�� then E is said to
be �-reflexive with respect to P(t).

Go back to the study of the model (1). The state space considered is
E := L1([0, ã],RI). The parameter ã > 0 is the maximal age that an
individual cell can attain. This space is endowed with norm

|| f ||E =

∫ ã

0
|| f (a)||RI da, f ∈ E

Next, we introduce the operator χ(a) that yields the equation

χ′(a) = −χ(a)M(a)
χ(0) = Id( stands for identity)

(5)

with
M(a) = Dg (mi,i(a))i 1 ≤ i ≤ I (6)

where Dg stands for the diagonal matrix and the entries of the matrix
M hold

mi, j(a) :=
µi(a) + ψi→i+1(a) if i = j

0 else
(7)

The aim of the introduction of this transformation is to demonstrate
that {P(t)}t≥0 the semigroup solution of the model (1) is equivalent
to (Pφ(t))t≥0 the semigroup solution of (4). Thus, via this machin-
ery and under the properties of the operator φ, we will establish
the asynchronous exponential property only by handling with the
equivalent semigroup and go back to the original one by using the
cited transformation.
Before going to give the main results, we need some settings. First,
let set p(t, a) := (pi(t, a))tr

1≤i≤I . So via this vector, our initial model
(1) can be reformulated as an vector type Mckendrick Von Foerster
model

∂

∂t
p(t, a) +

∂

∂a
p(t, a) = −M(a)p(t, a) (8)

with the boundary condition at age 0

p(t, 0) =

∫ ã

0
B(a)p(t, a)da (9)

The matrix M is given above by (6) and (7) and the matrix B is
given by

B(a) =



0 0 0 · · · 0 2KI→1
K1→2 0 0 · · · 0 0

0 K2→3 0 · · · 0 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
...

0 · · · · · · 0 KI−1→I 0


After we gave a compact form to the original model (1). Now, we
consider the transformation

m(t, .) := Γp(t, .) (10)

where (Γg)(a) := χ(a)g(a) with a ∈ (0, ā) and the operator χ satis-
fies the first order differential equation (5). Via this latter, we arrive
at the equivalent system where it is more easily to handle than the
original one (8). The model is formulated as given

∂

∂t
m(t, a) +

∂

∂a
m(t, a) = 0

m(t, 0) =

∫ ã

0
θ(a)m(t, a)da

(11)

The kernel θ is given by

θ(a) = B(a)χ−1(a), for a ∈ (0, ã) (12)
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The diagonal matrix χ−1 is given by

χ−1(a) = Dg (z̃i,i(a))

z̃i, j :=

e−
∫ a

0 mi,i(τ)dτ if i = j

0 else

(13)

Definition 2.1 The strongly continuous semigroup {P(t)} is said
to be a translation semigroup on L1((−r, 0),F ) with r > 0 and F
is a Banach space if the following (P(t) f ) (x) = f (x + t) is satisfied
when x + t < 0.

Diekmann et al. have demonstrated in [20] that the space E is
�-reflexive with respect to P0, where the operator P0 is defined as
the translation semigroup to the right and 0 on R+. Its generatorA0
is given by

D(A0) = { f ∈ E : f ∈ AC and f (0) = 0}
A0 f = − f ′

where AC stands for the absolutely continuous space. We have the
following identification (see [19] and [20])

L1([0, ā],RI)� → C0((−ã, 0],RI)

L1([0, ā],RI)�∗ → NBV([0, ã);RI)

The semigroup P�∗0 is the translation to the right and 0 on R+. Its
generatorA�∗0 is given by

D(A�∗0 ) = { f �∗∈E�∗ : f �∗(a) =

∫ a

0
g(s)ds and g ∈ E�∗}

A�∗0 f �∗ = − f �∗ = g

Using integration and the natural embedding q from E into E�∗ and
taking into account the boundary condition, we arrive at

m(t) = P0(t)g + q−1
∫ t

0
P�∗0 (t − s)Φ(m(s))ds (14)

where the core operator Φ defined from E to E�∗ is given as a
perturbation with finite dimensional range

Φ(g) = φ1(g)H1 + φ2(g)H2 + . . . + φI(g)HI (15)

The Heaviside functionHi is given byHi(a) = ei if a ∈ (0, ã) else
Hi(a) = 0 where {e1, e2, . . . , eI} is the canonical basis of RI . The
canonical injection q is defined by (qx) (a) =

∫ a
0 x(s)ds, s ∈ [0, ã)

where the inverse is clearly differentiation.
The operator given in (11) is defined from E to RI and it is given by
the integral formula

Φg =

∫ ã

0
θ(s)g(s)ds (16)

the kernel θ is given by (12). In the following, we adopt the follow-
ing Hale notation

mt(a) := m(t − a), for all a ∈ [0, ã]

with
m0(a) = g(a) a ∈ [0, ã] (17)

In fact, the solutions of the formulation given by the integral equa-
tion (14) is proven to be equivalent to the solutions of the renewal
equation [20]

m(t) = Φ(mt), for t > 0
m0(a) = g(a), a ∈ [0, ã]

(18)

where the latter generates a translation semigroup [28] given by

TΦg(a) =

g(a − t) if a − t > 0
Φ(TΦ(t − a)g) if a − t ≤ 0

The following result gives us the existence and uniqueness of
the perturbed semigroup solution of the abstract integral equation
(14)

Theorem 2.2 Since the assumption (HK ,µ) holds. We obtain that
φ ∈ L(E,F ). Then for the initial data g ∈ E, the equation (14)
has unique solution m(t) on [0,T ) for some positive real number T
where the operatorAφ characterized as the following

D(Aφ) = {ϕ ∈ W1,1((0, ā),RI), ϕ(0) = φϕ}

Aφϕ = −ϕ′, ϕ ∈ D(Aφ)
(19)

is the inifinitesimal generator of the semigroup Pφ on E.

Proof. The hypothesis given by (HK ,µ) allows to us to obtain the
first assertion about the boundedness of φ. Then, by using regular
arguments on contraction mapping theory, we obtain the existence
of the perturbed semigroup (Pφ(t))t≥0 solution of (14) on E. �

3 Compactness and irreducibility
It is known that the eventual compactness result is often used to
determine the asymptotic behavior of semigroups. In fact, it implies
that the growth bound of the semigroup denoted by ω(T (t)) equals
the spectral bound denoted by s(A), where

ω(T ) = inf{w : ||T (t)|| ≤ Mewt,M ≥ 0}

and

s(A) =

 sup{<eλ : λ ∈ σ(A)} if σ(A) , ∅
− ∞ if σ(A) = ∅

Definition 3.1 We say that the semigroup {P(t)}t≥0 is eventually
compact if for some t0 ≥ 0 the operators P(t) are compact for all
t ≥ t0.

We will give a criterion to obtain the compactness of the semigroup.

Lemma 3.2 Since Φ ∈ L(X,RI) is with finite Range. The semi-
group {P(t)}t≥0 given by (14) is eventually compact.

Proof. The core operator Φ is spanned by the linearly independent
set {Hi}1≤i≤I in X�∗, that is, Φ is with Range(Φ)< ∞, where the core
operator Φ takes the form given by (15). We know that there exists
Φ∗i ∈ L∞([−ã, 0],RI) such that :

Φi(ζ) =

∫ ã

0
< ζ(a),Φ∗i (−a) > da, ∀ζ ∈ X
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We conclude that :

Φ(ζ) =

n∑
i=1

∫ ã

0
< ζ(a),Φ∗i (−a) > Hida, ∀ζ ∈ X

Let t > 2ã, we have ∀τ, τ′ ∈ [0, ã], τ′ < τ for all f in the unit ball
of X. Then,

||[P(t)ζ](τ) − [P(t)ζ](τ′)||Rn

= ||q−1
∫ t

0
P�∗0 (t − s)

{
(Φ(P(s)ζ)ds) (τ) − (Φ(P(s)ζ)ds) (τ′)

}
||Rn

= ||q−1
(
−

∫ t

t−max{t,τ}
Φ(P(s)ζ)ds +

∫ t

t−max{t,τ′}
Φ(P(s)ζ)ds

)
||Rn

= ||q−1
(∫ t−max{t,τ}

t−max{t,τ′}
Φ(P(s)ζ)ds

)
||Rn

= ||q−1

 n∑
i=1

∫ ã

0

∫ t−max{t,τ}

t−max{t,τ′}
< P(s)ζ(a),Φ∗i (−a) > Hids da

 ||Rn

= ||q−1

 n∑
i=1

∫ ã

0

∫ t−max{t,a+τ}

t−max{t,a+τ′}

< Φ(P(s)ζ),Φ∗i (−a) > Hids da

 ||Rn

Let α1 = t − τ and α2 = t − τ′

||[P(t)ζ](τ) − [P(t)ζ](τ′)||Rn

= ||q−1

 n∑
i=1

∫ ã+α1

α1

∫ a

0
< Φ(P(s)ζ),Φ∗i (α1 − a) > Hids da

−

n∑
i=1

∫ ã+α2

α2

∫ a

0
< Φ(P(s)ζ),Φ∗i (α2 − a) > Hids da

 ||Rn

= ||q−1

 n∑
i, j=1

∫ ã+α1

α1

∫ a

0
< Φ j(P(s)ζ)H j,Φ

∗
i (α1 − a) > Hids da

−

n∑
i, j=1

∫ ã+α2

α2

∫ a

0
< Φ j(P(s)ζ)H j,Φ

∗
i (α2 − a) > Hids da

 ||Rn

= ||q−1

 n∑
i, j=1

∫ a

0

{∫ ã+α2

α2

< Φ j(P(s)ζ)H j,Φ
∗
i (α1 − a) − Φ∗i (α2 − a) >

Hida +

∫ α2

α1

< Φ j(P(s)ζ)H j,Φ
∗
i (α2 − a) > Hida

+

∫ ã+α2

ã+α1

< Φ j(P(s)ζ)H j,Φ
∗
i (α2 − a) > Hida

}
ds

)
||Rn

≤ sup
1≤i, j≤n

||Hi|||H j||

n∑
i, j=1

(
sup

0≤s≤2ã
|Φ j(P(s))ζ)|×

{∫ α2+ã

α2

|Φ∗j(α1 − a) − Φ∗j(α2 − a)|da +

∫ α2

α1

|Φ∗i (α2 − a)|da

+

∫ ã+α2

ã+α1

|Φ∗i (α2 − a)|da
})

Hence, we obtain that {P(t)ζ}t≥0 is equicontinuous since |α2 − α1|

tends to zero uniformly for ζ in the unit ball of C([0, ã],Rn). The
rest of the proof is due to applying a famous result of Arzela-Ascoli,
we obtain then that {P(t)}t≥0 is eventually compact. �

Proposition 3.3 Let assume that (HK ,µ) is satisfied. Then the
strongly continuous semigroup P and TΦ are eventually compact.

Proof. The core operator Φ given by the formula (15) is a per-
turbation of finite rank. Then by using the following result [35,
Proposition 4], we obtain the eventual compactness of the semi-
group solution {TΦ(t)}t≥0. The perturbed semigroup {W(t)}t≥0 is
eventually compact by applying the result in Lemma3.2. �
In the follwing we define the family (Ψ̃λ)λ∈C of operators such that
their entries are defined by

Ψ̃λ,i, j :=< ∇λ, j,∇∗i >, λ ∈ ρ(A0) (20)

with
∇λ,i = q−1R(λ,A�∗0 )∇�∗i , λ ∈ ρ(A0)

{∇�∗i }1≤i≤I is a linearly independent set in X�∗

If we adopt this formulation to the integral equation given by (14)
such that

∇�∗i = Hi

∇λ, j =
(
q−1R(λ,A�∗0 )H j

)
(s) = eλse j

∇∗i = Θi, j

where Θ is given by

0 0 · · · 0 2ψI→1z̄I,I

ψ1→2z̄1,1 0 · · · · · · 0

0 ψ2→3z̄2,2
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 ψI−1→I z̄I−1,I 0


Therefore we obtain

Ψ̃λx = Φ(eλ· ⊗ x) for x ∈ RI

where the relation ⊗ is defined by

(eλ· ⊗ x)(s) := eλsx for s ∈ R.

Next we will give a characterization of the spectrum of the infinites-
imal generator AΦ associated to the perturbed semigroup WΦ by
using the family of operators defined above. This characterization
permits to show that the spectrum is a point spectrum and there ex-
ists a characteristic equation, the roots of which are the eigenvalue
of the infinitesimal generator of the associated perturbed semigroup.
Furthemore, we will give a criterion which assure the simplicity of
these eigenvalues.

Proposition 3.4 λ belongs to σ(AΦ) if and only if λ belongs to
σp(AΦ) if and only if

I∏
i=1

∫ ã

0
exp

(
−

∫ x

0
λ + mi(τ)dτ

)
Ki→i+1(x)dx =

1
2

(21)

Proof. By transforming the integral equation (14) using the Laplace
transformation, we obtain the following resolvent equation

(I − q−1R(λ,A�∗0 )Φ)R(λ,A) = R(λ,A0), for λ ∈ ρ(A0)

Then it is clear that λ belongs to the spectrum of AΦ if and only
if the operator I − q−1R(λ,A�∗0 )Φ is not invertible. By straight-
forward computation it is turn out that it is satisfied if and only if
det(I − Ψ̃λ) = 0 that is equivalent to the assertion (21) since the
term q−1R(λ,A�∗0 )Φ is bounded and σ(A0) = ∅. By the eventual
compactness of the semigroup the spectrum ofAΦ is ponctual. �
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Proposition 3.5 The spectral bound ofAΦ equal to the growth
bound of WΦ, that is,

s(AΦ) = ω(WΦ)

such that there exists a real dominant eigenvalue λ̃ ofAΦ solution
of

λ̃ = s(AΦ)
I∏

i=1

∫ ã

0
exp

(
−

∫ x

0
λ + mi(τ)dτ

)
Ki→i+1(x)dx =

1
2

(22)

Proof. Since our semigroup solution of (14) is eventually com-
pact, the result given in [20, Theorem 2.7] provides to us that
s(Aφ) = ω(Wφ) . The map given by the spectral radius of the
operator Ψ̃λ is continuous. In addition, the operator Ψ̃ decreases
and it satisfies

r(Ψ̃λ) tends to +∞ as λ tends −∞

r(Ψ̃λ) tends to 0 as λ tends +∞

Then there exists a unique real root λ̃ that holds (22) where λ̃ is an
eigenvalue of Aφ. Using the fact that the spectral radius of Ψ̃ is
monotone, we have the result

λ̃ = sup{<eλ : λ ∈ σ(Aφ)} = s(Aφ)

Finally, since the semigroup is eventually compact, the real eigen-
value λ̃ solution of (22) is dominant.�
We can say from the above result that less control on the transition
and mortality rates, the higher the growth rate, that is the prolifera-
tion is faster within cells with less synchronised phases.

Proposition 3.6 The operator Ψ̃λ is irreducible such that λ̃ is a
pole of order 1.

Proof. The irreducibility is a strong positivity property for the semi-
group that provides to us a convenient criterion about the simplicity
of the poles. Let g, g∗ ∈ RI we have

< Ψ̃λg, g∗>=

∫ ã

0
exp(−λa)

I−1∑
i=1

Ki→i+1g∗i+1z̄i,igi+2KI→1g∗1z̄I,IgIda > 0

�
Next, we investigate the behavior in the long term of the perturbed
semigroup solution of (14), where we show that the property of
asynchronous exponential property is fufilled

Theorem 3.7 The solution semigroup {Pφ(t)}t≥0 of (14) holds

|| exp(−λ0t)Pφ(t) − Q|| ≤ βe−γt for γ > 0, β ≥ 1,∀t ≥ 0

such that Q given by

Qg = α(g)(eλ0. ⊗ ϕλ0 )

and

α(g) =
< ψ∗λ0

, φ(θ 7→
∫ θ

0 exp(λ0(θ − s))g(s)ds >

< ψ∗λ0
, φ(θ 7→ θ exp(−λ0θ) ⊗ ψλ0 >

, ψ ∈ E (23)

where ψλ0 > 0 (ψ∗λ0
> 0) is the eigenvector of Ψ̃λ0 (respectively of

Ψ̃∗λ0
) such that < ψ∗λ0

, ψλ0 >= 1.

Proof. Our state space X can be decomposed as the following

X = Nλ̃ ⊕ Rλ̃

where 
Nλ̃ = ker(AΦ − λ̃I) = eλ̃. ⊗ ker(I − Ψ̃λ̃)

= {αeλ̃. ⊗ ψλ̃ : α ∈ R}
Rλ̃ = Range(AΦ − λ̃I)

where ϕλ̃ is the positive eigenvector of Ψ̃λ̃ associated to the
eigenvalue λ̃ solution of (22). The projection of g on the subspaces
Nλ̃ and Rλ̃ gives us

g = α(g) exp(−λ̃.) ⊗ ψλ̃ + ρ

Then our semigroup solution of (14) can be rewritten as

PΦ(t)g = α(g) exp(−λ̃(t − .))ψλ̃ + (PΦ(t)|R)(ρ)

Using the fact that ω(PΦ(t)|R) < λ̃. Then we obtain that

PΦ(t)g = α(g) exp(−λ̃(t − .))ψλ̃ + o(exp(λ̃t))

Then we obtain

|| exp(−λ̃t)PΦ(t)g−Qg||E ≤ β exp(−δt)||g||E for γ > 0, β ≥ 1, g ∈ E

where Qg = α(g) exp(−λ̃.)ψλ̃. Then

α(g) =
< ψ∗

λ̃
, φ(θ 7→

∫ θ

0 exp(λ̃(θ − s))g(s)ds >

< ψ∗
λ̃
, φ(θ 7→ θ exp(−λ̃θ) ⊗ ψλ̃ >

, g ∈ E

such that ψ∗
λ̃

is a positive eigenvector of Ψ̃∗
λ̃

that yields the condition
< ψ∗

λ̃
, ψλ̃ >= 1. �

Proposition 3.8 The semigroup solution of (1) possesses the
asynchronous exponential property.

Proof. Using the relation (Γ f )(s) = χ(s) f (s),∀s ∈ (0, ã) we obtain
the similar semigroup

P(t) f = Γ−1(PΦ(t)Γ f ), ∀ f ∈ E

Then by considering the formula Q̃ f = Γ−1(Q(Γ f )) we obtain the
estimate

|| exp(−λ̃t)P(t) f − Q̃ f ||E = ||Γ(exp(−λ̃t)P(t) f − Q f )||E
≤ || exp(−λ̃t)(PΦ(t)Γ f ) − (α(Γ f ) exp(−λ̃.)ψλ̃)||E
≤ β exp(−γt)|| f ||E

We can conclude that the solution of (1) yields the asynchronous
exponential property. �
As generations follow one another, the synchronisation between
phases are less expressed within the evolving cell population, that is
we observe a variability in the structure when a cell transition from
the ith phase to the (i+1)th phase, and becomes fully desynchronised.
In the following a threshold phenomenon appear and it can be for-
mulated as the spectral radius of some integral operator
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Proposition 3.9 Let r(Ψ̃λ) be the spectral radius of Ψ̃λ defined
by (20). Then the following holds :

1. If
∫ ã

0 exp
(
−

∫ x
0 mi(τ)dτ

)
Ki→i+1(x)dx < 1

2 the trivial equilib-
rium state is asymptotically stable.

2. If
∫ ã

0 exp
(
−

∫ x
0 mi(τ)dτ

)
Ki→i+1(x)dx > 1

2 the trivial equilib-
rium state is unstable.

Proof. We have shown that λ̃ = s(Aφ). Due to the monotonicity of
the operator Ψ̃λ we have that the spectral bound s(Aφ) < 0 if

r(Ψ̃0) =

∫ ã

0
exp

(
−

∫ x

0
mi(τ)dτ

)
Ki→i+1(x)dx <

1
2

which corresponds to the trivial equilibrium state. Then, since from

||P(t) f ||E ≤ eλ̃t || f ||E

we have lim
t→∞

P(t) f = 0 and it is unstable when

∫ ã

0
exp

(
−

∫ x

0
mi(τ)dτ

)
Ki→i+1(x)dx > 1/2 �

4 Conclusion
The study of the cell population dynamics by taking into account the
proliferation process and generations overlapping take an important
part in the mathematical modeling and analysis. Various analytical
and probabilist methods were performed to this aim. In particu-
lar, the semigroup method, that demonstrate it is theoretically well
established combining between different theories such as operator
theory, functional analysis, spectral theory . . .

In this paper, the dual semigroup theory provide a useful frame-
work to examine these processes. In particular, the context of the
control of the cell cycle where many complex regulatory processes
are involved where the structuration by age permits to us to track
the individual cell position through the multiple generations. We
proved the asynchronous exponential property that consists as an
important trait within the cell populations. In fact, the synchronisa-
tion or desynchronisation is essential in tumour therapy in which
drugs can synchronize cell phases and others can destroy cells in
the same phases.

Here, we investigated the role of the circadian clock in the con-
trol of the proliferation within the cell population. Mathematically,
we can conclude that the disruption of the circadian clock, in par-
ticular the desynchronisation between the transition from a phase
to another one has a major effect on the proliferation of cells. In
addition, we demonstrate that as time evolves, the cells are more
desynchronised than the younger generations. In this context, natu-
ral questions arise about the differences in synchronisation between
healthy and cancerous cells. This question is essential in order
to understand the cell cycle and to use such knowledge to make
optimisation methods for cancer therapy.

In this paper, we consider only age dependent parameter, in
perspective we want to examine the effect of time dependent and
different periodic controls on the cell proliferation and to compare
theses controls between them.

References
[1] Y. El Alaoui, L. Alaoui, ”Mathematical analysis of an age structured multi

phases cell cycle model with checkpoints.” in 2019 IEEE International Con-
ference of Computer Science and Renewable Energies (ICCSRE-IEEE), 2019,
doi:10.1109/iccsre.2019.8807639 .

[2] H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H.
Ploegh, P.T. Matsudaira, Molecular cell biology, W.H. Freeman, New York,
2007.

[3] S. M. Reppert, D. R. Weaver, Coordination of circadian timing in mammals,
Nature, 418(6901):935-41,2002, doi: 10.1038/nature00965.

[4] G. Filipski, P.F. Innominato, M.W. Wu, X. M. Li, S. Iacobelli, L.J. Xian,
F. Levi, Effect of light and food schedules on liver and tumour molecular
clocks in mice, Journal of the National Cancer Institute, 97, 507–517, 2005,
doi:10.1093/jnci/dji083.

[5] D. Morgan, The cell cycle: Principles of control, Primers in Biology series,
Oxford University Press, 2006.

[6] E. Filipski, V.M. King, X.M. Li, T.G. Granda, M. Mormont, X.H. Lin, B.
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versity of Tübingen, 1995.

[35] L. Alaoui and O. Arino, Compactness and spectral properties for positive trans-
lation semigroups associated with models of population dynamics, Differential
Integral Equation, 6:459-480, 1993.

www.astesj.com 8

http://www.astesj.com

	 Introduction
	Well posedness
	Compactness and irreducibility
	Conclusion

