
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 5, 460-468 (2020)

www.astesj.com
Special Issue on Multidisciplinary Innovation in Engineering Science &

Technology

ASTES Journal
ISSN: 2415-6698

Bayes Classification and Entropy Discretization of Large Datasets using
Multi-Resolution Data Aggregation
Safaa Alwajidi*,1,2, Li Yang1

1Department of Computer Science, Western Michigan University (WMU), Kalamazoo, MI 49008, USA
2Department of Mathematics and Computer Science, University of North Carolina at Pembroke (UNCP), Pembroke, NC 28372, USA

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 21 May, 2020
Accepted: 10 July, 2020
Online: 24 September, 2020

Keywords:
Big data analysis
Data reduction
Data aggregation
Multi-resolution
Entropy discretization

Big data analysis has important applications in many areas such as sensor networks and
connected healthcare. High volume and velocity of big data bring many challenges to
data analysis. One possible solution is to summarize the data and provides a manageable
data structure to hold a scalable summarization of data for efficient and effective analysis.
This research extends our previous work on developing an effective technique to create,
organize, access, and maintain summarization of big data and develops algorithms for
Bayes classification and entropy discretization of large data sets using the multi-resolution
data summarization structure. Bayes classification and data discretization play essential
roles in many learning algorithms such as decision tree and nearest neighbor search. The
proposed method can handle streaming data efficiently and, for entropy discretization,
provide sufficient information to find the optimal split variable and the optimal split value.

1 Introduction

Big data analysis offers new discovery and values in various ap-
plication areas such as industrial sensor networks [1], finance [2],
government information systems [3], and connected health [4]. Big
data is redundant, inconsistent, and noisy. Machine learning algo-
rithms face extreme challenges to analyze big data precisely and
quickly.

Volume and velocity are the primary characteristics of big data.
The massive size of data being accumulated consumes storage and
leads to management shortcomings [5]. According to a IDC report
[6], the volume of data may reach 40 Zettabytes (1021 bytes) by
2020. In addition, big data often come in the format of complex
data streams. For example, in Wide-area Sensor Network (WSN),
autonomous sensors generate a huge amount of data from the envi-
ronment and transmit the data through the network to the backend
servers for further processing and analysis.

Big data analysis is challenging to computing power and re-
sources [7]. Analysis algorithms need to scan the data at least once,
leading to a time complexity of O(N), where N is the number of
data records. Yet many algorithms use iterative computations that
require multiple passes of data access. For example, Support Vector
Machine (SVM) is a well-known algorithm that requires multiple

scans of the dataset with time complexity O(N3). For processing of
big data, accessing data point by point is a prohibitive process.

One idea to solve the problem is to summarize the data and
use the summarized data for data processing. The summarization
aggregates data points into a hosting structure that can be used
by most mining and learning algorithms for efficient and effective
analysis. The hosting structure should: (i) require one scan of the
original data for its construction; (ii) hold representative statistical
measures of the original data that satisfy requirements of most of the
mining and learning algorithms; (iii) update the statistical measures
incrementally to deal with streaming data; and (iv) organize the
statistical measures at multiple resolutions. The multiresolution
view of data gives us the flexibility to choose the appropriate level
of summarization that fits the available resources.

In our previous work [8], we have developed an effective tech-
nique to create, organize, access, and maintain a tree summarization
structure for efficient processing of large data sets. The developed
tree structure is incrementally updated and provides the necessary
information for many data mining and learning algorithms. This
paper is a continuation of the previous work by developing data
mining and learning algorithms. Namely, this research develops al-
gorithms for Bayes classification and entropy discretization of large
data sets using the multi-resolution data summarization structure.

*Corresponding Author: Safaa Alwajidi, +19105216517, safaa.alwajidi@uncp.edu

www.astesj.com
https://dx.doi.org/10.25046/aj050557

460

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050557

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

Bayes classification and data discretization play essential roles in
many learning algorithms such as decision tree and nearest neighbor
search. The proposed method can handle streaming data efficiently
and, for entropy discretization, provide sufficient information to find
the optimal split variable and split value for continuous variables.
Data discretization for continuous variable plays a central role in
learning algorithms such as decision trees.

The rest of the paper is divided into five sections. Section 2 sum-
marizes existing data reduction techniques. Section 3 introduces the
multiresolution structure and discusses its implementation, updating,
and performance. Bayes classification and entropy discretization
are introduced in Section 3 and Section 4 respectively. The last
section concludes the paper.

2 Techniques for Data Reduction

For efficient and effective management, transmission and process-
ing of large data sets, many techniques have been proposed. One
straightforward way to reduce data size is data compression. Data
compression reduces storage, I/O operations [9, 10] and network
bandwidth [11], and also helps to accelerate data transmission [12].
One problem with data compression is the overhead of compression
and decompression [13]. While it preserves the complete dataset, the
method does not reduce the complexity of data processing, which
needs to access the original data anyway.

The size of relational data can be reduced in two ways: either
to reduce the number of attributes or to reduce the number of data
records. One technique to reduce the number of attributes is dimen-
sionality reduction [14]. One example algorithm for dimensionality
reduction is principal component analysis (PCA) [15], which is
an expensive process. Most machine learning algorithms require
multiple scans of the dataset with time complexities based on the
number of data records, therefore, reducing the number of data
records seems to be the way to go for big data analysis.

One example technique to reduce the number of data records is
sampling. Sampling is a statistical subset technique in which a small
number of data points are randomly chosen to produce an unbiased
representation of the dataset. A recent study [16] shows that random
sampling is the technique commonly used to gain insights in big
data. However, it is difficult to quickly extract a representative ran-
dom sample. A critical problem is how to handle the selection bias
due to issues such as class imbalance [17, 18] and nonstationary val-
ues of data [19]. A systematic method of sampling that mediates the
tensions between resource constraints, data characteristics, and the
learning algorithms accuracy is needed [20]. Intricate methods to
subset the big data, such as instance selection [21] and inverse sam-
pling [22], are computationally expensive [23, 24] because of the
inefficient multiple preprocessing steps. Furthermore, newly added
data points change data statistical measures and require re-sampling.
Moreover, sampling is not appropriate in some application areas.
For example, epidemiologic research involves systematic biases due
to great enthusiasm in the sampling of people in EHRs (Electronic
Health Records) systems and there are often biases in the way in-
formation is obtained and recorded. A large sample size cannot
overcome these problems [25].

One powerful way to reduce the number of data records is to

aggregate the data records. Data aggregation is a reduction tech-
nique that considers all points in the dataset. It preserves enough
information from the dataset while combining similar data records
into one which summarizes the data records into representative sta-
tistical measures. Data aggregation is used in privacy preservation
[26] and Wireless Sensor Networks (WSNs) to reduce the volume
of data traffic [27]. However, few studies have been conducted to
aggregate and summarize big data for data analysis.

One of the early methods to use aggregated data to support
advanced analysis and decision making is On-line Analytical Min-
ing (OLAM) [28]. OLAM integrates mining models on top of a
multidimensional data cube and OLAP engine. It has been used
in many applications to provide efficiency and scalability for data
mining and knowledge discovery such as association rules [29]. The
multidimensional data cube uses a conceptual hierarchy in each
categorial dimension to aggregate data in a multi-resolution format.
However, many big data sets are not in relational databases and
contain continuous attributes with no concept hierarchy.

A tree index structure is one of the major techniques that can
be used to aggregate data at multiple resolutions [30]. Regions
in multi-resolution aggregation need to be grouped and linked for
quick reference. Many variations of tree structures have been used
to save data for fast access such as CF tree used in BIRCH [31],
R* tree used in DBSCAN [32, 33], KD-tree [34], aR-tree [35], and
R+-tree [36]. However, these trees do not meet all of our require-
ments such as hosting aggregated data, query independence, simple
creation, and incremental updates.

3 Multi-Resolution Tree Structure for
Data Aggregation

We are given a dataset of size N × d, where N is the number of data
points, d is the number of variables, and N � 2d. These variables
take continuous numeric values. Continuous data are common such
as the data generated from sensors like temperature, air pressure,
gyroscope, accelerometer, GPS, gas sensors, water sensors and vital
data from patients. Aggregating the dataset into a multi-resolution
hierarchical structure is not a straightforward process. Continuous
data lacks concept hierarchy.

We propose a hierarchical multilevel grid summarization ap-
proach to aggregate the data. Similar method has been used in
spatial data mining [37] and robotic mapping [38]. In this method,
each dimension in the dataset is divided into a limited number of
equal width and nonoverlapping regions (intervals). Each region
stores the summarization information of the raw data points falling
inside it. We labeled each region by giving it a number to distinguish
between them. The multilevel structure aggregates data at multiple
granularities, where multiple regions at a lower level are grouped to
form one region at the next higher level. We assume each level is
summarized into a half number of regions in the immediate beneath
level. This method provides a concept hierarchy for continuous
data.

The hierarchical multilevel grid can be assumed as a multidimen-
sional data cube. However, regions in multi-resolution aggregation
need to be linked for quick references. We propose a tree index struc-
ture to host the aggregated data in the multidimensional data cube.

www.astesj.com 461

http://www.astesj.com

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

Figure 1: The multi-resolution structure (a) Updating the multi-resolution tree (b) The summarization features (c) The mapping table

The tree is an efficient structure in which summarization features
at high levels can be computed from features at low levels without
rescanning the original raw data. This is useful for incremental
updating. Also, the tree provides quick reference links between its
levels to support multiresolution aggregation. Searching the tree
structure is faster than searching the massive raw dataset.

All data records are aggregated at each level of the tree. Ag-
gregations are performed on all variables at the same time. This
multi-resolution aggregation reduces the number of tree nodes and
provides the trade-off between efficiency and accuracy. The user can
choose the appropriate level of aggregation. Typically, navigation is
a top-down process from the top to lower levels.

Each intermediate node holds a mapping table and a set of sum-
marized statistical measures. The mapping table, Fig.1(c), contains
a set of entries that hold node indexes along with their corresponding
pointers and is used for linking a node with its parent and children
nodes. The mapping tables helps to reduce the I/O operations. For
instance, to access a desired child node from its parent, we start by
searching the parent’s mapping table to check if the index of the
desired child is available.

3.1 Tree Node Index and Mapping between Nodes

A tree node is a hyperrectangular area that is specified by an interval
in each dimension. Each interval has a unique index number that
distinguishes it from other intervals. Consequently, each node has a
set of index numbers corresponding to its intervals in all dimensions.
We call this set a node index. The node index is used to identify
the exact nodes in the tree to be called and uploaded to the main
memory.

A mapping function, f ({v1, v2, ..., vd}) = {namel}
h
l=1 is used to

generate the node index from incoming data point {v1, v2, ..., vd},
where vi is the value of variable i, and namel is the node name at
level l. Each name is a tuple of the form 〈l, I1, I2,. . . , Id 〉, where l is
the tree level and Ii is the region number of variable i. The availabil-
ity of the node names for incoming data point along with mapping

tables, which consist of child nodes indexes, helps to assign the
incoming data point to its corresponding nodes without searching
the tree. Instead, it uploads only the required nodes for updating.
See section III (c) for the detailed procedure.

3.2 Sufficient Statistical Measures

Multiple statistical measures can be collected on data points ag-
gregated in a region. The set of statistical measures should be
expressive enough to answer most data queries. Since each data
mining algorithm needs different statistical measures, we need to
find common statistical measures for all or most of the algorithms to
ensure that the proposed structure can be used by these algorithms.
Extracting sufficient statistical measures of the aggregated data is
crucial to provide information to data analysis algorithms. In ad-
dition, efficient analysis of streaming data requires incrementally
updating of these statistical features.

For each data node, we collect number of data points, sum of
data values, sum of squared data values, as well as minimum and
maximum values along each variable (n, S p, S S p,Minp,Maxp) in
this node. We collected these measures inspired by BIRCH [31].
These five statistical measures are small in size and can be incre-
mentally updated.

Basic statistics like mean, variance, and standard deviation can
be incrementally and directly computed from these statistical fea-
tures. Other features such as variables correlation and variable
distribution can also be computed. We assume that the data is
uniformly distributed inside each region of the variable.

These measures provide enough information to compute cluster
means, sizes, and distances in different modes. In addition, Eu-
clidean, Manhattan, L1 and L2 distances between cluster centers,
and average inter-cluster distances can also be computed. This in-
formation is useful for clustering algorithms and similarity-based
learning. As we will discuss in Sections IV and V on learning
algorithms, other measures such as likelihood, conditional proba-
bility, and dynamic splitting can be calculated using the collected

www.astesj.com 462

http://www.astesj.com

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

statistical measures.

3.3 Implementation and Performance Analysis

The proposed multi-resolution structure is a tree like structure. Its
implementation and updating is a top-down process, starting from
the root node towards the leaf nodes. Algorithm 1 explains the pro-
cedure of implementing and updating the multi-resolution structure.
Inputs to the algorithm are the desired number h of levels in the
resulted tree structure, expected maximum and minimum values
for each variable along with a matrix W of region width for each
variable at each level in the tree.

The implementation requires a single scan of the training dataset.
To insert a new data record, the algorithm uses the index keys gen-
erated by the mapping function and starts at the root node to find
an entry that matches the first index key. If the entry is found, the
algorithm updates the corresponding node statistical features. In
case the entry is not found, the algorithm creates a new entry in
the root mapping table to hold the index key. The algorithm then
creates a new node, associate it with the newly created entry, and
initialize the node statistical features. The algorithm repeats this
process until it reaches the leaf node.

The worst performance of the proposed structure occurs when
the tree has the maximum number of nodes. We assume that the
number of regions for each variable at a level in the tree doubles in
the next beneath level. In this case, each node has a maximum of 2d

child nodes. The total number of nodes in the tree with h levels and
one root node is:

NTree = 1 +

h∑

l=1

∏d
p=1

(
maxp − minp

)
/wph

2(h−l)(d−1)

 (1)

where wph ∈ W, is the regions width for variable p at level h.
The values maxp and minp are the maximum and minimum values
of variable p respectively.

The proposed multi-resolution tree is an efficient structure since
it avoids uploading and searching all tree nodes during insertion and
updating. Insertion one data points calls only (h + 1) nodes. Em-
pirically for streaming data, the consecutive data points fall within
the same range of values which means that they will be aggregated
into the same nodes. Therefore, disk caching helps to reduce disk
operations. Implementing the multi-resolution tree does not create
empty nodes with no data.

To analysis the worst case to implement the multi-resolution
structure, we assume the data of N points is scattered all over the
regions and no region left empty. In this case, each node has the
maximum number of children and thus the multi-resolution struc-
ture has the maximum number of nodes. The implementation of
such case costs O

(
Nd(R + (h − 1)2d)

)
where R is the number of

entries in the root’s map table, and
(
(h − 1)2d

)
is the cost to search

the map tables of visited nodes. Since h is relatively small value,
the cost become O

(
Nd(R + 2d)

)
.

Fig. 1 (a) illustrates how Algorithm 1 works. To insert a data
record, only the red nodes, one at each level of the tree, are visited
and uploaded. The dotted links represent the algorithm traverse and
progress from the root to a leaf node.

4 Bayes Data Classification

Class probabilities are essential for Bayesian classifiers, hidden
Markov model (HMM), and in defining entropy, gain ratio, and Gini
index for decision trees. Naive Bayes is a classification model based
on conditional probability. By including class attribute as a regular
attribute in building the multi-resolution tree, we can calculate con-
ditional class probabilities from the multi-resolution tree without
accessing individual points in the training dataset.

The class attribute, also called the response variable, is a cat-
egorical attribute that has a finite number of labels (values). We
can divide the class attribute into regions where each region is a
unique class label. There is no aggregation applied on the class
attribute and it maintains the same set of regions at all levels in
the multi-resolution tree. Unlike continuously values variables, no
numbers assigned for its regions. Those regions are indexed by their
labels.

Given a N×d dataset with the class attribute C = {c1, c2, . . . , cm},
where m is the number of distinct values of class labels, the number
of leaf nodes at level h is:

www.astesj.com 463

http://www.astesj.com

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

Nh =

d−1∏
p=1

[
(
maxp − minp

)
/wph] × m

 (2)

All data points that are aggregated in a leaf node belong to a
single class. Aggregating data points from different classes in one
node leads to reduce the number of nodes in the multi-resolution
tree and then reduce the storage needed for the tree. However, it
consumes more memory and increases the number of I/O disk op-
erations. For example, if parent node aggregates data points that
belong to two classes A and B, there is a chance that only one child
node has the data points of class A and the rest child nodes have
data points belong to class B. Consequently, accessing child node
of class A requires to upload all child nodes to memory to find that
node of class A.

Computation of class probability from the proposed tree struc-
ture requires a single scan of the tree. The highest level in the tree
maintains the same information of other levels but it is the most ag-
gregated and compact level. The number of child nodes of the root
is much less than the number of data points in the training dataset.
Thus, the computation of class probabilities from the highest level in
the multi-resolution tree consumes less memory and more efficient
than working on the very large training datasets.

Given E = {e1, e2,, ek}, a set of child nodes of root in the
multi-resolution tree that aggregates dataset with the class attribute
C = {c1, c2, ..., cm}. The probability of a class c j, c j ∈ C and
1 ≤ j ≤ m can be computed by :

P(c j) =

∑k
i=1[ni × F

(
yi = c j

)
]∑k

i=1 ni
(3)

ni, yi are the number of aggregated data points and class label of
node ei, F takes value 1 if yi = c j and 0 otherwise.

Naive Bayes, Eq. (4), uses class probability for classification. It
requires scanning all data points in the training dataset to classify
one unknown point, under the assumption that the variables are inde-
pendent. Suppose continuous variables are normally distributed, it
requires to computes the likelihood for a continuous variable using
Eq.(5). Then, finds the estimated class label ŷ based on the Bayes
theorem that computes class probability P(C) for all classes and
assigns the class label c j with the highest posterior probability to
unclassified point x.

ŷ = argmax
j∈{1,...,m}

P(c j)
d∏

p=1

P(xp|c j) (4)

P(xp|c j) =
1

σp j
√

2π
e
− (x−µp j)2

2σp j2 (5)

The likelihood requires a scan of all points in the training dataset
to find the conditional mean, variance and standard deviation to
classify a single unknown point. The proposed multi-resolution
structure provides an efficient way to compute the conditional mean,
variance, and standard deviation of continuous variable p. It re-
quires to scan the nodes of the highest level in the tree only once to

compute these conditional features for each class c j separately, as
shown in Table I.

Table 1: Conditional Features Computation for Variable p and class j

Feature Comments

µp j
S p j
n j

Conditional mean

σp j
2

S S p j −

(
S p j

)2
n j

n j
Conditional variance

σp j

√
σp j

2 Conditional standard deviation

Consequently, any classification algorithms based on this com-
putation of class probability can work efficiently without loss in
accuracy to cope with the large scale data and streaming data. The
multi-resolution Naive Bayes algorithm, which accepts the multi-
resolution tree as input, has been implemented using Java JDK 13.
We have tested the algorithm on eight artificially generated datasets,
each set has two continuous variables and binary class label. The
multiresolution structured implemented from the training set, 80%
of the raw dataset, and the remaining 20% used as a testing set. We
have compared the results of applying the multiresolution Naive
Bayes on the root level of the multiresolution structure with the
results of applying the traditional Naive Bayes algorithm on the raw
datasets. Experimental results are given in figure 2. The results
show that the multi-resolution Naive Bayes is 25% faster on average
than the algorithm that works on raw data sets while keeping the
same accuracy of classification.

Figure 2: Comparison of the computation time between multiresolution Naive Bayes
(MRNB) and raw data Naive Bayes (NB) algorithms for eight datasets

5 Entropy Discretization Overview and
Challenges

We present another application to speed up learning algorithms that
sort and search the dataset multiple times to produce an optimal
solution. In this section, we propose a high speed and incremental
technique for entropy discretization of continuous variables using

www.astesj.com 464

http://www.astesj.com

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

the multi-resolution structure. The high speed, representative, and
incrementally updated structure helps to generate entropy discretiza-
tion efficiently and effectively for big data and streaming data.

5.1 The Motivation

Several miming and learning logarithms iteratively split the dataset
as part of their learning models. Examples of these algorithms
are Bayes Belief Network (BBN) classification for continuous data
[39], KD-tree used in nearest neighbor (NN) search [40, 41], and
conventional decision tree [42] used for classification. The splitting
procedure sorts the variable values and then seeks for the best value
to split the variable based on a specific criterion. This procedure is
repeated for each variable to find the best point and best variable to
split the dataset.

The continuous variable has a vast number of values that make
sorting and testing of its values during the splitting procedure a
complicated task. Entropy discretization converts the continuous
variable into a categorical variable by dividing it into a minimal
set of non-equal width regions with minimal loss of information.
Applying the splitting procedure iteratively on the small number of
regions resulted from entropy discretization is more efficient than
the iterative scan of the vast number of data points in the dataset.
However, entropy discretization is a computationally expensive and
memory consuming technique. It needs to search and test all the
variable values to divide it into regions. Consequently, entropy
discretization is a prohibitive task on big data as well as on stream-
ing data and requires a fast incremental discretization to cope with
updating when new data arrives.

5.2 Entropy Discretization Overview and Challenges

Entropy discretization divides the continuous variable based on
entropy. Entropy is a measure of information. Higher entropy
means less information loss. It is computed by using the frequency-
probability distribution in Eq.(6).

H(X) =
∑
x∈X

P(x) log2 P(x) (6)

where x is a value in the continuous variable X.
Dividing the continuous variable into several regions affects

entropy in a way that the entropy increases when the number of
regions increases. To decide the optimal number of regions, there is
a comprise between keeping information and keeping performance.
Choosing a large number of regions seems reasonable to ensure high
entropy and better representation of the distribution in such data.
However, there is a danger of an over discretization where too many
regions can be dispensable because it slows the performance. Hong
[43] proposed a method to find the optimal number of regions with
minimal loss of information. The relationship between the entropy
and the number of regions is curve. If we draw a straight line from
the origin of the graph to the maximum entropy and the maximum
number of regions, the curve will be always above the line. Hong
showed that when the curve is most apart from the line, we reach
the optimal number of regions. This point is called the Knee point.

Ellis [39] uses Hong method to discretize continuous variables
and feeds them to the Bayes Belief Network algorithm. His method

starts with dividing the continuous variable into regions and sorting
them. Each region has a distinct value of the continuous variable.
The method then merges two adjacent regions with the smallest
difference of frequency (number of aggregated data points). The
process of merge continues until reaching the maximum height point
on the curve (Knee point). The Knee point is reached when the
change in the number of regions becomes greater than the change
in the entropy of the regions. This relation is explained in Eq.(7) in
the next section. However, when the number of distinct values is
very big, this method of entropy discretization is computationally
prohibitive. The time complexity of this method for d continuous
variables is O(d(m(log2m + m2), where m is the number of distinct
values. The number of distinct values is very big in some applica-
tions like sensor data, human activity recognition, and health care
data, where m approaches the number of data points N.

5.3 Proposed Algorithm

We propose a fast entropy discretization technique by using the
multi-resolution structure. The proposed technique finds the opti-
mal number of non-equal width entropy regions based on the equal
width regions in the multi-resolution structure. The multi-resolution
structure has properties such as the hierarchical organization of
aggregated data which makes the proposed technique more efficient
than working on the massive number of data points in the training
dataset to generate the regions of entropy discretization.

The multi-resolution structure discretizes each continuous vari-
able into non-overlapping equal-width regions, each resides on a
separate node of the same tree level. The proposed algorithm op-
timizes this discretization of the variable by merging its regions
from two different nodes into one region repeatedly until reaching
to Knee point.

Algorithm 2 explains the proposed entropy discretization tech-
nique for a dataset of d continuous variables. For each variable,
the algorithm starts working on the parents of the leaf nodes (it
can easily be adapted to work on any other level except root and
leaves). For each parent, the algorithm merges the adjust regions in
the sibling leaves. The new resulted regions are saved into a local
file associate with the parent node. This pass is called the local
mode. Then, in the global mode, the algorithm uses regions from
all local files and merge the adjacent regions from nodes belong
to different parents. The final result of the global mode is a set of
optimal entropy regions that are saved into a global file for each
variable, as shown in figure 4.

The region is represented by its boundary (cut point) and the
number of its aggregated data points (frequency). This information
is obtained from the statistical features of the node that hosts the
region. The statistical features Max maximum value of the region is
used as a cut point while n the number of aggregated data points in-
side the node is used as frequency. To deal with multiple regions, the
algorithm uses a list to save the cut points of that regions combined
with a corresponding list of their frequencies.

The merge procedure in algorithm 2, that is used in both local
and global modes, is iterative. It sorts the regions based on their cut
points and runs the following steps:

www.astesj.com 465

http://www.astesj.com

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

Figure 3: The multi-resolution structure with local and global files, one local file for
each variable on every parent node and one global file for each variable

• Compute the entropy, Entr, for current K regions using Eq.(6).
In this case, x is a region in variable X. The regions frequen-
cies are used to compute the probability.

• Find two adjacent regions with a minimum frequency differ-
ence and merge them. The new cut point of the new region is
the greatest cut point of the two merged regions while the new
frequency for the new region is the sum of the frequencies of
the two merged regions.

• Compute the entropy, newEntr, for resulted K − 1 regions
after the merge.

• Compute the rate of change in the number of regions to the
change in their entropy using Eq.(7).

Rate = (newEntr × K) − (Entr × (K − 1)) (7)

The Knee point is proportional to this rate and is reached just before
the decrease in this rate. If the rate is decreased, the algorithm stops
the merge procedure. Otherwise, the algorithm updates the cut point
and frequency lists by replacing the cut points and frequencies of
the two merged regions by the cut point and frequency of the new
region. The algorithm repeats the last three steps until the rate starts
to decrease.

Although the local mode may lead to a little loss in the informa-
tion due to missing a merge of regions from different parents, the
local mode is still important to improve the performance in building
and updating entropy discretization. Local mode reduces the sort to
only nodes belong to the same parent because these nodes are neigh-
bors to each other and there is a high possibility to merge them. The
local mode helps to trigger the global mode only if it is needed, as
summarized in Fig 5. After updating the multi-resolution structure
due to the arrival of new data points, the local modes are triggered
only for the parents of the updated leaves. The local modes for
other parent nodes are ignored. If any of the triggered local modes
achieves a merge, the global mode will be triggered. Otherwise,
the algorithm terminates without global mode because the new data
point has not effected the entropy discretization.

Finally, the algorithm outputs a set of global files. The global
file contains the optimal number of entropy regions that represent
the distribution of a single continuous variable. The set of global
files can be used to feed the mining and learning algorithms for
efficient and effective learning.

www.astesj.com 466

http://www.astesj.com

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

Figure 4: Updating process of multi-resolution structure and entropy discretization

6 Conclusions
In this paper, we have studied fast Bayes classification and entropy
discretization of continuous variables using a multi-resolution data
aggregation structure for mining and processing of large datasets.
The proposed Bayes classification works by getting required con-
ditional probabilities directly from aggregated statistical measures.
Entropy discretization works in local and global modes to find
the optimal number of non-equal width entropy regions with min-
imal loss of information based on the equal-width regions of the
multi-resolution structure. The multiresolution structure makes the
proposed technique more efficient to generate entropy discretization
regions than working on the massive number of data points in the
big dataset. The resulted entropy discretization regions are saved
into files linked to leaf nodes and their parents for fast updates of
these regions to cope with streaming data. These files are useful to
find the best split point and best split variable for continuous vari-
ables that are essential for several learning algorithms that iteratively
seek for the optimal variable and value to split the dataset. These
algorithms include Bayes Belief Network (BBN) classification for
continuous data, KD-tree data structure used in fast nearest neighbor
search, and conventional decision trees used for classification.

References
[1] L.-M. Ang, K. P. Seng, “Big Sensor Data Applications in Urban Envi-

ronments,” Big Data Research, 4, 1–12, 2016, doi:https://doi.org/10.1016/

j.bdr.2015.12.003.

[2] B. Fang, P. Zhang, “Big Data in Finance,” in S. Yu, S. Guo, editors, Big
Data Concepts, Theories, and Applications, 391–412, Springer International
Publishing, Cham, 2016, doi:10.1007/978-3-319-27763-9 11.

[3] G.-H. Kim, S. Trimi, J.-H. Chung, “Big-data applications in the government
sector,” 2014.

[4] L. A. Tawalbeh, R. Mehmood, E. Benkhlifa, H. Song, “Mobile Cloud Comput-
ing Model and Big Data Analysis for Healthcare Applications,” IEEE Access,
4, 6171–6180, 2016, doi:10.1109/ACCESS.2016.2613278.

[5] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, M. Zhang, “In-Memory Big Data
Management and Processing: A Survey,” IEEE Transactions on Knowledge and
Data Engineering, 27(7), 1920–1948, 2015, doi:10.1109/TKDE.2015.2427795.

[6] R. Kune, P. K. Konugurthi, A. Agarwal, R. R. Chillarige, R. Buyya, “The
anatomy of big data computing,” Software: Practice and Experience, 46(1),
79–105, 2016, doi:10.1002/spe.2374.

[7] M. H. ur Rehman, C. S. Liew, A. Abbas, P. P. Jayaraman, T. Y. Wah, S. U. Khan,
“Big Data Reduction Methods: A Survey,” Data Science and Engineering, 1(4),
265–284, 2016, doi:10.1007/s41019-016-0022-0.

[8] S. Alwajidi, L. Yang, “Multi-Resolution Hierarchical Structure for Efficient
Data Aggregation and Mining of Big Data,” in 2019 International Confer-
ence on Automation, Computational and Technology Management (ICACTM),
153–159, 2019, doi:10.1109/ICACTM.2019.8776717.

[9] B. H. Brinkmann, M. R. Bower, K. A. Stengel, G. A. Worrell, M. Stead,
“Large-scale electrophysiology: Acquisition, compression, encryption, and
storage of big data,” Journal of Neuroscience Methods, 180(1), 185–192, 2009,
doi:10.1016/j.jneumeth.2009.03.022.

[10] H. Zou, Y. Yu, W. Tang, H. M. Chen, “Improving I/O Performance with Adap-
tive Data Compression for Big Data Applications,” in 2014 IEEE International
Parallel Distributed Processing Symposium Workshops, 1228–1237, 2014,
doi:10.1109/IPDPSW.2014.138.

[11] A. A. Abdellatif, A. Mohamed, C.-F. Chiasserini, “User-Centric Networks
Selection With Adaptive Data Compression for Smart Health,” IEEE Systems
Journal, 12(4), 3618–3628, 2018, doi:10.1109/JSYST.2017.2785302.

[12] Q. Han, L. Liu, Y. Zhao, Y. Zhao, “Ecological Big Data Adaptive Compression
Method Combining 1D Convolutional Neural Network and Switching Idea,”
IEEE Access, 8, 20270–20278, 2020, doi:10.1109/ACCESS.2020.2969216.

[13] A. Oussous, F.-Z. Benjelloun, A. Ait Lahcen, S. Belfkih, “Big Data technolo-
gies: A survey,” Journal of King Saud University - Computer and Information
Sciences, 30(4), 431–448, 2018, doi:10.1016/j.jksuci.2017.06.001.

[14] D. M. S. Arsa, G. Jati, A. J. Mantau, I. Wasito, “Dimensionality reduction
using deep belief network in big data case study: Hyperspectral image classifi-
cation,” in 2016 International Workshop on Big Data and Information Security
(IWBIS), 71–76, 2016, doi:10.1109/IWBIS.2016.7872892.

[15] M. A. Belarbi, S. Mahmoudi, G. Belalem, “PCA as Dimensionality Re-
duction for Large-Scale Image Retrieval Systems,” 2017, doi:10.4018/

IJACI.2017100104.

[16] J. A. R. Rojas, M. Beth Kery, S. Rosenthal, A. Dey, “Sampling techniques
to improve big data exploration,” in 2017 IEEE 7th Symposium on Large
Data Analysis and Visualization (LDAV), 26–35, IEEE, Phoenix, AZ, 2017,
doi:10.1109/LDAV.2017.8231848.

[17] T. Hasanin, T. Khoshgoftaar, “The Effects of Random Undersampling with
Simulated Class Imbalance for Big Data,” in 2018 IEEE International Con-
ference on Information Reuse and Integration (IRI), 70–79, 2018, doi:
10.1109/IRI.2018.00018.

[18] C. K. Maurya, D. Toshniwal, G. Vijendran Venkoparao, “Online sparse class
imbalance learning on big data,” Neurocomputing, 216, 250–260, 2016, doi:
10.1016/j.neucom.2016.07.040.

[19] W. Song, P. Liu, L. Wang, “Sparse representation-based correlation analysis of
non-stationary spatiotemporal big data,” International Journal of Digital Earth,
9(9), 892–913, 2016, doi:10.1080/17538947.2016.1158328.

[20] G. Cormode, N. Duffield, “Sampling for big data: a tutorial,” in Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, KDD ’14, 1975, Association for Computing Machinery, New
York, New York, USA, 2014, doi:10.1145/2623330.2630811.

[21] M. Malhat, M. El Menshawy, H. Mousa, A. El Sisi, “Improving instance
selection methods for big data classification,” in 2017 13th International
Computer Engineering Conference (ICENCO), 213–218, 2017, doi:10.1109/

ICENCO.2017.8289790, iSSN: 2475-2320.

www.astesj.com 467

http://www.astesj.com

S. Alwajidi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 460-468 (2020)

[22] J. K. Kim, Z. Wang, “Sampling Techniques for Big Data Analysis,” Interna-
tional Statistical Review, 87(S1), S177–S191, 2019, doi:10.1111/insr.12290.

[23] S. Garcı́a, S. Ramı́rez-Gallego, J. Luengo, J. M. Benı́tez, F. Herrera, “Big
data preprocessing: methods and prospects,” Big Data Analytics, 1(1), 2016,
doi:10.1186/s41044-016-0014-0.

[24] S. Garcı́a, J. Luengo, F. Herrera, “Instance Selection,” in Data Preprocessing in
Data Mining, volume 72, 195–243, Springer International Publishing, Cham,
2015, doi:10.1007/978-3-319-10247-4 8.

[25] R. M. Kaplan, D. A. Chambers, R. E. Glasgow, “Big Data and Large Sample
Size: A Cautionary Note on the Potential for Bias,” Clinical and Translational
Science, 7(4), 342–346, 2014, doi:10.1111/cts.12178.

[26] Y. Liu, W. Guo, C.-I. Fan, L. Chang, C. Cheng, “A Practical Privacy-Preserving
Data Aggregation (3PDA) Scheme for Smart Grid,” IEEE Transactions on In-
dustrial Informatics, 15(3), 1767–1774, 2019, doi:10.1109/TII.2018.2809672.

[27] M. Tamai, A. Hasegawa, “Data aggregation among mobile devices for upload
traffic reduction in crowdsensing systems,” in 2017 20th International Sympo-
sium on Wireless Personal Multimedia Communications (WPMC), 554–560,
2017, doi:10.1109/WPMC.2017.8301874, iSSN: 1882-5621.

[28] J. Han, “Towards on-line analytical mining in large databases,” ACM Sigmod
Record, 27(1), 97–107, 1998.

[29] T. Ritbumroong, “Analyzing Customer Behavior Using Online Analytical
Mining (OLAM),” 2015, doi:10.4018/978-1-4666-6477-7.ch006.

[30] B. W. F. Pan, D. R. Y. Cui, Q. D. W. Perrizo, “Efficient OLAP Operations for
Spatial Data Using Peano Trees,” in Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, 28–34,
San Diego, California, 2003.

[31] T. Zhang, R. Ramakrishnan, M. Livny, “BIRCH: an efficient data cluster-
ing method for very large databases,” in ACM Sigmod Record, volume 25,
103–114, ACM, 1996.

[32] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, “A Density-Based Algorithm for Dis-
covering Clusters in Large Spatial Databases with Noise,” in Proceedings 2nd
International Conference on Knowledge Discovery and Data Mining, 226–231,
1996.

[33] K. Mahesh Kumar, A. Rama Mohan Reddy, “A fast DBSCAN clustering al-
gorithm by accelerating neighbor searching using Groups method,” Pattern
Recognition, 58, 39–48, 2016, doi:10.1016/j.patcog.2016.03.008.

[34] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang, J. Du,
“Fast neighbor search by using revised k-d tree,” Information Sciences, 472,
145–162, 2019, doi:10.1016/j.ins.2018.09.012.

[35] Y. Hong, Q. Tang, X. Gao, B. Yao, G. Chen, S. Tang, “Efficient R-Tree
Based Indexing Scheme for Server-Centric Cloud Storage System,” IEEE
Transactions on Knowledge and Data Engineering, 28(6), 1503–1517, 2016,
doi:10.1109/TKDE.2016.2526006.

[36] L.-Y. Wei, Y.-T. Hsu, W.-C. Peng, W.-C. Lee, “Indexing spatial data in cloud
data managements,” Pervasive and Mobile Computing, 15, 48–61, 2014, doi:
10.1016/j.pmcj.2013.07.001.

[37] M. Huang, F. Bian, “A Grid and Density Based Fast Spatial Clustering Al-
gorithm,” in 2009 International Conference on Artificial Intelligence and
Computational Intelligence, 260–263, IEEE, Shanghai, China, 2009, doi:
10.1109/AICI.2009.228.

[38] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard, “Oc-
toMap: an efficient probabilistic 3D mapping framework based on octrees,”
Autonomous Robots, 34(3), 189–206, 2013, doi:10.1007/s10514-012-9321-0.

[39] E. J. Clarke, B. A. Barton, “Entropy and MDL discretization of continuous
variables for Bayesian belief networks,” International Journal of Intelligent
Systems, 15(1), 61–92, 2000, doi:10.1002/(SICI)1098-111X(200001)15:1〈61::
AID-INT4〉3.0.CO;2-O.

[40] H. Wei, Y. Du, F. Liang, C. Zhou, Z. Liu, J. Yi, K. Xu, D. Wu, “A k-d tree-based
algorithm to parallelize Kriging interpolation of big spatial data,” GIScience &
Remote Sensing, 52(1), 40–57, 2015, doi:10.1080/15481603.2014.1002379.

[41] B. Chatterjee, I. Walulya, P. Tsigas, “Concurrent Linearizable Nearest Neigh-
bour Search in LockFree-kD-tree,” in Proceedings of the 19th Interna-
tional Conference on Distributed Computing and Networking, ICDCN ’18,
1–10, Association for Computing Machinery, Varanasi, India, 2018, doi:
10.1145/3154273.3154307.

[42] A. Bifet, J. Zhang, W. Fan, C. He, J. Zhang, J. Qian, G. Holmes, B. Pfahringer,
“Extremely Fast Decision Tree Mining for Evolving Data Streams,” in Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’17, 1733–1742, Association for Computing
Machinery, Halifax, NS, Canada, 2017, doi:10.1145/3097983.3098139.

[43] S. J. Hong, “Use of contextual information for feature ranking and discretiza-
tion,” IEEE Transactions on Knowledge and Data Engineering, 9(5), 718–730,
1997, doi:10.1109/69.634751.

www.astesj.com 468

http://www.astesj.com

	 Introduction
	Techniques for Data Reduction
	Multi-Resolution tree structure for data Aggregation
	Tree node index and mapping between nodes
	Sufficient Statistical Measures
	Implementation and Performance Analysis

	Bayes Data Classification
	Entropy Discretization Overview and Challenges
	The Motivation
	Entropy Discretization Overview and Challenges
	Proposed Algorithm

	Conclusions

