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 This paper studied the bending analysis of an isotropic rectangular plate for the effects of 
aspect ratio, shear and deflection on the critical lateral load of the plates using the 
polynomial shear deformation theory (PSDT). One of the plate is clamped at opposite edge 
clamped and the other opposite edge simply supported (CSCS). The other of the plate is 
simply supported at the first and fourth edge, clamped at second edge and free of support 
at the third edge (SCFS). Direct variational method of analysis was adopted using strain-
displacement expressions to obtain the direct governing equations for the determination of 
the coefficient of deflection and shear deformation along the direction of x and y coordinate. 
From the established equation, a new model for determination of the critical lateral 
imposed load of the plate is developed. The study revealed that: (i) as the specified thickness 
of the plate increases, the value of critical lateral imposed load increase (ii) the critical 
lateral imposed load decrease as the plates span increases. Numerical comparison was 
conducted to verify and demonstrate the efficiency of the present theory. The result obtained 
are in good agreement with those in the literature. 
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1. Introduction  

Plates are widely used as the main structural components of 
the hull of ships, automobiles, gate dams, aircrafts, bridges, etc., 
because they possess interesting structural characteristics. For 
instance, when they are subjected to transverse loading (loading 
perpendicular to their fiber direction), they transit from their 
stable state of equilibrium to the unstable one. Such transition is 
normally referred to as bending or structural instability. During 
this transition, a critical point exists where an infinitesimal 
increase in load can cause the plate surface to bend.  

The load at this critical point defines the bending and shear 
strength of the plate, or the critical load. Increase in load beyond 
the critical load leads to collapse [1].  

Meanwhile, it is proven that when the critical load is lesser 
than the value of allowable load of the structure, the structure will 
remain on the straight or limited deflection. When the critical load 
exceeds the design load of the structure, it will be in deflecting 
position [1]. Therefore, there is need to determine the critical load. 

Due to enormous application of plate and their relevant in 
engineering, various theories for plate analysis have been 
developed using linear strain-displacement expressions. It is 
proven from previous studies that results obtained using linear 
strain-displacement expressions may be unreliable for nonlinear 
stress and bending analyses [2, 3]. 

Isotropic plates refer to plates whose material properties in all 
directions at a point are same while anisotropic or orthotropic 
plates refer to plates whose material properties are direction 
dependent [4, 5]. They can also be classified according to their 
shapes as rectangular, circular, triangular, skew and elliptical 
plates. Isotropic thick plates are being widely used in structures 
subjected to uniformly distributed load, which produce a very 
large stresses on it [6, 7]. In order to describe the correct bending 
response of any type of plates, including shear deformation effects, 
refined theories are required.  

In classical plate theory, it is assumed that line which is normal 
to the neutral surface before deformation remain straight and 
normal on the neutral surface after deformation. This assumption 
results in under-estimation of deflection [8-10]. 

First order shear deformation theory (FSDT) has been 
employed by many researchers to analyze thick plates. The theory, 
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unlike the classical plate theory (CPT) took account of the shear 
deformation by introducing shear correction factor to satisfy the 
constitutive relations for transverse shear stresses and shear 
strains. The authors in [11], adopted FSDT in their work by 
employing a stress and displacement based approach respectively, 
which incorporates the effect of shear deformation. FSDT is 
discovered to have assumed transverse shear stress to be constant 
through the thickness of the plate, which violates the shear stress 
free surface conditions on the top and bottom surfaces of the plate 
[11-13].  The errors in deflection and stresses, the importance of 
the shear effect in plate bending was realized and the higher order 
theories were developed which take transverse stresses and strains 
into account. Higher order theories aim at improving the accuracy 
by incorporating transverse strains/stresses in the formulation 
without shear correction factor. 

Results obtained in [6, 7, 14, 15] using the above theories 
[Exponential, hyperbolic and Trigonometric shear deformation 
function] often shows slight errors in predicting responses of the 
lateral load on the structures because tedious nature and not too 
sure of ones works using Fourier series to analyze thick plate. In 
this present work, the polynomial shear deformation function is 
used. 

In the present paper, nonlinear strain–displacement 
expressions are employed for the analysis of rectangular plates 
subjected to uniform distributed loads to suggest a more reliable, 
refined plate theory that satisfies the continuity of all of the 
transverse stress components. This theory, which is based on 
traditional fourth-order shear deformation plate is presented and 
applied in a bending analysis of rectangular thick plates using the 
direct variational energy method. The investigation involves two 
case studies. One of the plate has an opposite edge clamped and 
the other opposite edge simply supported (CSCS). The other on 
the plate has simply supported at the first and fourth edge, 
clamped at second edge and free of support at the third edge 
(SCFS). Furthermore, derivation of three simultaneous governing 
equations for the plate and numerical solutions for deformations 
and stress distributions of different points of the plate with a 
uniformly distributed mechanical load for various boundary 
conditions is presented.  

The aim of this study is to determine bending analysis of an 
isotropic rectangular plate for the effects of aspect ratio and 
deflection on the critical lateral load of the plates. The study 
sought to achieve the aim through the following objectives: 

• To formulate the potential energy of a thick rectangular plate 
in line with the work of author in [17]. 

• To perform general variation of the total potential energy     
and obtain the solution of resulting three simultaneous 
governing equations. 

• To perform a direct variation of the total potential energy and 
obtain formulas to calculate coefficients of deflection and 
shear deformation rotation in both x and y axes. 

• To determine the values of stiffness coefficients (k) using 
polynomial displacement functions. 

• To obtain the in-plane and out of plane displacement and 
stresses of the rectangular thick plate. 

• To determine the critical lateral imposed load before 
deflection reaches the maximum specified limit (q𝑖𝑖𝑖𝑖)  and its 

corresponding critical lateral imposed load before the plate 
reaches an elastic yield stress (q𝑖𝑖𝑖𝑖). 

2. Previous Works 

The authors in [7], applied a new hyperbolic shear 
deformation theory for the bending and free vibration analysis of 
isotropic, functional graded laminated plate. Hamilton principle 
was applied using a Navier procedure to obtain the deflection and 
stresses in the rectangular plate. 

In [10], the authors developed a mathematical model that is 
based on direct variation procedures and potential energy 
principle, and applied to thin rectangular Plates with two opposite 
edges clamped and other opposite edges simply supported and 
thin rectangular plates with one edge clamped and the three other 
sides simply supported. Their result clearly shows that the direct 
variational method circumvents the tedious and rigorous 
procedures involved in the classical and numerical methods. 

In [12, 13], the authors used a first order shear deformation 
theory which was applied in the analysis of thick rectangular 
plates clamped at opposite edge clamped and the other opposite 
edge simply supported (CSCS). They determined the centroidal 
deflection of the plate. The authors in [11] unlike [12] improved 
by using a generalized Levy solution approach in the analysis of 
thick rectangular plates, clamped at opposite edge clamped and 
the other opposite edge simply supported (CSCS). Both did not 
take into account effect of transverse shear deformation. 

In [15], the authors used a trigonometric shear deformation 
theory (TSDT) was for the analysis of isotropic plate, taking into 
account transverse shear deformation effect is presented. The 
theory which was built upon the classical plate theory uses the 
virtual work principle to determine the displacement and stress in 
a thick rectangular plate with four edges simply supported plate. 
They got the results of stresses for static flexural analysis of 
simply supported thick isotropic plates for uniformly distributed 
load. 

 
The authors in [16], used polynomial shear deformation theory 

(PSDT) for the analysis of rectangular plates. Their theory 
incorporates the effect of transverse shear stress and shear 
deformation in the analysis.  Results obtained using the theories 
did not introduce much error and easier to apply in the analysis, 
but it ended up determining the displacements, moments and 
stresses that may occur due to the applied load without obtaining 
the critical lateral load in predicting responses of the applied load 
which can lead to failure on the structures. 

 
The authors in [17, 18] have used PSDT for the analysis of 

rectangular plates. They obtained the expression for critical lateral 
load in predicting responses of the applied load determined to 
solve bending problem of rectangular plates with all four edges 
clamped (CCCC) and plate with free of support at third edge and 
the other edges clamped (CCFC) using third order shear 
deformation theory for rectangular thick plate respectively. They 
[17] did not check the effect of shear stress and [18] did not solve 
for order boundary condition. 

 
Apart from the distinctiveness of the present study with 

respective individual previous works, there exists an aspect of 
distinctiveness of the present study over the previous works put 
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together. This lies in exponential functions, hyperbolic functions, 
trigonometric and polynomial displacement function. The present 
work unlike the previous works which assumed the displacement 
function, perform general variation of the total potential energy in 
order to get a close form (exact) polynomial displacement 
function from first principle. They also went ahead to determine 
the critical lateral impose load used in predicting the flexural 
characteristics for an isotropic rectangular CSCS and SCFS plate, 
a feat previous work did not achieve. 

3. Methodology 

3.1. Assumptions 

Considering the following assumptions, the total potential 
energy of a thick rectangular plate will be formulated. They 
includes: 

• The material of the plate is homogeneous and isotropic. 
• The plate material is elastic and obeys Hooke’s law. 
• The deflection (w) is less than one-fifth of the thickness. 
• The stress normal to x-y plane is so small that it can be 

neglected. That is to say those, the in-plane displacements, u 
and v are differentiable in x, y and z coordinates, while the 
out-of-plane displacement (deflection), w is only 
differentiable in x and y coordinates.  

• The effect of the out-of-plane normal stress on the gross 
response of the plate is small when compared with other 
stresses.  

• The vertical line that is initially normal to the middle surface 
of the plate before           bending is no longer straight nor 
normal to the middle surface after bending. 

3.2. Kinematics and Constitutive Relations 

The kinematics in the structural mechanics sense mean the 
relationship between the engineering strains and displacement. 
The three displacements of thick place assumed to involve the 
deflection, w(x,y) and the two inplane displacements, u(x,y,z),  
and v(x,y,z) was used to establish the constitutive equations of the 
rectangular plate. The values of deflection (w), inplane 
displacement along x and y axis (u and v) as was gotten from the 
assumption made in the previous section as: 

𝑢𝑢 =  
𝑧𝑧𝑧𝑧𝑧𝑧
𝑧𝑧𝑑𝑑

+  𝐹𝐹. 𝜃𝜃𝑠𝑠𝑠𝑠                                                                        (1) 

Similarly, 

𝑣𝑣 =  
𝑧𝑧𝑧𝑧𝑧𝑧
𝑧𝑧𝑑𝑑

+  𝐹𝐹. 𝜃𝜃𝑠𝑠𝑠𝑠                                                                        (2) 

The normal strain along x, y and z axis are 𝜀𝜀𝑠𝑠 , 𝜀𝜀𝑠𝑠 and 𝜀𝜀𝑧𝑧 
respectively. That is: 

𝜀𝜀𝑠𝑠 =
𝑧𝑧𝑢𝑢
𝑧𝑧𝑑𝑑

                                                                                          (3) 
Similarly reasoning in y direction, gives:  
 

𝜀𝜀𝑠𝑠 =
𝑧𝑧𝑣𝑣
𝑧𝑧𝑑𝑑

                                                                                          (4) 

Similarly reasoning in z direction, gives:  

𝜀𝜀𝑧𝑧 =
𝑧𝑧𝑧𝑧
𝑧𝑧𝑧𝑧

                                                                                         (5) 
The curvature in x-z plane is defined as: 

𝛾𝛾𝑠𝑠𝑠𝑠 =
𝑧𝑧𝑢𝑢
𝑧𝑧𝑑𝑑

+
𝑧𝑧𝑣𝑣
𝑧𝑧𝑑𝑑

                                                                            (6) 

The curvature in x-z plane is defined as: 

𝛾𝛾𝑠𝑠𝑧𝑧 =
𝑧𝑧𝑢𝑢
𝑧𝑧𝑧𝑧

+
𝑧𝑧𝑧𝑧
𝑧𝑧𝑑𝑑

                                                                            (7) 
The curvature in x-z plane is defined as: 

𝛾𝛾𝑠𝑠𝑧𝑧 =  
𝑧𝑧𝑣𝑣
𝑧𝑧𝑧𝑧

+
𝑧𝑧𝑧𝑧
𝑧𝑧𝑑𝑑

                                                                             (8) 
Shear deformation profile of the thick rectangular section of 

plate 𝐹𝐹(𝑧𝑧) used in this study is given as [17]:  

𝐹𝐹(𝑧𝑧) =
5z
3
�𝑧𝑧3 −

2𝑧𝑧
𝑡𝑡3
�                                                                    (9) 

Where; 
θSx and θSy =shear deformation rotation along x and y axis. 
The constitutive equations for five stress and strain 

components are: 
𝜀𝜀𝑠𝑠 =

𝜎𝜎𝑋𝑋 − 𝜇𝜇𝜎𝜎𝑌𝑌
𝐸𝐸

                                                                              (10) 

𝜀𝜀𝑠𝑠  =
𝜎𝜎𝑌𝑌 − 𝜇𝜇𝜎𝜎𝑋𝑋

𝐸𝐸
                                                                             (11) 

𝛾𝛾𝑠𝑠𝑠𝑠 =
2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑠𝑠

𝐸𝐸
                                                                       (12) 

𝛾𝛾𝑠𝑠𝑠𝑠 =
2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧

𝐸𝐸
                                                                       (13) 

𝛾𝛾𝑠𝑠𝑧𝑧 =
2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧

𝐸𝐸
                                                                       (14) 

The constitutive equations for five stress and strain 
components becomes: 
𝜎𝜎𝑠𝑠 = 𝐸𝐸𝜀𝜀𝑠𝑠 +  𝜇𝜇𝜎𝜎𝑠𝑠                                                                           (15) 

∴  𝜎𝜎𝑠𝑠 =
𝐸𝐸�𝜀𝜀𝑠𝑠 + 𝜇𝜇𝜀𝜀𝑠𝑠�

1 − 𝜇𝜇2
                                                                   (16) 

Similarly reasoning in y direction, gives:  

𝜎𝜎𝑠𝑠 =
𝐸𝐸�𝜀𝜀𝑠𝑠 + 𝜇𝜇𝜀𝜀𝑠𝑠�

1 − 𝜇𝜇2
                                                                       (17) 

Similarly reasoning in z direction, gives:  

𝜎𝜎𝑧𝑧 =
𝐸𝐸(𝜀𝜀𝑧𝑧 + 𝜇𝜇𝜀𝜀𝑠𝑠)

1 − 𝜇𝜇2
                                                                       (18) 

Rearranging equation 12, 13 and 14, the shear stress along (x-
y), (x-z) and (y-z) respectively becomes: 

𝜏𝜏𝑠𝑠𝑠𝑠 =
𝐸𝐸

2(1 + 𝜇𝜇) . 𝛾𝛾𝑠𝑠𝑠𝑠                                                                   (19) 

𝜏𝜏𝑠𝑠𝑧𝑧 =
𝐸𝐸

2(1 + 𝜇𝜇) . 𝛾𝛾𝑠𝑠𝑧𝑧                                                                   (20) 

𝜏𝜏𝑠𝑠𝑧𝑧 =
𝐸𝐸

2(1 + 𝜇𝜇) . 𝛾𝛾𝑠𝑠𝑧𝑧                                                                   (21) 

 

3.3. Total Potential Energy 

The total potential energy functional (Π) of thick rectangular 
isotropic plate were derived [19] from the constitutive relations 
and presented as; 

Π =  𝑈𝑈 + 𝑉𝑉                                                                                (22) 
The strain energy equation, 𝑈𝑈 is presented as: 

𝑈𝑈 =
1
2
� (

𝑡𝑡
2

−𝑡𝑡2

𝜎𝜎𝑠𝑠𝜀𝜀𝑠𝑠+𝜎𝜎𝑠𝑠𝜀𝜀𝑠𝑠+𝜏𝜏𝑠𝑠𝑠𝑠𝛾𝛾𝑠𝑠𝑠𝑠 + 𝜏𝜏𝑠𝑠𝑧𝑧𝛾𝛾𝑠𝑠𝑧𝑧

+ 𝜏𝜏𝑠𝑠𝑧𝑧𝛾𝛾𝑠𝑠𝑧𝑧)𝑧𝑧𝑑𝑑𝑧𝑧𝑑𝑑𝑧𝑧𝑧𝑧                                          (23) 
Substituting appropriately, gave: 
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𝑈𝑈

=
𝐷𝐷
2
���𝑔𝑔1  �

𝑧𝑧2𝑧𝑧
𝑧𝑧𝑑𝑑2

�
2

− 2𝑔𝑔2 �
𝑧𝑧2𝑧𝑧
𝑧𝑧𝑑𝑑2

.
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

� + 𝑔𝑔3 �
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

�
2

�

+ �2𝑔𝑔1  �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑

�
2

− 2𝑔𝑔2 �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑

.
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

� − 2𝑔𝑔2 �
𝜕𝜕2𝑧𝑧
𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑

.
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

��

+ �(1 + 𝜇𝜇)𝑔𝑔3 �
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

� �
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

��

+  
(1 − 𝜇𝜇)

2
�𝑔𝑔3 �

𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

�
2

+ 𝑔𝑔3 �
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

�
2

�

+ �𝑔𝑔1 �
𝑧𝑧2𝑧𝑧
𝑧𝑧𝑑𝑑2

�
2

 − 2𝑔𝑔2 �
𝑧𝑧2𝑧𝑧
𝑧𝑧𝑑𝑑2

.
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

� + 𝑔𝑔3 �
𝑧𝑧𝜃𝜃𝑆𝑆𝑠𝑠
𝑧𝑧𝑑𝑑

�
2

�

+ �
(1 − 𝜇𝜇)

2
𝑔𝑔4(𝜃𝜃𝑆𝑆𝑠𝑠 )2   

+
(1 − 𝜇𝜇)

2
𝑔𝑔4�𝜃𝜃𝑆𝑆𝑠𝑠 �

2

��  𝑧𝑧𝑑𝑑𝑧𝑧𝑑𝑑                                                      (24) 

and the potential energy is presented as: 

𝑉𝑉 = −� � 𝑞𝑞𝑧𝑧(𝑑𝑑,𝑑𝑑)𝜕𝜕𝑑𝑑𝜕𝜕𝑑𝑑 
𝑏𝑏

0

𝑎𝑎

0
                                                     (25) 

By substituting Equation 24 and 25 into 22, gives: 
Π

=
𝐸𝐸𝑡𝑡3 

24(1 − 𝜇𝜇2)𝑎𝑎4
� � ��𝑔𝑔1𝐴𝐴12  �

𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅2

�
2

− 2𝑔𝑔2𝐴𝐴1𝐴𝐴2 �
𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅2

�
21

0

1

0

+ 𝑔𝑔3𝐴𝐴22 �
𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅2

�
2

�

+ �2𝑔𝑔1  
𝐴𝐴12

∝2  �
𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕

�
2

− 2𝑔𝑔2
𝐴𝐴1𝐴𝐴2
∝2 �

𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕

�
2

− 2𝑔𝑔2
𝐴𝐴1𝐴𝐴3
∝2 �

𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕

�
2

� + �(1 + 𝜇𝜇)𝑔𝑔3
𝐴𝐴2𝐴𝐴3
∝2 �

𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕

�
2

�

+  
(1 − 𝜇𝜇)

2
�𝑔𝑔3

𝐴𝐴22

∝2 �
𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕

�
2

+ 𝑔𝑔3
𝐴𝐴32

∝2 �
𝜕𝜕2ℎ
𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕

�
2

�

+ �𝑔𝑔1
𝐴𝐴12 
∝4

�
𝜕𝜕2ℎ
𝜕𝜕𝜕𝜕2

�
2

 − 2𝑔𝑔2
𝐴𝐴1𝐴𝐴3
∝4

�
𝜕𝜕2ℎ
𝜕𝜕𝜕𝜕2

�
2

+ 𝑔𝑔3
𝐴𝐴32 
∝4

�
𝜕𝜕2ℎ
𝜕𝜕𝜕𝜕2

�
2

�

+ �
(1 − 𝜇𝜇)

2
𝜌𝜌2𝑔𝑔4𝐴𝐴22 �

𝜕𝜕ℎ
𝜕𝜕𝑅𝑅

 �
2

  

+
(1 − 𝜇𝜇)

2
.
𝜌𝜌2𝑔𝑔4𝐴𝐴32

∝2
�
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

 �
2

�� 𝑎𝑎𝑎𝑎𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕 

−� � 𝑞𝑞𝐴𝐴1ℎ 𝑎𝑎𝑎𝑎𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕
1

0

1

0
                                                                  (26) 

Where; breathe aspect  

𝐷𝐷 =
𝐸𝐸𝑡𝑡3 

12(1 − 𝜇𝜇2)
                                                                        (27) 

x = aR and y
= bQ                                                                                                  (28) 

The length to breadth aspect ratio, ∝ = b
a

                     (29a)  
The span to thickness ratio, 𝜌𝜌 = a

t
                                  (29𝑎𝑎) 

Let: 
𝑧𝑧 = 𝐴𝐴1. ℎ                                                                                    (30) 

𝜃𝜃𝑆𝑆𝑠𝑠 = 𝜃𝜃𝑆𝑆𝑠𝑠𝑠𝑠 .𝜃𝜃𝑆𝑆𝑠𝑠𝑠𝑠 =  �
𝑧𝑧ℎ
𝑧𝑧𝑅𝑅

� [𝐴𝐴2]                                                  (31) 
   And; 

𝜃𝜃𝑠𝑠𝑠𝑠 = 𝜃𝜃𝑆𝑆𝑠𝑠𝑠𝑠.𝜃𝜃𝑆𝑆𝑠𝑠𝑠𝑠 = �
𝑧𝑧ℎ
𝑧𝑧𝜕𝜕

� [𝐴𝐴3]                                                   (32) 

Where: 
h is the plate shape function. 
w, 𝜃𝜃𝑆𝑆𝑠𝑠 , and 𝜃𝜃𝑆𝑆𝑠𝑠  are the deflection , shear deformation along x 

axis and shear deformation along y axis respectively while, 
A1 , A2  and A3   are the coefficient of the deflection , shear 

deformation along x axis and shear deformation along y axis 
respectively. 

3.4. Governing Energy Equation 

The elastic plate presented plate in Figure 1 and 2 under 
bending subjected to uniformly distributed load was used to 
obtain the displacement – strain relationships in terms of 
curvatures. 

3.4.1. General Governing Equation           

The total potential energy shall be minimized with respect to 
the deflection 𝑧𝑧, shear deformation along x axis, 𝜃𝜃𝑆𝑆𝑠𝑠  and shear 
deformation along y axis, 𝜃𝜃𝑆𝑆𝑠𝑠. Minimizing or differentiating total 
potential energy equation with respect to 𝑧𝑧, 𝜃𝜃𝑆𝑆𝑠𝑠, and 𝜃𝜃𝑆𝑆𝑠𝑠 is said 
to be the direct variation.  
𝜕𝜕Π
𝜕𝜕𝑧𝑧

=
𝜕𝜕Π
𝜕𝜕𝜃𝜃𝑆𝑆𝑠𝑠

=
𝜕𝜕Π
𝜕𝜕𝜃𝜃𝑆𝑆𝑠𝑠

= 0                                                               (33𝑎𝑎) 

By solving the resulting three simultaneous governing 
equation the actual deflection 𝑧𝑧, shear deformation along x axis, 
𝜃𝜃𝑆𝑆𝑠𝑠 and shear deformation along y axis, 𝜃𝜃𝑆𝑆𝑠𝑠 was gotten as: 

𝑧𝑧 = �𝑎𝑎0 +  𝑎𝑎1𝑅𝑅 + 
𝑎𝑎2𝑅𝑅2

2
+
𝑎𝑎3𝑅𝑅3

6
+ 
𝑞𝑞𝑎𝑎4

𝐷𝐷
�
𝑛𝑛1
𝑧𝑧3
� .
𝑅𝑅4

24
�

× �𝑎𝑎0 +  𝑎𝑎1𝜕𝜕 +  
𝑎𝑎2𝜕𝜕2

2
+
𝑎𝑎3𝜕𝜕3

6

+  
𝑞𝑞𝑎𝑎4

𝐷𝐷
�
𝑛𝑛1
𝑧𝑧3
� .
𝜕𝜕4

24
�                                         (33𝑎𝑎) 

The general polynomial shear deformation function (Rotation 
equation for y-axis) of a rectangular plate as was obtained and 
presented: 

𝜃𝜃𝑆𝑆𝑠𝑠 = �𝑎𝑎4 +  𝑎𝑎5𝑅𝑅 +
𝑎𝑎6𝑅𝑅2

2
+ 
𝑞𝑞𝑎𝑎3

𝐷𝐷
�
𝑛𝑛4
𝑔𝑔2∅3

� .
𝑅𝑅3

6
�

× �𝑎𝑎7 +  𝑎𝑎8𝜕𝜕 +  
𝑎𝑎9𝜕𝜕2

2
+
𝑎𝑎10𝜕𝜕3

6

+
𝑎𝑎11𝜕𝜕4

24
�                                                        (34) 

The general polynomial shear deformation function (Rotation 
equation for y-axis) of a rectangular plate as was obtained and 
presented: 

𝜃𝜃𝑆𝑆𝑠𝑠 = �𝑎𝑎7 +   𝑎𝑎8𝑅𝑅 +  
𝑎𝑎9𝑅𝑅2

2
+
𝑎𝑎10𝑅𝑅3

6
+
𝑎𝑎11𝑅𝑅4

24
�

× �𝑎𝑎4 +  𝑎𝑎5𝜕𝜕 +
𝑎𝑎6𝜕𝜕2

2

+  
𝑞𝑞𝑎𝑎3

𝐷𝐷
�
∝3 𝑛𝑛5
𝑔𝑔2∅1

� .
𝜕𝜕3

6
�                                (35) 

http://www.astesj.com/


O. Festus et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 5, 401-413 (2020) 

www.astesj.com     405 

The following type of plate with their respective support 
conditions are in consideration. 

The following type of plate with their respective support 
conditions are in consideration. 

 
 
 

 

 
 
                    
 
 
 
                           
 
           
  
       
 
 

Figure 1: CSCS Rectangular Plate 
 
 
 

 
 
 
 
                         
                            

  

 

 

 

 

 

 
Figure 2: SCFS Rectangular Plate. 

3.4.2. Direct Governing Equation           
The total potential energy shall be minimized with respect to 

the coefficient of the deflection A1, shear deformation along x 
axis A2  and shear deformation along y axis A3. Minimizing or 
differentiating total potential energy equation with respect to 
A1,   A2 , and A3 is said to be the direct variation.  
𝜕𝜕Π
𝜕𝜕𝐴𝐴1

=
𝜕𝜕Π
𝜕𝜕𝐴𝐴2

=
𝜕𝜕Π
𝜕𝜕𝐴𝐴3

= 0                                                                  (36) 

 
This gives: 
 

�
𝑟𝑟11
𝑟𝑟21
𝑟𝑟31

    
𝑟𝑟12
𝑟𝑟22
𝑟𝑟32

    
𝑟𝑟13
𝑟𝑟23
𝑟𝑟33
� �
𝐴𝐴1
𝐴𝐴2
𝐴𝐴3
� =

𝑞𝑞𝑎𝑎4

𝐷𝐷
�
𝑘𝑘𝑓𝑓
0
0
�                                                 (37) 

Let: 
𝑟𝑟11 = 𝑔𝑔1 �𝑘𝑘𝑎𝑎 +

2
∝2 𝑘𝑘𝑏𝑏 +

1
∝4 𝑘𝑘𝑐𝑐�                                                   (38) 

𝑟𝑟12 = −𝑔𝑔2 �𝑘𝑘𝑎𝑎 +
1
∝2 𝑘𝑘𝑏𝑏�                                                               (39) 

𝑟𝑟13 = −𝑔𝑔2 �
1
∝2

𝑘𝑘𝑏𝑏 +
1
∝4

𝑘𝑘𝑐𝑐�                                                          (40) 

𝑟𝑟21 =  −𝑔𝑔2 �𝑘𝑘𝑎𝑎 +
1
∝2

𝑘𝑘𝑏𝑏�                                                              (41) 

𝑟𝑟22 =  �𝑔𝑔3𝑘𝑘𝑎𝑎 +
(1 − 𝜇𝜇)

2 ∝2 𝑔𝑔3𝑘𝑘𝑏𝑏  +
(1 − 𝜇𝜇)

2
𝜌𝜌2𝑔𝑔4𝑘𝑘𝑑𝑑�                 (42) 

𝑟𝑟23 =  𝑔𝑔3
(1 + 𝜇𝜇)

2 ∝2 𝑘𝑘𝑏𝑏                                                                       (43) 

𝑟𝑟31 =  −𝑔𝑔2 �
1
∝2

𝑘𝑘𝑏𝑏 +
1
∝4

𝑘𝑘𝑐𝑐�                                                        (44) 

𝑟𝑟32

=  𝑔𝑔3
(1 + 𝜇𝜇)

2 ∝2 𝑘𝑘𝑏𝑏                                                                              (45) 

𝑟𝑟33 =  �𝑔𝑔3
(1 − 𝜇𝜇)

2
�

1
∝2 𝑘𝑘𝑏𝑏 +

1
∝4

𝑘𝑘𝑐𝑐 �  + 𝑔𝑔4
(1 − 𝜇𝜇)

2 ∝2
𝜌𝜌2𝑘𝑘𝑒𝑒�   (46) 

𝑆𝑆𝑏𝑏 =
𝑟𝑟21. 𝑟𝑟33 − 𝑟𝑟23. 𝑟𝑟31
𝑟𝑟22. 𝑟𝑟33 −  𝑟𝑟23. 𝑟𝑟32

                                                                  (47) 

𝑆𝑆𝑐𝑐 =
𝑟𝑟21. 𝑟𝑟32 − 𝑟𝑟22. 𝑟𝑟31
𝑟𝑟23. 𝑟𝑟32 − 𝑟𝑟22. 𝑟𝑟33

                                                                   (48) 

Therefore; 

𝐴𝐴1 =
𝑞𝑞𝑎𝑎4

𝐷𝐷
�

𝑘𝑘𝑓𝑓
𝑟𝑟11𝑆𝑆1 − 𝑟𝑟12𝑆𝑆2 − 𝑟𝑟13𝑆𝑆3

�                                             (49) 

That is: 

𝐴𝐴1 =
𝑞𝑞𝑎𝑎4

𝐷𝐷
. 𝑘𝑘                                                                                     (50) 

Also; 
𝐴𝐴2 = 𝑆𝑆2𝐴𝐴1                                                                                        (51) 
𝐴𝐴3 = 𝑆𝑆3𝐴𝐴1                                                                                        (52) 

Let: 

𝑘𝑘 =
𝑘𝑘𝑓𝑓
𝑘𝑘𝑇𝑇

                                                                                             (53) 

where, 

𝑘𝑘𝑇𝑇 = 𝑘𝑘𝑎𝑎 +
2
∝2 𝑘𝑘𝑐𝑐 +

1
∝4

𝑘𝑘𝑑𝑑                                                            (54) 
And,  𝑆𝑆1 = 1 

𝑘𝑘𝑎𝑎 = � � �
𝑧𝑧2ℎ
𝑧𝑧𝑅𝑅2

�
1

0

1

0

2

𝑧𝑧𝑅𝑅𝑧𝑧𝜕𝜕                                                        (55) 

𝑘𝑘𝑏𝑏

= � � �
𝑧𝑧2ℎ
𝑧𝑧𝑅𝑅𝑧𝑧𝜕𝜕

�
1

0

1

0

2

𝑧𝑧𝑅𝑅𝑧𝑧𝜕𝜕                                                          (56) 

𝑘𝑘𝑐𝑐 = � � �
𝑧𝑧2ℎ
𝑧𝑧𝜕𝜕2

�
1

0

1

0

2

𝑧𝑧𝑅𝑅𝑧𝑧𝜕𝜕                                                        (57) 

𝑘𝑘𝑑𝑑 = � � �
𝑧𝑧ℎ
𝑧𝑧𝑅𝑅

�
21

0

1

0
𝑧𝑧𝑅𝑅𝑧𝑧𝜕𝜕                                                          (58) 

𝑘𝑘𝑒𝑒 = � � �
𝑧𝑧ℎ
𝑧𝑧𝜕𝜕

�
21

0

1

0
 𝑧𝑧𝑅𝑅𝑧𝑧𝜕𝜕                                                         (59) 

𝑘𝑘𝑓𝑓 = � � ℎ.𝑧𝑧𝑅𝑅𝑧𝑧𝜕𝜕                                                                     (60)
1

0
 

1

0
 

 

3.5. Displacement and stress analysis 

a 

b 

𝑸𝑸 

𝑹𝑹 O 

S 

C 

S 

C 

b 

S 

S F 

C 

𝑸𝑸 

a 

𝑹𝑹 O 
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By incorporating the established expression for deflection and 
shear deformation coefficients the deflection, and the two inplane 
displacement and stresses of the plate is presented as: 
𝑧𝑧 = 𝐴𝐴1. ℎ                                                                                        (61) 

𝑢𝑢 = [−𝐴𝐴1���𝑠𝑠 + 𝐴𝐴2���𝐹𝐹(𝑠𝑠)]
𝑧𝑧ℎ
𝑧𝑧𝑅𝑅

 �
𝑡𝑡𝑞𝑞𝑎𝑎3

𝐷𝐷
�                                          (62) 

𝑣𝑣 =
1
∝

[−𝐴𝐴1���𝑠𝑠 +  𝐴𝐴3���𝐹𝐹(𝑠𝑠)]
𝑧𝑧ℎ
𝑧𝑧𝜕𝜕

 �
𝑡𝑡𝑞𝑞𝑎𝑎3

𝐷𝐷
�                                      (63) 

𝜎𝜎𝑠𝑠 =
𝐸𝐸𝑡𝑡

𝑎𝑎2(1 − 𝜇𝜇2) �
[−𝐴𝐴1���𝑠𝑠 +  𝐴𝐴2��� 𝐹𝐹(𝑠𝑠)]

𝑧𝑧2ℎ
𝑧𝑧𝑅𝑅2

+
𝜇𝜇
∝2

[−𝐴𝐴1���𝑠𝑠 + 𝐴𝐴3���𝐹𝐹(𝑠𝑠)]
𝑧𝑧2ℎ
𝑧𝑧𝜕𝜕2

�
𝑞𝑞𝑎𝑎4

𝐷𝐷
��      (64) 

𝜎𝜎𝑠𝑠 =
𝐸𝐸𝑡𝑡

𝑎𝑎2(1 − 𝜇𝜇2) �𝜇𝜇
[−𝐴𝐴1���𝑠𝑠 + 𝐴𝐴2���𝐹𝐹(𝑠𝑠)]

𝑧𝑧2ℎ
𝑧𝑧𝑅𝑅2

+
1
∝2

[−𝐴𝐴1���𝑠𝑠 + 𝐴𝐴3���𝐹𝐹(𝑠𝑠)]
𝑧𝑧2ℎ
𝑧𝑧𝜕𝜕2

�
𝑞𝑞𝑎𝑎4

𝐷𝐷
��     (65) 

𝜏𝜏𝑠𝑠𝑠𝑠 =
𝐸𝐸𝑡𝑡(1 − 𝜇𝜇)

2𝑎𝑎2(1 − 𝜇𝜇2) �−2𝐴𝐴1���𝑠𝑠 +   𝐴𝐴2���𝐹𝐹(𝑠𝑠)

+  𝐴𝐴3���𝐹𝐹(𝑠𝑠).
1
∝
�
𝑧𝑧2ℎ
𝜕𝜕𝑅𝑅𝜕𝜕𝜕𝜕

                                  (66) 

𝜏𝜏𝑠𝑠𝑧𝑧

=   
𝐸𝐸(1 − 𝜇𝜇)
2(1 − 𝜇𝜇2) 𝐴𝐴2���

𝑧𝑧𝐹𝐹(𝑧𝑧)
𝑧𝑧𝑧𝑧

𝑧𝑧ℎ
𝑧𝑧𝑅𝑅

�
𝑞𝑞𝑎𝑎4

𝐷𝐷
�                                         (67) 

𝜏𝜏𝑠𝑠𝑧𝑧

=
𝐸𝐸(1 − 𝜇𝜇)
2(1 − 𝜇𝜇2)𝐴𝐴3

��� 𝑧𝑧𝐹𝐹(𝑧𝑧)
𝑧𝑧𝑧𝑧

1
∝
𝑧𝑧ℎ
𝑧𝑧𝜕𝜕

�
𝑞𝑞𝑎𝑎4

𝐷𝐷
�                                        (68) 

Where; 
z = st 
3.6. Formulation of Expression for the Critical Imposed Load 

Before Deflection Reaches Specified Maximum Limit, 𝑞𝑞 𝑖𝑖𝑖𝑖 

The maximum critical lateral load on the plate before its 
deflection reaches allowable value will be determined [17]. This 
is to ensure that deflection does not exceed specified maximum 
limit. 

Therefore: 

𝑧𝑧 = 𝐴𝐴1h < wa                                                                             (69) 

12(1 − 𝜇𝜇2)𝑞𝑞𝑎𝑎4

𝐸𝐸𝑡𝑡3 . 𝑘𝑘. h < wa                                                        (70) 

where, 

wa = Allowable deflection 

Also, 

𝑞𝑞 = 𝛾𝛾 + 𝑞𝑞 𝑖𝑖𝑖𝑖                                                                                (71) 

This gives: 

𝑞𝑞 𝑖𝑖𝑖𝑖
< 𝐸𝐸𝑡𝑡3 wa 

(1 − 𝜇𝜇2)12. 𝑘𝑘. h𝑎𝑎4
− 𝛾𝛾                                                                                                        (72) 

where; 

𝛾𝛾 = Self weight of the plate 

and, 

𝑞𝑞 𝑖𝑖𝑖𝑖 = Critical Imposed load of the plate 

Where; 

𝑖𝑖 = specific thickness 

3.7. Formulation of Expression for the Critical Load before 
Plate Reaches Elastic Yield Stress, 𝒒𝒒 𝒊𝒊𝒊𝒊 
The critical lateral imposed load on the plate before it reaches 

yielding point is determined [18], to ensure that the stress due to 
the applied stress on the plate does not exceed elastic yield point. 

Recall that; 

 𝑈𝑈    =
1
2
� ∩

𝑡𝑡
2

−𝑡𝑡2

𝑧𝑧𝑑𝑑𝑧𝑧𝑑𝑑𝑧𝑧𝑧𝑧                                                              (73) 

where; 

∩= 𝜎𝜎𝑠𝑠𝜀𝜀𝑠𝑠+𝜎𝜎𝑠𝑠𝜀𝜀𝑠𝑠+𝜏𝜏𝑠𝑠𝑠𝑠𝛾𝛾𝑠𝑠𝑠𝑠 + 𝜏𝜏𝑠𝑠𝑧𝑧𝛾𝛾𝑠𝑠𝑧𝑧 + 𝜏𝜏𝑠𝑠𝑧𝑧𝛾𝛾𝑠𝑠𝑧𝑧                               (74) 

Substituting values of  𝜀𝜀𝑠𝑠, 𝜀𝜀𝑠𝑠  , 𝛾𝛾𝑠𝑠𝑠𝑠, 𝛾𝛾𝑠𝑠𝑠𝑠 , 𝑎𝑎𝑛𝑛𝑧𝑧 𝛾𝛾𝑠𝑠𝑧𝑧 10 to 14 into 
Equation 74 gives: 

∩=
1
𝐸𝐸
�𝜎𝜎𝑠𝑠2− 𝜇𝜇𝜎𝜎𝑠𝑠𝜎𝜎𝑠𝑠− 𝜇𝜇𝜎𝜎𝑠𝑠𝜎𝜎𝑠𝑠 + 𝜎𝜎𝑠𝑠2 + 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑠𝑠2

+ 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧2 + 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧2�              (75) 

To ensure that the critical lateral load the plate is determined 
before it reaches yielding; 

∩=
1
𝐸𝐸
�𝜎𝜎𝑠𝑠2− 𝜇𝜇𝜎𝜎𝑠𝑠𝜎𝜎𝑠𝑠− 𝜇𝜇𝜎𝜎𝑠𝑠𝜎𝜎𝑠𝑠 + 𝜎𝜎𝑠𝑠2 + 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑠𝑠2

+ 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧2 + 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧2� < ∩0   (76) 

Where; 

∩0= yielding point of the plate. 

For a bar, 

𝑙𝑙𝑙𝑙𝑡𝑡 𝜎𝜎𝑠𝑠 = 𝑓𝑓𝑑𝑑 𝑎𝑎𝑛𝑛𝑧𝑧 𝜎𝜎𝑠𝑠 = 𝜏𝜏𝑠𝑠𝑠𝑠 = 𝜏𝜏𝑠𝑠𝑧𝑧 = 𝜏𝜏𝑠𝑠𝑧𝑧 = 0                          (77) 

Therefore; 

∩<∩0>   
 𝑓𝑓𝑑𝑑2

𝐸𝐸
                                                                               (78) 

Substituting Equation 76 into 78 gives: 
1
𝐸𝐸
�𝜎𝜎𝑠𝑠2− 2𝜇𝜇𝜎𝜎𝑠𝑠𝜎𝜎𝑠𝑠 + 𝜎𝜎𝑠𝑠2 + 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑠𝑠2 + 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧2

+ 2(1 + 𝜇𝜇)𝜏𝜏𝑠𝑠𝑧𝑧2� <
 𝑓𝑓𝑑𝑑2

𝐸𝐸
                           (79) 

Let, 

𝜎𝜎𝑠𝑠 = 𝑛𝑛1𝜎𝜎𝑠𝑠  ≡ 𝑛𝑛1 =
𝜎𝜎𝑌𝑌
𝜎𝜎𝑠𝑠

                                                               (80) 

𝜏𝜏𝑠𝑠𝑠𝑠 = 𝑛𝑛2𝜎𝜎𝑠𝑠 ≡ 𝑛𝑛2 =
𝜏𝜏𝑠𝑠𝑠𝑠
𝜎𝜎𝑠𝑠

                                                             (81) 

𝜏𝜏𝑠𝑠𝑧𝑧 = 𝑛𝑛3𝜎𝜎𝑠𝑠  ≡ 𝑛𝑛3 =
𝜏𝜏𝑠𝑠𝑧𝑧
𝜎𝜎𝑠𝑠

                                                             (82) 
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𝜏𝜏𝑠𝑠𝑧𝑧 = 𝑛𝑛4𝜎𝜎𝑠𝑠  ≡ 𝑛𝑛4 =
𝜏𝜏𝑠𝑠𝑧𝑧
𝜎𝜎𝑠𝑠

                                                                (83) 

Therefore, substituting Equations 80, 81, 82 and 83 into 79 
gives: 

𝜎𝜎𝑠𝑠2 −  2𝜇𝜇𝑛𝑛1𝜎𝜎𝑠𝑠2 + 𝑛𝑛12𝜎𝜎𝑠𝑠2 + 2(1 + 𝜇𝜇)𝑛𝑛22𝜎𝜎𝑠𝑠2 + 2(1 + 𝜇𝜇)𝑛𝑛32𝜎𝜎𝑠𝑠2

+ 2(1 + 𝜇𝜇)𝑛𝑛4
2𝜎𝜎𝑠𝑠2 < 𝑓𝑓𝑑𝑑2                             (84) 

This gives: 

𝜎𝜎𝑠𝑠 <
𝑓𝑓𝑑𝑑

��1−  2𝜇𝜇𝑛𝑛1 + 𝑛𝑛12 + 2(1 + 𝜇𝜇)𝑛𝑛22 + 2(1 + 𝜇𝜇)𝑛𝑛32 + 2(1 + 𝜇𝜇)𝑛𝑛4
2�

  (85) 

Simplifying Equation 64, gives: 

𝜎𝜎𝑠𝑠 =
𝐸𝐸𝑠𝑠𝑡𝑡A1

(1 − 𝜇𝜇2) ∝2 �
𝑧𝑧2ℎ
𝑧𝑧𝑅𝑅2

 +
𝜇𝜇
∝2

𝑧𝑧2ℎ
𝑧𝑧𝜕𝜕2

�                                        (86) 

Thus: 

𝜎𝜎𝑠𝑠 = 𝑠𝑠 �
𝑧𝑧2ℎ
𝑧𝑧𝑅𝑅2

 +
𝜇𝜇
𝛼𝛼2

𝑧𝑧2ℎ
𝑧𝑧𝜕𝜕2

�
𝑞𝑞𝑎𝑎2

𝑡𝑡2 . 12𝑘𝑘                                          (87) 

Equating 85 and 87, gives: 

12. 𝑞𝑞𝑎𝑎2. 𝑘𝑘. 𝑠𝑠
𝑡𝑡2 .𝛽𝛽2 <

𝑓𝑓𝑑𝑑
𝛽𝛽3

                                                                  (88) 

where; 

𝛽𝛽2 = �
𝑧𝑧2ℎ
𝑧𝑧𝑅𝑅2

 +
𝜇𝜇
∝2

𝑧𝑧2ℎ
𝑧𝑧𝜕𝜕2

�                                                               (89) 

and, 

𝛽𝛽3 = ��1 −  2𝜇𝜇𝑛𝑛1 + 𝑛𝑛12 + 2(1 + 𝜇𝜇)𝑛𝑛22 + 2(1 + 𝜇𝜇)𝑛𝑛32 + 2(1 + 𝜇𝜇)𝑛𝑛4
2� (90) 

From Equation 88, expression for q was gotten as: 

𝑞𝑞

<
𝑓𝑓𝑑𝑑𝑡𝑡2 

12. 𝑎𝑎2.𝑘𝑘. 𝑠𝑠.𝛽𝛽2.𝛽𝛽3
                                                                     (91) 

Let; 

𝑞𝑞 = 𝑞𝑞 𝑑𝑑  + 𝑞𝑞 𝑖𝑖𝑖𝑖                                                                              (92) 

This gives: 

𝑞𝑞 𝑖𝑖𝑖𝑖 <
𝑓𝑓𝑑𝑑𝑡𝑡2 

12. 𝑎𝑎2. 𝑘𝑘. 𝑠𝑠.𝛽𝛽2.𝛽𝛽3
− 𝑞𝑞 𝑑𝑑                                                   (93) 

This gave: 

𝑞𝑞 𝑖𝑖𝑖𝑖 <
𝑓𝑓𝑑𝑑𝑡𝑡2 

12. 𝑎𝑎2. 𝑘𝑘. 𝑠𝑠.𝛽𝛽2.𝛽𝛽3
                                                            (94) 

This gave: 

𝑞𝑞 𝑖𝑖𝑖𝑖 < 𝛽𝛽4𝑡𝑡2 − 𝛾𝛾𝑡𝑡                                                                           (95) 

where; 

𝛽𝛽4 =
𝑓𝑓𝑑𝑑

12. 𝑎𝑎2. 𝑘𝑘. 𝑠𝑠𝑡𝑡.𝛽𝛽2.𝛽𝛽3
                                                              (96) 

𝑞𝑞 𝑖𝑖𝑖𝑖
= critical  imposed lateral load before  plate reach yield stress; 𝑓𝑓𝑑𝑑
= strength 

𝑖𝑖 = specific thickness 

𝑞𝑞 𝑑𝑑 = Self weight of the plate 

4. Results and Discussions 

4.1. Results 

The numerical analysis of CSCS and SCFS rectangular plate 
at various span-thickness ratios are presented in Figure 2 to 10 and 
Figure 11 to 19 respectively.  

A fourth order polynomial displacement function for the 
analysis CSCS plate was derived as presented in Equation 97: 

𝑧𝑧 =
𝐹𝐹𝑎𝑎4.𝐹𝐹𝑏𝑏4

576
(𝑅𝑅 − 2𝑅𝑅3 + 𝑅𝑅4) × (𝜕𝜕2 − 2𝜕𝜕3 +  𝜕𝜕4)              (97) 

Let the amplitude, 

𝐴𝐴 =
1

576
(𝐹𝐹𝑎𝑎4 × 𝐹𝐹𝑏𝑏4)                                                                      (98) 

And shape function; 
ℎ = (𝑅𝑅 − 2𝑅𝑅3 +  𝑅𝑅4) × (𝜕𝜕2 − 2𝜕𝜕3 + 𝜕𝜕4)                              (99) 

Also, a third order polynomial displacement function for 
SCFS plate was derived for the analysis as presented in Equation 
100:  

𝑧𝑧 =
𝐹𝐹𝑎𝑎4 × 𝑎𝑎5
17280

(1.5𝑅𝑅2 − 2.5𝑅𝑅3 + 𝑅𝑅4)

× �
7𝜕𝜕
3
−

10
3
𝜕𝜕3 +

10
3
𝜕𝜕4 − 𝜕𝜕5�                (100) 

Let the amplitude, 

𝐴𝐴1 =
1

17280
(𝐹𝐹𝑎𝑎4 × 𝑎𝑎5)                                                               (101) 

And shape function; 
ℎ = (1.5𝑅𝑅2 − 2.5𝑅𝑅3 + 𝑅𝑅4)

× �
7𝜕𝜕
3
−

10
3
𝜕𝜕3 +

10
3
𝜕𝜕4 − 𝜕𝜕5�                (102) 

The values stiffness coefficient obtained from the above 
expression is presented in Table 1. Table 3 presents the result of 
the comparison made with previous work [11, 12 and 20] for non-
dimensional center deflection multiplied by D/qa4   of CSCS 
square rectangular thick plate at various aspect ratios while Table 
4 presents the corresponding percentage difference between the 
values of centroidal deflection. 

Figure 3 contains a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of CSCS plate for a span (a) 
of 1000mm at allowable deflection, (wa) of 1.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm.  
Figure 4 contains a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of CSCS plate for a span (a) 
of 1000mm at allowable deflection, (wa) of 3.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm.  
Figure 5 contains a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of CSCS plate for a span (a) 
of 1000mm at allowable deflection, (wa) of 5.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm . 
Figure 6 contains a graph of the critical lateral imposed load 
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versus length to breadth aspect ratio of CSCS plate for a span (a) 
of 3000mm at allowable deflection, (wa) of 1.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 
15mm. Figure 7 contains a graph of the critical lateral imposed 
load versus length to breadth aspect ratio of CSCS plate for a span 
(a) of 3000mm at allowable deflection, (wa) of 3.0mm. A length 
to breadth aspect ratio of 1.0 through 2.0 was used at an interval 
of 0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 8 contains a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of CSCS plate for a span (a) 
of 3000mm at allowable deflection, (wa) of 3.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 
15mm. Figure 9 contains a graph of the critical lateral imposed 
load versus length to breadth aspect ratio of CSCS plate for a span 
(a) of 5000mm at allowable deflection, (wa) of 1.0mm. A length 
to breadth aspect ratio of 1.0 through 2.0 was used at an interval 
of 0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 10 contains a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of CSCS plate for a span (a) 
of 5000mm at allowable deflection, (wa) of 3.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm.  
Figure 11 contains a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of CSCS plate for a span (a) 
of 5000mm at allowable deflection, (wa) of 5.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm . 
Figure 12 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 1000mm at allowable deflection, (wa) of 1.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 13 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 1000mm at allowable deflection, (wa) of 3.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 14 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 1000mm at allowable deflection, (wa) of 5.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
 Figure 15 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 3000mm at allowable deflection, (wa) of 1.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm.  
Figure 16 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 3000mm at allowable deflection, (wa) of 3.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 17 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 3000mm at allowable deflection, (wa) of 5.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 

Figure 18 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 5000mm at allowable deflection, (wa) of 1.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 19 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 5000mm at allowable deflection, (wa) of 3.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 20 depicts a graph of the critical lateral imposed load 
versus length to breadth aspect ratio of SCFS plate for a span (a) 
of 5000mm at allowable deflection, (wa) of 5.0mm. A length to 
breadth aspect ratio of 1.0 through 2.0 was used at an interval of 
0.1 with a specified thickness (𝑖𝑖) of 5mm, 10mm and 15mm. 
Figure 21 is a curve that showed the comparison made with 
previous work [20] for non-dimensional center deflection of 
SCFS rectangular thick plate at 1.5 length to width ratios. 

4.2. Discussion 

It is seen from the Figure 3 to 20 that as the specified 
thickness  (t)  of plate increases, the value of critical lateral 
imposed load (q𝑖𝑖𝑖𝑖  and q𝑖𝑖𝑖𝑖) increases. This implies that increase 
in the thickness of the plate ensures safety in the plate structure. 

More so, from the tables that as the specified deflection (wa) 
increases, the value of critical lateral imposed load (q𝑖𝑖𝑖𝑖), while 
the critical imposed load (q𝑖𝑖𝑖𝑖) remains constant. This implies that 
increase in the allowable deflection value required for the analysis 
of the plate reduces the chances of failure of structural member. 
Meanwhile, this does not affect critical imposed load �q𝑖𝑖𝑖𝑖�. 

From the results of CSCS plate presented in Figure 3 to 11, it 
shows that the values of critical lateral imposed load q𝑖𝑖𝑖𝑖  and q𝑖𝑖𝑖𝑖 
decrease as the length-width ratio increases, this continues until 
failure occurs. This means that an increase in plate length 
increases the chance of failure in a plate structure. 

Figure 3 to 11 presents the result of CSCS plate with span of 
1000mm, 3000mm and 5000mm at allowable deflection of 1mm, 
3mm and 5mm at 5mm, 10mm and 15mm specified thickness. 
From the result, the value of   q𝑖𝑖𝑖𝑖  and q𝑖𝑖𝑖𝑖   is between 
−0.3846 N/mm to 154.288 N/mm  and  −0.0120 N/
mm to 193.825 N/mm  been the highest and lowest value at 
respectively. From that table it is observed that the value of  q𝑖𝑖𝑖𝑖 
if greater than that of q𝑖𝑖𝑖𝑖, this is because the failure of plate in  
q𝑖𝑖𝑖𝑖 means total failure but that of  q𝑖𝑖𝑖𝑖 is like a warning requesting 
maintenance. 

Looking closely at Figure 3 to 5 (CSCS plate with span of 
1000mm at allowable deflection (wa)  value between 1mm to 
5mm). It finds that failure on q𝑖𝑖𝑖𝑖 only occur at between length to 
width ratio of 1.6, 1.8, 1.9 and 2 with a value of -0. 0183N/mm, -
0. 0556N/mm, -0. 0847N/mm, -0.1078 and -0. 1264N/mm in 
thickness of 5mm with value.  

Looking closely at Tables 6 to 11 (CSCS plate with span 
between 1000mm and 5000mm at allowable deflection (wa) 
value between 1mm to 5mm). It finds that failure on q𝑖𝑖𝑖𝑖  only 
occurs at all length to width ratio (1 to 2) between value of -
1.1215N/mm and -0.0036N/mm at all thickness. The negative 
value of critical lateral imposed load q𝑖𝑖𝑖𝑖  (and positive value of 
  q𝑖𝑖𝑖𝑖) only reveals that the plate fails in q𝑖𝑖𝑖𝑖 for the entire plate wa 
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(1mm to 5mm) and span of 1000mm to 5000mm. This means that 
the plate structure is not safe and required maintenance.  

Meanwhile, from Figure 9 to 11, it is observed that total failure 
occurs at length to breadth ratio of 2 with specified thickness of 
5mm at value of -0.3846N/mm and -0. 012N/mm for 
  q𝑖𝑖𝑖𝑖  and q𝑖𝑖𝑖𝑖 respectively. This means that the failure cannot be 
maintained. 

From the results of SCFS plate presented in Figure 12 to 20, it 
shows that the values of critical lateral imposed load q𝑖𝑖𝑖𝑖   
decrease as the length-width ratio increases, this continues until 
failure occurs. This means that an increase in plate length 
increases the chance of failure in a plate structure. Meanwhile the 
values of critical lateral imposed load q𝑖𝑖𝑖𝑖  increase as the length-
width ratio increases, this continues until safety is ensured. 

Figure 12 to 20 presents the result of SCFS plate with span of 
1000mm, 3000mm and 5000mm at allowable deflection of 1mm, 
3mm and 5mm at 5mm, 10mm and 15mm specified thickness. 
From the result, the value of   q𝑖𝑖𝑖𝑖  and q𝑖𝑖𝑖𝑖   is between 
−1.1331N/mm to 80.0504N/mm  and  0.1328N/
mm to 183.365N/mm  been the highest and lowest value at 
respectively. From that tables it is observed that the value of  q𝑖𝑖𝑖𝑖 
if greater than that of q𝑖𝑖𝑖𝑖, this is because the failure of plate in  
q𝑖𝑖𝑖𝑖 means total failure but that of  q𝑖𝑖𝑖𝑖 is like a warning requesting 
maintenance.  

Looking closely at Figure 15 to 20 (SCFS plate with span 
between 1000mm and 5000mm at allowable deflection (wa) 
value between 1mm to 5mm). It is seen that failure on q𝑖𝑖𝑖𝑖 only 
occurs at all length to width ratio (1 to 2) between value of -
1.1331N/mm and -0.1525N/mm at all thickness. The negative 
value of critical lateral imposed load q𝑖𝑖𝑖𝑖  (and positive value of 
  q𝑖𝑖𝑖𝑖) only reveals that the plate fails in q𝑖𝑖𝑖𝑖 for the entire plate wa 
(1mm to 5mm) and span of 1000mm to 5000mm. This means that 
the plate structure is not safe and required maintenance.  

The positive value of critical lateral imposed load q𝑖𝑖𝑖𝑖  𝑎𝑎𝑛𝑛𝑧𝑧 q𝑖𝑖𝑖𝑖 
for other types of plate reveals that the plate neither fail 
in q𝑖𝑖𝑖𝑖  nor  in q𝑖𝑖𝑖𝑖 for plate all span at allowable deflection, wa of 
1000mm to 5000mm for the two boundary conditions into 
consideration. This means that the plate structure is safe. 

However, the value of stiffness coefficient is higher with the 
structure with free support than that with simple support and 
clamped. Consequently, the value of q𝑖𝑖𝑖𝑖  𝑎𝑎𝑛𝑛𝑧𝑧 q𝑖𝑖𝑖𝑖  are higher in 
the CSCS plate than SCFS plate, this shows that the capacity of 
the plate to resist bending is higher in the SCFS plate than that of 
CSCS plate. 

The result from comparison made in Table 2, 3 and Figure 3, 
shows that the average percentage difference between the present 
study and that of [12] and [13] is 9.2% and 16.6% the difference 
is higher than that of [20] because the latter is a higher shear 
deformation theory whose value is closer to the exact as it did not 
require a shear correction factor for the analysis. Meanwhile, the 
result of the three equally validates these polynomial 
displacement functions for rectangular plate’s analysis. Though 
the disparity between the values in bending is obvious. It does not 
invalidate the results, since the values of the present solution are 
upper bound results, which will not put the structure being 
designed in danger. Hence, the approximating function according 
to polynomial function can be used reliably for analysis of a plate 
with all edges clamped and simply supported at opposite edge. 

They present good interpretations of the two results. From Table 
3 and Figure 3, it can be seen that the results obtained in this work 
agree very well with those from the previous work [12, 13 and 20]. 
The disparity between the three values or total average percentage 
difference of 10.6% is very negligible. Hence, the approximating 
function according to the polynomial function can be used with 
confidence for analysis of deflection on a plate with such 
configurations.   
 
5. Conclusion  

A displacement based, refined shear deformation theory 
includes the effects of transverse shear deformations. The 
constitutive relations are satisfied in respect of in-plane stress and 
transverse shear stress. The theory obviates the need of a shear 
correction factor. The governing differential equations and 
associated boundary conditions obtained are variationally 
consistent and can be used with confidence in the analysis of 
isotropic rectangular. 

Furthermore, it can be concluded that the values of critical 
lateral load obtained by this theory achieve accepted vertical shear 
stress to the thickness of plate variation and satisfied the 
transverse flexibility of condition at the top and bottom faces of 
the plate while predicting the flexural characteristics for an 
isotropic rectangular CSCS and SCFS plate. The deflection and 
stresses obtained by present theory are in good agreement with the 
other order theories. This validates the efficacy and credibility of 
the present polynomial shear deformation theory.  

Hence, the effect of deflection and crack in a mild steel 
rectangular plate can be managed in the analysis and design of 
structures. This approach overcomes the challenges of the 
conventional practice in the structural analysis/design which 
involves checking of deflection and shear; the process which is 
proved unreliable. 
 
6. Recommendation of Future Scope of Studies 

This lies in the establishment of higher order orthogonal 
polynomial shear deformation/displacement function for free 
vibration and buckling analysis of rectangular or circular thick 
plate. Then determining the critical buckling load parameters for 
the plate using virtual work principles. 
 

Table 1: Values of Stiffness Coefficient, k for Various Support (boundary 
conditions) 

Typ
e 

Plat
e 

k1 k2 k3 k4 k5 k6 

1 cscs 
0.00
7 

0.00
9 

0.03
9 

0.00
8 

0.00
9 

0.00
7 

2 scfs 
1.50
9 

0.18
2 

0.02
8 

0.07
2 

0.01
6 

0.06
2 

 
Table 2: Percentage difference between the values of centroidal deflection from 

present and past studies 
 

%Diff =  
Absolute difference betwee present and pasr value

Past value  
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ρ =
a
t
 Present [11] [12] [20] 

5 0.0024 17.447 28.511 13.3448 
10 0.0021 0.9479 4.7393 3.7168 
20 0.0020 - - 1.0830 
Average 

% 
Difference 

 

9.20 16.63 6.05 
Total % 

Difference 
10.62 

 
 

 
Figure 3: Graph of critical lateral imposed load versus length to breadth ratio of 
CSCS plate for span, a = 1000mm at wa =  1.0mm 
 

 
Figure 4: Graph of critical lateral imposed load versus length to breadth ratio of 

CSCS plate for span, a = 1000mm at wa =  3.0mm 

 
Figure 5 Graph of critical lateral imposed load versus length to breadth ratio of 

CSCS plate for span, a = 1000mm at wa =  5.0mm 

 
Figure 6: Graph of critical lateral imposed load versus length to breadth ratio of 

CSCS plate for span, a = 3000mm at wa =  1.0mm 

 
Figure 7: Graph of critical lateral imposed load versus length to breadth ratio of 

CSCS plate for span, a = 3000mm at wa =  3.0mm 
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Table 3: Comparison of values of non-dimensional center deflection multiplied by 
D/qa4 of CSCS square and 1.5 aspect ratio rectangular thick plate obtained herein 
with those from [12], [13] and [20] respectively. 
  
ρ

=
a
t
 

Present   
( ρ =
1.0) 

[12] 
(ρ
= 1.0) 

[13] 
(ρ
= 1.0) 

Present  
(ρ
= 1.5) 

[20] 
(ρ
= 1.5) 

5 0.0024 0.0028 0.0030 0.0061 0.0069 
10 0.0021 0.0021 0.0022 0.0057 0.0059 
20 0.0020 - - 0.0055 0.0056 

 
 

 
 

Figure 8: Graph of critical lateral imposed load versus length to breadth ratio of 
CSCS plate for span, a = 3000mm at wa =  5.0mm 

 

 
 

Figure 9: Graph of critical lateral imposed load versus length to breadth ratio of 
CSCS plate for span, a = 5000mm at wa =  1.0mm 

 
Figure 10: Graph of critical lateral imposed load versus length to breadth ratio of 

CSCS plate for span, a = 5000mm at wa =  3.0mm 

 
Figure 11: Graph of critical lateral imposed load versus length to breadth ratio of 

CSCS plate for span, a = 5000mm at wa =  5.0mm 
 

 
Figure 12: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 1000mm at wa =  1.0mm 
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Figure 13: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 1000mm at wa =  3.0mm 

 
Figure 14: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 1000mm at wa =  5.0mm 
 

 
Figure 15: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 3000mm at wa =  1.0mm 

 
Figure 16: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 3000mm at wa =  3.0mm  

 
Figure 17: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 3000mm at wa =  5.0mm  

 
Figure 18: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 5000mm at wa =  1.0mm  
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Figure 19: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 5000mm at wa =  3.0mm  
 

 
Figure 20: Graph of critical lateral imposed load versus length to breadth ratio of 

SCFS plate for span, a = 5000mm at wa = 5.0mm  
 

 
Figure 21: Comparison of values deflection of SCFS rectangular thick plate with 

1.5 span-thickness ratio obtained herein with those from [20] 
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