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 Malware has always been a big problem for companies, government agencies, and 
individuals because people still use it as a primary tool to influence networks, applications, 
and computer operating systems to gain unilateral benefits. Until now, malware detection 
with heuristic and signature-based methods are still struggling to keep up with the evolution 
of malware. Machine learning is known to be able to automate the work needed to detect 
families of existing and newly discovered malware. Unfortunately, the machine learning 
method using Support Vector Machine (SVM) for detecting malware can only reach a low 
level of accuracy. In this work, we propose a dynamic analysis method and uses a system 
call sequence to monitor malware behavior. It uses the word2vec technique as word 
embedding and implements deep learning models, namely Long Short-Term Memory 
(LSTM) and Nested LSTM, as classifiers. To compare with existing machine learning 
approach, we also apply the Support Vector Machine (SVM) as a benchmark method. The 
Nested LSTM gets an accuracy of 93.11%, while the LSTM gets the best accuracy of 
98.61%. The LSTM also achieved the best performance in terms of average precision at 
97.57%, the average recall at 97.29%, and the average score of f1 at 97.43%. We have 
found that our model is lightweight but powerful for detecting malware with significant 
accuracy. 
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1. Introduction 
The high use of the internet increases the level of connectivity 

of electronic devices, making questions about the integrity of the 
system. Conventionally, software and computer systems are 
developed for good purposes. However, some software was 
developed to produce crime (malware). Malware is a common 
word used for programs that have malicious code snippets that can 
cause significant threats to computer users or any digital device. 
Malware can contain malicious code viruses, worms, Trojan 
horses, can also make a back door to divulge personal information 
or control a person's system. Through malware, serious crimes can 
be done; This is why malware detection is needed [1]. To detect 
malware definitions must be made for analysis of which malware 
is essential. Malware analysis consists of analyzing various 
aspects of malware so that malware can be detected [2]. The 
definition of malware is also known as a signature/signature. This 
signature is used by virus scanners known as anti-viruses to detect 
malware. The research will experiment on seven types of 
malware, which are adware, backdoor, packed, riskware, trojan, 
virus, and worm. 

Traditional malware detection is done on susceptible files 
that are not processed. This is mostly done with a signature, 
heuristic, and behavioral approach. The signature approach looks 
for static patterns of malware known in suspicious files [3]. 
Research has shown that the signature approach is very weak in 
dealing with polymorphic and metamorphic malware. The 
heuristic approach checks the characteristics of suspicious 
malware from suspicious files. Despite being able to detect 
unknown malware, they are very high at the false-positive level.  

The Behavioral Approach monitors the implementation of 
programs to monitor suspicious behavior. Although this approach 
can detect different malware variants, this approach also has a 
high false-positive [4]. To help malware analysts retrieve useful 
information from large malware samples, the need for automatic 
classification in statistical variants is needed. Malware detection 
based on a signature cannot overcome this variant because it does 
not take polymorphic malware into account. Polymorphic is a 
form of malware that frequently always changes its identifiable 
features to evade detection. Furthermore, such a system can be 
easily avoided. 
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The most important event that can be tracked to determine 
malware behavior is the system call. Before malware performs a 
malicious action, malware needs to use the operating system (OS) 
service of the target. For each activity that is carried out, such as 
opening a file, running a thread, writing a command to the 
administrator, or opening a network connection, interaction with 
the operating system is required. This interaction is carried out via 
the API call system of the target OS. Therefore, monitoring the 
behavior of malware is very important to monitor the order of 
system calls during malware execution. Different malware 
families certainly have different goals. 

Detected malware is easily handled mainly by elimination. 
However, the current nature of malware is polymorphic and 
metamorphic, making them difficult to detect in traditional ways. 
They disguise their structure but not their operations. Because all 
malware must be executed to carry out its malicious actions 
successfully, some studies [5],  analyze API calls to detect malware 
in high accuracy execution. However, this detection ends by 
marking malware or not malware [6]. It does not classify malware 
into its type (viruses, worms, Trojans, etc.). Classification is 
important because it helps simplify the course of action to 
neutralize it.  

Research on malware classification has been done before. 
However, these studies do not use the Word2vec method. One 
example is a study of classification in system call sequences 
conducted in 2019, wherein that study the classification contained 
nine types of malware, namely kelihos_v3, vundo, rammit, 
lollipop, simda, tracur, obfuscator.ACY and gatak. The methods 
used are text and hex commands and LSTM [7]. Also, in 2016 
there was research on evaluating machine learning methods such 
as the Hidden Markov Model [8] and SVM [9] in determining 
malware classification. 

We use word embedding techniques in processing to convert 
malware system call sequences into vectors to achieve an increase 
in capturing the relationship between n-grams in the system call 
sequence and then proceeding to LSTM for the classification 
process. In essence, this approach expected to improve accuracy 
and precision for most families of malware, which brings a 
significant improvement from the methods used by previous 
researchers and thus can help to classify malware more accurately. 

All sections of the paper have been organized as follows. 
Section 2 discusses related works on the detection and 
classification of malware. In section 3 provides details of the 
background Theories, word embedding, and deep learning 
methods. Section 4 discusses the details of the dataset, the 
methodology used, and the evaluation design. Section 5 discusses 
the details of all experimental results, including training and testing 
results. The conclusion and future work are places in section 6. 

2. Related Works 

Previous researchers have shown that using program behavior 
features such as API calls can detect malware, including 
metamorphic and polymorphic malware, with high accuracy. This 
is because, at a higher level, malware disguises itself by changing 
their behavior or continuously changing their signatures. However, 
to cause damage, they must execute and change execution 

behavior more difficult. This can make them harmless. Therefore, 
this approach targets malware at the execution level. 

The first researcher who used a deep learning-based malware 
detection (DLMD) approach relied on static methods to predict 
behaviors that can be executed using system call sequences that 
provide sequences taken from running processes. Using SVM and 
CNN the results show that this method is quite effective in 
detecting polymorphic and metamorphic malware with an 
accuracy and detection rate of 89% to 96% [10]. In the proposed 
DLMD technique, SVM is used as a feature selector and CNN 
autoencoder is used as a feature extractor. After that, a Multilayer 
perceptron is used as a classifier. 

Other researchers develop an 18-layer deep residual network to 
be issued bytecode to a 3-channel RGB image and then apply deep 
learning to classify malware. To convert malware to images, they 
first convert malware binaries to 8-bit vectors (bytecodes) [11]. 
After that, the bytecodes are converted into grayscale images with 
contribution values from 0 to 255, each vector that turns into pixels 
with added values from 0 to 255. In the next step, they then convert 
the grayscale images to 3-channel RGB images with duplicate the 
grayscale channel three times and then collect all three channels to 
create an RGB image. Their experimental results show that the 
network residual model achieves an average accuracy of 86.54% 
with 5-fold cross-validation. 

In [12], the author proposed a new malware detection method 
based on Deep Graph Convolutional Neural Networks (DGCNNs) 
to learn directly from the sequence of API calls and related 
behavior graphs. The experimental results show that the model 
reaches a similar area under the ROC curve (AUC-ROC) and F1-
Score of Long-Short Term Memory (LSTM) networks that 
produce up to 96%. 

In  [13], the author proposed a method for detecting malware 
variants that are packaged based on sensitive system calls and the 
Deep Belief Network. Different experimental groups and different 
data samples were used for analysis. The 10-fold cross-validation 
method is used for classification. Theoretical analysis and 
experimental results show that the proposed method can detect 
packed malware which reaches an accuracy of 92% and requires a 
detection time of fewer than 0.001 seconds. 

In  [14], the author proposed a conventional approach with 
deep learning-based using Recurrent Neural Networks (RNN) that 
are vulnerable to redundant API injection. They investigated the 
effectiveness of Convolutional Neural Networks (CNN) against 
injection of redundant APIs. Their malware detection system 
converts malware files into image representations and classifies 
image representations with CNN. CNN is implemented with 
spatial pyramid pooling layers (SPP) to handle various input sizes. 
They also evaluated the effectiveness of SPP and image color 
space (greyscale / RGB) by measuring system performance on 
unaltered data and adversarial data with the injected redundant 
API. The results show that Naive SPP implementation is not 
impractical due to memory constraints and effective greyscale 
imaging against redundant API injection. 

The last researcher proposed an approach of how deep learning 
architecture using the stacked AutoEncoders (SAEs) model can be 
designed for intelligent malware detection. The SAEs model 
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functions as a greedy layerwise training operation for unsupervised 
feature learning, followed by supervised fine-tuning parameters 
(eg Weights and offset vectors). Based on the representation of 
different features, various types of classification methods, such as 
Artificial Neural Networks (ANNs), Support Vector Machines 
(SVM), Naïve Bayes (NB), and Decision Tree (DT) are used as a 
model construction to detect malware. Most of these methods are 
built on shallow learning architectures. Even though they have 
succeeded in isolating malware detection but shallow learning 
architectures are still unsatisfactory for malware detection 
problems [15]. The experimental results of the method showed that 
the proposed method achieves 96% accuracy. The bibliography 
comparison of previous works are summarised in Table 1. 

Table 1: Bibliography comparison 

Author Dataset Method Accuracy Class 
Malware 

Rafique, 
Ali, 
Qureshi, 
Khan, & 
Mirza, 
2019 [10] 

10.868 
Portable 
Execution 
(PE) files 

SVM & 
CNN 

89% - 
 

96% 

6 Class 
Malware 

Yan Lu, 
Jonathan 
Graham, 
Jiang Li, 
2019 [11] 

2949 
Portable 
Execution 
(PE) files 

Deep 
Residual 
Network 

86.54% 5 Class 
Malware 

Oliveira, 
Julho, & 
Julho, 
2019 [12] 

42.797 
Portable 
Executable 
(PE) files 

LSTM & 
DGCNN 

92.7 - 
96.8% 

2 Class 
Malware 

Zhang, 
Chang, 
Han, & 
Zhang, 
2020 [13] 

7.195 
Portable 
Executable 
(PE) files 

SVM & 
Deep 
Belief 
Network 

86.3% - 
92.6% 

4 Class 
Malware 

Ke He, 
Dong-
Seong 
Kim, 
2018 [14] 

2.413 
Portable 
Executable 
(PE) files 

CNN 95% 2 Class 
Malware 

Hardy, 
Chen, 
Hou, Ye, 
& Li, 
2016 [15] 

22.500 
Portable 
Executable 
(PE) files 

SVM, 
NB, DT, 
ANN & 
DL4MD 

92% - 
95% 

2 Class 
Malware 

 Based on the results of the literature review, there have been 
previous studies that have tried to classify malware based on 
system call sequences data. But, the methods used before did not 
achieve high classification accuracy. In other fields, many methods 

of deep learning have proven to be more accurate and therefore we 
use deep learning and the word2vec as a word embedding to 
improve accuracy. Since deep learning models are used, therefore 
we do not use feature extraction specifically like the study above. 
However, we use a word embedding, which convert the input text 
into numeric data as input to the LSTM model. As a result, it will 
increase classification accuracy. 

3. Background Theories 

3.1. Word2Vect 

Word2vec is a two-layer neural network that can process text 
by converting words into vectors or can also be called 
"vectorization." Input from word2vec is a collection of text, and 
the output is a collection of vectors. Feature vector representing 
words in a corpus. Word2vec is not a deep neural network. 
Word2vec works by converting text into numerical forms which 
can then be translated by deep neural networks. Word2Vec is a 
word embedding technique that is quite popular and was 
developed by[16] at Google. 

Word2vec can also be applied to codes, likes, playlists, social 
media graphics, sentiment sentences, and other verbal or symbolic 
series where patterns can be seen. The purpose of word 
vectorization is to group word vectors that are similar in vector 
space, which can later detect mathematical equations. Word2vec 
functions by making a distributed numerical vector representation 
of a word. For example like in the context of an individual word. 

Word2vec works automatically. With enough data usage and 
context. Word2vec can make very accurate guesses about the 
meaning of the words based on previous appearance or 
interpretation. These guesses are used to build the association of 
words with other words (e.g. "Male" means "boy" and "woman" 
means "girl"), or classify a document and then group them 
according to their topic. Clusters can form the basis of sentiment 
analysis, e-commerce, search, malware analysis, and 
recommendations in areas such as scientific research and legal 
discovery. The output of word2vec is in the form of vocabulary 
where each item has a vector, which can be entered into further 
processes such as machine learning or deep learning. Also, it can 
be used just to detect the relationship between these words. 

 
Figure 1: Continuous bag-of-words architecture 
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Figure 1 is a Word2vec Continuous-bag-of-words (CBOW) 
model. The way CBOW works is to take the context of each word 
and then make it as input and try to predict words that fit the 
context. As an example, When trying to predict the current target 
word (the center word) based on the source context words 
(surrounding words) [17]. If we make a simple sentence like “the 
black cat jump over the very big goat” this can be pairs of 
(context_window, target_word) where if we consider a context 
window of size 2, we have examples like ([the, cat], black), ([cat, 
over], jump), ([very, goat], big) and so on. This model tries to 
predict target_word based on context_window words. 

3.2. Long Short-Term Memory (LSTM) 

LSTM was first introduced by Sepp Hochreiter and Jurgen 
Schmidhuber in 1997 [18]. LSTM is a type of repetitive neuron 
that has been shown to increase the ability of RNN. LSTM can 
remove the effects of the problem by vanishing and bursting 
gradients, and is better to data-sensitivity relationships [19]. 
LSTM launched the forget gate inside the LSTM neuron, which 
allows accessing the information requested by the neuron 
allowing its access to focus on the critical parts and discard the 
information that is not useful. 

 
Figure 2: LSTM architecture 

Figure 2 shows the structure of the LSTM. The key to LSTM 
architecture is its cell state. Cell state can be interpreted as a 
memory of a network and can delete or add information to a 
structure called a gate. For each “t” time-step in LSTM can be 
described by using this formula [20]: 

𝑓𝑓𝑡𝑡 = σ �𝑊𝑊𝑡𝑡 ∗ 𝑥𝑥𝑡𝑡  + 𝑈𝑈𝑓𝑓 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� (1) 
𝑖𝑖𝑡𝑡 = σ (𝑊𝑊𝑖𝑖 ∗ 𝑥𝑥𝑡𝑡  + 𝑈𝑈𝑖𝑖 ∗ ℎ𝑡𝑡−1 +  𝑏𝑏𝑖𝑖) (2) 

𝐶̃𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝐶𝐶 ∗ 𝑥𝑥𝑡𝑡  + 𝑈𝑈𝐶𝐶 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝐶𝐶) (3) 
𝐶𝐶𝑡𝑡 = 𝑖𝑖𝑡𝑡 ∗ 𝐶̃𝐶𝑡𝑡 + 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1  (4) 

𝑂𝑂𝑡𝑡 = σ ( 𝑊𝑊𝑜𝑜 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜 )  (5) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (6) 

while 𝑓𝑓𝑡𝑡  is forget gate, 𝑖𝑖𝑡𝑡 is the input gate, 𝑂𝑂𝑡𝑡 is output gate 𝐶𝐶𝑡𝑡   is 
a memory cell, ℎ𝑡𝑡   is a hidden layer, 𝑥𝑥𝑡𝑡  is input when time “t”, σ 
is sigmoid activation function, tanh is hyperbolic tangent 
activation function, 𝑊𝑊𝑡𝑡  𝑊𝑊𝑖𝑖𝑊𝑊𝐶𝐶𝑊𝑊𝑜𝑜𝑈𝑈𝑓𝑓𝑈𝑈𝑖𝑖  𝑈𝑈𝐶𝐶𝑈𝑈𝑜𝑜  are weight matrices 
for controlling the input and 𝑏𝑏𝑓𝑓𝑏𝑏𝑖𝑖𝑏𝑏𝐶𝐶𝑏𝑏𝑜𝑜 are bias vector. 

 
Figure. 3:  LSTM steps 

Figure 3 shows the steps contained in the LSTM model 
architecture. There are four steps in LSTM namely: Step A. First, 
the model needs to determine what needs to be changed from the 
state of the cell. Figure 3 (A) will have a value called forget gate 
𝑓𝑓𝑡𝑡. The input of this step is the output of the previous step, which 
written by ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡 input. The activation function will give a 
result of “0” or “1”, where “0” means "not let anything pass" and 
“1” means "remember everything". 

The next step is to determine what information will be added 
to the state of the cell. Shown by Figure 3 (B), Equations (2), and 
(3). At this stage, the input is ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡. The first layer is called 
the sigmoid layer, which serves to determine which part to be 
updated. And the tahn layer is to create a new candidate value 𝐶𝐶𝑡𝑡. 
In the next step, the two layers will be combined to update the 
status of 𝐶𝐶𝑡𝑡 cell. 

In step C, the old cell will be multiplied by 𝑓𝑓𝑡𝑡 so that it can 
forget things that are no longer needed, so new information that 
will enter can be easily added to the cell's memory status. This 
section is shown in Figure 3 (C) and Equation (4). In the final step, 
the output of ℎ𝑡𝑡 is shown in figure 3 (D), Equation (5), and (6). 
Output results are based on the state of the cell but in the state that 
is being filtered. Initially, the sigmoid layer was applied to the 
previous output ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡 input to determine the 𝑂𝑂𝑡𝑡 gate output 
value. The resulting value is between “0” and “1”, which indicates 
part of the cell state is output. Then the state of a cell 𝐶𝐶𝑡𝑡 is changed 
by the tanh function to get the value between “-1” and “1”. The 
value of the changed cell status is then multiplied by the output 
value at the 𝑂𝑂𝑡𝑡  gate, which ends with ℎ𝑡𝑡  output and this output 
will be used for the next step in the model. 

 
Figure 4: Nested LSTM architecture 
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3.3. Nested Long Short-Term Memory (NLSTM) 

Figure 4 is an architectural drawing of a Nested LSTM [21]. 
Nested LSTM is a simple extension of the LSTM model that 
adding depth through nesting into the model. Inside Nested LSTM 
there are memory cells that make up internal memory and can 
only be accessed through external memory cells by applying a 
temporal hierarchy. The gate output in LSTM encodes the 
intuition that irrelevant memories at the current time step may still 
need to be remembered. Nested LSTM uses this intuition to create 
a temporal memory hierarchy. In Nested LSTM, access to internal 
memories is maintained in the same way, so that long-term 
information that is only situationally relevant can be selectively 
accessed. The equation in Nested LSTM can be described as 
follows: 

ℎ�𝑡𝑡−1 = 𝑓𝑓𝑡𝑡  ∗ 𝐶𝐶𝑡𝑡−1 (7) 
𝑥𝑥�𝑡𝑡  =  𝑖𝑖𝑡𝑡  ∗  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥  +  ℎ𝑡𝑡−1𝑊𝑊ℎ𝑐𝑐  + 𝑏𝑏𝐶𝐶) (8) 

𝐶𝐶𝑡𝑡   = ℎ�𝑡𝑡−1  +  𝑥𝑥�𝑡𝑡 
𝚤𝚤𝑡̃𝑡  =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥  +  ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑖𝑖  + 𝑏𝑏�𝑖𝑖) 
𝑓𝑓𝑡𝑡  =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥  +  ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑓𝑓  + 𝑏𝑏�𝑓𝑓) 

𝐶̃𝐶𝑡𝑡 =  𝑓𝑓𝑡𝑡 ∗  𝑐̃𝑐𝑡𝑡−1 + 𝚤𝚤̃𝑡𝑡 ∗ tanh( 𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥  +  ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑐𝑐  + 𝑏𝑏�𝑐𝑐) 

(9) 
(10) 
(11) 
(12) 

𝑜𝑜�𝑡𝑡 =  tanh( 𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥  +  ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑜𝑜  + 𝑏𝑏�𝑜𝑜) (13) 
ℎ�𝑡𝑡 =  𝑜𝑜�𝑡𝑡 ∗ tanh( 𝐶̃𝐶𝑡𝑡) (14) 

𝐶𝐶𝑡𝑡 =  ℎ�𝑡𝑡 (15) 
 

Where, 𝑓𝑓𝑡𝑡   is forget gate, 𝑓𝑓𝑡𝑡   is inner forget gate, 𝑖𝑖𝑡𝑡   is the 
input gate,  𝚤𝚤̃𝑡𝑡  is inner input gate, 𝑂𝑂𝑡𝑡 is the output gate, 𝑜𝑜�𝑡𝑡 is inner 
output gate, 𝐶𝐶𝑡𝑡   is a memory cell, 𝐶̃𝐶𝑡𝑡   is an inner memory cell, ℎ𝑡𝑡   
is a hidden layer, ℎ�𝑡𝑡 is an inner hidden layer, 𝑥𝑥𝑡𝑡  is input when 
time “t,” 𝑥𝑥�𝑡𝑡  is inner input when time “t,” σ    is sigmoid activation 
function, tanh is hyperbolic tangent activation function, 
𝑊𝑊𝑥𝑥𝑥𝑥𝑊𝑊ℎ𝑐𝑐  are weight matrices, 𝑊𝑊�𝑥𝑥𝑥𝑥𝑊𝑊�ℎ𝑖𝑖𝑊𝑊�𝑥𝑥𝑥𝑥 𝑊𝑊�ℎ𝑓𝑓𝑊𝑊�𝑥𝑥𝑥𝑥𝑊𝑊�ℎ𝑐𝑐𝑊𝑊�𝑥𝑥𝑥𝑥𝑊𝑊�ℎ𝑜𝑜   

are inner weight matrices  𝑏𝑏𝐶𝐶  is bias vector and 𝑏𝑏�𝑖𝑖 𝑏𝑏�𝑓𝑓  𝑏𝑏�𝑐𝑐  𝑏𝑏�𝑜𝑜 are the 
inner bias vector. 

3.4. Support Vector Machine (SVM) 

SVM is machine learning that is usually used for classification 
or regression. SVM is also a type of supervised learning. The main 
purpose of SVM is to determine data with decision boundaries and 
extend to non-linear boundaries using kernel tricks [22]. SVM is 
used in many applications such as word sentiment, categorization 
of text and documents, pattern recognition, face recognition, 
handwriting analysis, and binary classification. the idea behind 
SVM is to share data with the best method. The binary 
classification used to compile we need to classify 2 data sets. In 
multi-classification, the most frequent method is to create a one-
versus-rest classifier (OVA) where each category is divided, and 
all other categories are combined and to choose the class that 
classifies collecting data with the largest margins. Divide the class 
into binary problems. The classifier learning step is carried out by 
all training data, taking certain class patterns as positive and all 
other examples as negative. Support Vector Machine has three 
main parameters, namely, C, gamma, and kernel. The kernel is 
always used as the Radial Base Function (RBF) because of its best 
performance [23]. While C and gamma are hyperparameters that 
have different values and produce different accuracy and results. 

4. Research Methodology 

4.1. Dataset Generation 

 We collect malware samples and track the behavior of 
malware using Cuckoo malware analysis [24]. The malware 
collection consists of samples collected from two primary sources: 
Virus Share [25] and GitHub / TheZoo [26]. We chose this source 
because it provided a large and varied sample Portable Executable 
(PE) file for evaluation. Because malware authors can use 
obfuscation and packers code for sub-vertical static analysis, we 
use dynamic malware analysis to collect data about malware 
behavior. Then, several tools allow tracking malware execution 
and gathering logs from the order of execution [27]. We use 
Cuckoo Sandbox, which is open-source and provides a controlled 
environment for executing malware. In the dataset experiment, 
that will be used as many as 13356 data, where the data is divided 
into three groups, namely training, validation, and testing. 

Table 2: Description of malware dataset 

Malware Training 
Data 

Validation 
Data 

Testing 
data 

Total 

Adware 2159 719 719 3597 
Backdoor 504 167 167 838 
Packed 664 220 220 1104 
Riskware 733 243 243 1219 
Trojan 2484 827 827 4138 
Virus 592 197 197 986 
Worm 886 294 294 1474 

Total 8012 2672 2672 13356 
  

 Table 2 shows the distribution of the amount of training and 
testing data used in this research. At the training stage, the model 
will be trained using 8012 data, while at the data testing stage will 
be tested using 2672 data. Experiments will be conducted on both 
models. Prediction of testing data will be an experimental result 
where the results will be described through a confusion matrix so 
that the accuracy of each model is obtained. 

4.2. Word Embedding 

 We extracted the PE file by preprocessing the PE Headers 
and opcodes from the code section. To use this data in the 
classification process, we need to make numerical vectors with 
word embedding. The PE file is run in the Cuckoo sandbox which 
is a malware analysis tool. Can extract API calls from PE files 
during execution. The sandbox tool is configured on Ubuntu 
18.04.2 LTS along with the Windows 7 virtual environment using 
the Oracle virtual box where the PE files are executed. Virtual 
environments help in such a way that malicious files are executed 
and behave in the same way as in a conventional system [6]. This 
is very helpful in understanding malware behavior when trying to 
infect a system. 

 During PE file execution, the Cuckoo sandbox generates log 
files. The log file contains snapshots taken during execution 
(behavior profile) [28]. This is done for every sample that is 
executed. Each sequence of API calls is recorded according to the 
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class label specified by Kaspersky [29] and VirusTotal [30]. We 
determined seven classes of malware (Adware, Backdoor, Packed, 
Riskware, Trojan, Virus, and Worm). The API call log that has 
been collected is always long and continuous. We will apply text 
mining with word2vec techniques. To select API calls that are 
relevant for classification. Word2vec helps identify a set of API 
calls that are more common in the malware class. This works in a 
way that if there is a word API call, it often appears in a class. But 
when it appears in many other classes, it is not a unique identifier 
and must be given a lower score. Only the words API calls with 
high scores or frequently appearing words are considered as PE 
file profile behavior. 

 Word2vec has two techniques, namely Skip-gram and 
Continuous Bag of Words (CBOW). This CBOW method takes 
the context of each word from the whole sentence or paragraph as 
input and tries to predict the word for word that fits the context. 
In contrast, the skip-gram model predicts the meaning of words 
after searching for their target words, and the author uses CBOW 
for this research. First, we did a mapping for seven labels and 
turned it into one-hot encoding. Then, the writer converts the 
whole sentence to the lower case and removes the punctuations. 
The next step is to create a word2vec embedding model generator 
to convert words to vectors with the specified model size. 

 
Figure 5: Code snippet for Word Bag 

The next step is to create a Word Bag with the same number 
of words counted in various types of malware that is calculated to 
help determine how relevant a word is to a specific class or how 
often the word appears in the word bag. The code snippet for 
Word Bag is shown in Figure 5. 

 
Figure 6: Code snippet from changing word to vector 

 The word was changed to vector using the word2vec 
embedding model that was created, as shown in Figure 6. After 
getting the vector for the word, the average value of the vector 
(mean) is taken and multiplied (multiplied) by the frequency of 

words in the class and label. The following entire preprocess 
process is summarized below: 

• Enter a sentence and repeat each word 
• For each word, it will be changed to represent a numeric 

/ vector. 
• Take the mean vector and multiply with the number of 

classes and add them as features. 
• Pad the sentence to fixed-length 128 then move to the 

next sentence. 

 
Figure 7: Illustration of preprocessing stages 

After going through this process, as illustrated in figure 7, a 
fixed length of 128 vectors is obtained as a feature for each 
sentence. If a sentence has more than 128 words, the word will be 
truncated, and if it has less than 128 words, then padding "0" will 
be added so that each sentence has the same length. 

After the feature making process, data mining classification is 
applied using a classification approach. We use Long Short-Term 
Memory (LSTM). Based on the type of API call chosen to 
describe a particular class of malware, the classification approach 
helps in concluding whether the file is malicious by determining 
the class in which the malware is. Because the process ends with 
the accuracy of determining the class in which the file is located 
after behavioral detection. All PEs have a direct relationship with 
the Operating System (OS) via the system calls API.  This shows 
that API calls can easily notify malware behavior when 
attempting to execute. 

4.3. Deep Learning Model 

 Deep Learning is one area of artificial neural networks to deal 
with problems on more large datasets. Deep Learning provides a 
very compelling architecture for supervised learning. By adding 
more layers to the deep learning model, it can do better at 
represent labeled malware data. To implement Deep Learning 
techniques for malware classification, a computer-based program 
is needed that can do computing. Therefore it is necessary to 
design an algorithm that can support the development of programs 
for this research. The algorithm used in this study is divided into 
three main parts, namely the training algorithm, the testing 
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algorithm, and the classification algorithm. These three 
algorithms follow the concept of writing code with API and the 
basic theory of Machine Learning for feature learning. In the 
training algorithm, five main stages will be carried out, namely 
the stages of Data Augmentation, Load Training Data, Modeling 
Long Short-Term Memory (LSTM), Training Model, and Final 
Weight Storage. 

 The LSTM model has several layers, including the 
embedding layer, LSTM layer, and Output layer. The input of the 
model is the preprocessing text that has been transformed into 
numeric where the input length is 128, where each number or 
vector represents a word, at the embedding layer, the input will be 
transformed into a vector that has a length of 128 vectors. 
Furthermore, LSTM consists of 3 gates, which will process each 
input vector to produce 128 vectors and where each output is 
connected to the output layer. At the output layer, there are seven 
neurons. each of these neurons has softmax activation to make a 
value in each classification. The classification prediction results 
are the highest output value. 

 The  Nested LSTM  model made consists of several layers, 
including the Embedding layer, Nested LSTM layer, and Output 
layer. Similarly, the LSTM input model of the Nested LSTM 
model is the preprocessing text that has been changed to numeric, 
where the length of the input is different where each number 
represents a word. At the embedding layer, the input will be 
transformed into a vector that has a length of 128. Furthermore, 
the Nested LSTM cell consisting of 3 gates (depth = 2) will 
process each input vector to produce 128 output vectors where 
each output is connected to the output layer. At the output layer, 
the same number neurons like LSTM and each of these neurons 
have softmax activation, which results in a value for each 
classification. 

Support Vector Machine Model has three main parameters, 
namely C, Gamma, and Kernel. The kernel is always used as the 
Radial Base Function (RBF) because of its best performance. C 
and gamma are hyperparameters that have different values 
between the two and produce different accuracy and results. We 
need to find the best C and gamma values. That is why we use 
GridSearch. In GridSearch, we make all possible C and gamma 
combinations and then choose the one that has the best. Sklearn 
has a GridSearch Cross-Validation (CV) function that takes the 
SVM model, the Cs and Gammas grid parameters, and the number 
of folds. The number of folds means that the data will be divided 
into that many folds. In this case, it is three and then is trained on 
two and tested on one. 

4.4. Evaluation Design 

In this research, the dataset will be used as many as 13356 
data, where the data is divided into three groups, namely training, 
validation, and testing. Data need to be converted in numerical 
value before going into the deep learning model. So the first step 
is to convert labels to one-hot encoding. After that, sentences are 
being converted into lowercase and remove punctuations to create 
a clean word2vec model using CBOW. The deep learning model 
will be trained using 8012 data, while the data testing stage will 
be tested using 2672 data. The LSTM model uses Adam optimizer 
using 64 batch sizes and 30 epochs because after several test we 

found that this combination works best on accuracy and added 
with 512 dense layers with 20% dropping units rate to prevent 
overfitting and also using softmax for classification. Whereas the 
Nested LSTM model uses Adam optimizer using 64 batch sizes 
and 50 epochs added with 1024, 2048, and 7 dense layers with 
recurrent dropping to prevent overfitting and also using softmax 
for classification. The Support vector machine uses the RBF 
kernel and Grid Search Cross-Validation for hyperparameter 
tuning to find the best value for the C parameter and gammas for 
the training model. In this research, performance will be measured 
based on the level of accuracy, recall, precision, and f1-score 
achieved to measure the performance, the results of the evaluation 
will be set forth in the form of a confusion matrix. The confusion 
matrix contains information from actual classifications and 
predicted classifications [31]. All methods were implemented on 
Python 3.6, Jupyter Notebook 6.0.3, Tensorflow 1.15.0 version, 
Intel Core i5-6400 (with 16 GB RAM), and Nvidia GeForce GTX 
1050 Ti GPU. 

5. Experimental Results 

5.1. Training Result 

 After the two models are made, the model is trained using 
13356 training data. After several trials, we decided to use 30 
epochs with 64 batch sizes for the LSTM model and 50 epochs 
with 64 batch sizes for the nested LSTM model because they 
produce high accuracy in training. 

 
Figure 8: Accuracy and loss of the LSTM model 

Figure 8 shows the training process of the LSTM model. The 
accuracy and loss of the model during training are indicated by 
the line above, the blue line shows the data in training, and the 
yellow line shows the validation data. The accuracy and loss of 
the LSTM model always increase from the start. At the end of the 
epoch, the accuracy reached 98%, and the loss was 0.14%. 

Figure 9 shows the results of the training and validation 
process of the Nested LSTM model. The results of the accuracy 
and loss accuracy of this model can be seen in the line above, the 
blue line shows the data in training and the yellow line shows the 
validation data. the level of accuracy and loss in this model is 
quite good with an increase from the beginning to the end of the 
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test. At the end of the epoch, the accuracy reached 93.1%, and the 
loss was 0.18%. 

 
Figure 9: Accuracy and loss of the Nested LSTM model 

5.2. Testing Result of LSTM Model 

 After the LSTM and Nested LSTM models are created and 
trained, the SVM is built and tested only as a benchmark to 
compare the two models above. All three models were tested 
using 2672 test data. 

 
Figure 10: LSTM confusion matrix 

 Figure 10 shows the results of LSTM model testing, where 
the test results are shown using the confusion matrix. As we can 
see in every malware label, there is not much miss. This is because 
the loss rate of testing data is only 0.18%. The biggest label miss 
here is a virus where 30 labels are considered backdoor. The rest 
showed outstanding results with miss under 10. Thus, the testing 
accuracy obtained from the LSTM model is 98.61%. 

Table 3: Details of the LSTM model results 

Classification Precision Recall F1-score 
Adware 100% 100% 100% 
Backdoor 95% 91% 91% 
Packed 98% 99% 98% 
Riskware 97% 99% 99% 
Trojan 100% 100% 100% 
Virus 94% 93% 95% 
Worm 99% 99% 99% 
Average 97.57% 97.29% 97.43% 
Accuracy 98.61% 

 Table 3 shows all the precision, recall, and f1-scores of the 
LSTM model from each malware. The LSTM method obtained an 
average precision of 97.57%, a recall of 97.29%, and an f1-score 
of 97.43%. 

5.3. Testing Result of Nested LSTM Model 

 Figure 11 shows the results of Nested LSTM model testing, 
where the test results are shown using the confusion matrix. As 
we can see in every malware label, there is not much miss. It is 
because the loss rate of testing data is only 0.18%. The biggest 
label miss here is a backdoor where 66 labels are considered as a 
virus. The rest showed outstanding results with miss under 20. 
The testing accuracy obtained is 93.11%. 

 
Figure 11: Nested LSTM confusion matrix 

Table 4: Details of the Nested LSTM model results 

Classification Precision Recall F1-score 
Adware 98% 100% 97% 
Backdoor 55% 72% 67% 
Packed 93% 71% 83% 
Riskware 88% 87% 89% 
Trojan 100% 99% 97% 
Virus 65% 75% 76% 
Worm 92% 92% 93% 
Average 84.43% 85.14% 86.00% 
Accuracy 93.11% 

 Table 4 shows all the Precision, Recall, and F1-scores of the 
model from each classification. The Nested LSTM method 
obtained an average precision of 84.43%, a recall of 85.14%, and 
an f1-score of 86.00%. 

5.4. Testing Result of Support Vector Machine Model 

 We also developed Support Vector Machine (SVM) so that it 
can be used as a comparison or benchmark. To see which ones 
perform better using the same word embedding method. 

 
Figure 12: SVM confusion matrix 
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 Figure 12 shows the results of the SVM testing model, where 
the test results are shown using the confusion matrix. As we can 
see in every malware label, there is much miss. For example, the 
Virus miscalculated up to 91 labels. Followed by almost every 
label more than 30 miss labels because of a low level of accuracy, 
and this is why we propose to use deep learning methods because 
this type of data is not suitable for SVM. The testing accuracy 
obtained is only 84.50% 

Table 5: Details of the SVM model results 

Classification Precision Recall F1-score 
Adware 94% 100% 97% 
Backdoor 50% 100% 67% 
Packed 70% 100% 83% 
Riskware 85% 100% 92% 
Trojan 100% 66% 80% 
Virus 40% 100% 57% 
Worm 78% 100% 87% 
Average 73.86% 95.14% 80.43% 
Accuracy 84.50% 

Table 5 shows all the results of the classification label, 
precision, recall, and f1-scores of the SVM model from each 
classification. The SVM method obtained an average precision of 
73.86%, a recall of 95.14%, and an f1-score of 80.43%. 

5.5. Summary of Testing Results 

 This section presented the result of all methods, including our 
proposed method, and compared it to other existing methods, 
which is SVM. Our proposed methods can overcome others. The 
results are shown in Table 6. 

Table 6: Results comparison of all models 

Method Accuracy Precision Recall F1-score 
LSTM 98.61% 97.57% 97.29% 97.43% 
Nested LSTM 93.11% 84.43% 85.14% 86.00% 
SVM 84.50% 73.86% 95.14% 80.43% 
CNN 96.60% 95.71% 95.12% 95.62% 
DRN 86.54% 84.97% 84.23% 84.67% 
DBN 92.60% 96.30% 89.60% 92.80% 
DGCNN 96.87% 88.79% 92.83% 90.76% 
DL4MD 95.64% 93.06% 94.60% 94.52% 

Table 6 shows the overall comparison of all methods. We also 
make plot early stopping in LSTM and Nested LSTM train 
process so that we can take the best accuracy model when the 
training process happens. Overall, the table above shows that the 
LSTM model produces the best accuracy of 98.61% among the 
three methods, although the difference in accuracy does not differ 
significantly from the Nested LSTM. Both LSTM and Nested 
LSTM methods are still better than SVM methods. It shows that 
the deep learning method is far more accurate compared to 
ordinary machine learning methods. 

6. Conclusion and Future Work 

 In this paper, we investigate the effectiveness of malware 
system call sequences that transformed into vectors and use 
word2vec as word embedding and then enter the LSTM layer 
repeatedly for the classification process with non-linear activation 

functions like Softmax. We have also carried out various 
experiments with different parameters, network structures, and 
added early stopping plots to get the best model accuracy in the 
training process. The design of the model is also evaluated using 
different methods such as Nested LSTM and SVM as benchmarks. 
From the three models, it can be concluded that the LSTM method 
gets the highest accuracy reaching 98.61% in the real-world data 
set. Overall, LSTM is included as the most effective approach to 
learning long-range dependencies in cybersecurity tasks and more 
appropriate methods for detecting malware through system call 
sequences. 

 From this research, it can be concluded that the experimental 
results with the LSTM network are straight forward. Still, we have 
not tried to use more complex LSTM networks, such as use many 
different layers, use more automatic decoders or use word 
embedding techniques other than word2vec. It because such a 
network architecture will cost us more and more complex 
preprocessing, network architecture, and a clean dataset probably 
will improve the results. 
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