

www.astesj.com 207

Malware Classification Based on System Call Sequences Using Deep Learning

Rizki Jaka Maulana, Gede Putra Kusuma*

Computer Science Department, BINUS Graduate Program, Bina Nusantara University, Jakarta, 11480, Indonesia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 27 March, 2020
Accepted: 06 June, 2020
Online: 22 July, 2020

 Malware has always been a big problem for companies, government agencies, and
individuals because people still use it as a primary tool to influence networks, applications,
and computer operating systems to gain unilateral benefits. Until now, malware detection
with heuristic and signature-based methods are still struggling to keep up with the evolution
of malware. Machine learning is known to be able to automate the work needed to detect
families of existing and newly discovered malware. Unfortunately, the machine learning
method using Support Vector Machine (SVM) for detecting malware can only reach a low
level of accuracy. In this work, we propose a dynamic analysis method and uses a system
call sequence to monitor malware behavior. It uses the word2vec technique as word
embedding and implements deep learning models, namely Long Short-Term Memory
(LSTM) and Nested LSTM, as classifiers. To compare with existing machine learning
approach, we also apply the Support Vector Machine (SVM) as a benchmark method. The
Nested LSTM gets an accuracy of 93.11%, while the LSTM gets the best accuracy of
98.61%. The LSTM also achieved the best performance in terms of average precision at
97.57%, the average recall at 97.29%, and the average score of f1 at 97.43%. We have
found that our model is lightweight but powerful for detecting malware with significant
accuracy.

Keywords:
Malware Classification
Malware Detection
System Call Sequence
Deep Learning
LSTM Model

1. Introduction
The high use of the internet increases the level of connectivity

of electronic devices, making questions about the integrity of the
system. Conventionally, software and computer systems are
developed for good purposes. However, some software was
developed to produce crime (malware). Malware is a common
word used for programs that have malicious code snippets that can
cause significant threats to computer users or any digital device.
Malware can contain malicious code viruses, worms, Trojan
horses, can also make a back door to divulge personal information
or control a person's system. Through malware, serious crimes can
be done; This is why malware detection is needed [1]. To detect
malware definitions must be made for analysis of which malware
is essential. Malware analysis consists of analyzing various
aspects of malware so that malware can be detected [2]. The
definition of malware is also known as a signature/signature. This
signature is used by virus scanners known as anti-viruses to detect
malware. The research will experiment on seven types of
malware, which are adware, backdoor, packed, riskware, trojan,
virus, and worm.

Traditional malware detection is done on susceptible files
that are not processed. This is mostly done with a signature,
heuristic, and behavioral approach. The signature approach looks
for static patterns of malware known in suspicious files [3].
Research has shown that the signature approach is very weak in
dealing with polymorphic and metamorphic malware. The
heuristic approach checks the characteristics of suspicious
malware from suspicious files. Despite being able to detect
unknown malware, they are very high at the false-positive level.

The Behavioral Approach monitors the implementation of
programs to monitor suspicious behavior. Although this approach
can detect different malware variants, this approach also has a
high false-positive [4]. To help malware analysts retrieve useful
information from large malware samples, the need for automatic
classification in statistical variants is needed. Malware detection
based on a signature cannot overcome this variant because it does
not take polymorphic malware into account. Polymorphic is a
form of malware that frequently always changes its identifiable
features to evade detection. Furthermore, such a system can be
easily avoided.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Gede Putra Kusuma, inegara@binus.edu

Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com

https://dx.doi.org/10.25046/aj050426

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj050426

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 208

The most important event that can be tracked to determine
malware behavior is the system call. Before malware performs a
malicious action, malware needs to use the operating system (OS)
service of the target. For each activity that is carried out, such as
opening a file, running a thread, writing a command to the
administrator, or opening a network connection, interaction with
the operating system is required. This interaction is carried out via
the API call system of the target OS. Therefore, monitoring the
behavior of malware is very important to monitor the order of
system calls during malware execution. Different malware
families certainly have different goals.

Detected malware is easily handled mainly by elimination.
However, the current nature of malware is polymorphic and
metamorphic, making them difficult to detect in traditional ways.
They disguise their structure but not their operations. Because all
malware must be executed to carry out its malicious actions
successfully, some studies [5], analyze API calls to detect malware
in high accuracy execution. However, this detection ends by
marking malware or not malware [6]. It does not classify malware
into its type (viruses, worms, Trojans, etc.). Classification is
important because it helps simplify the course of action to
neutralize it.

Research on malware classification has been done before.
However, these studies do not use the Word2vec method. One
example is a study of classification in system call sequences
conducted in 2019, wherein that study the classification contained
nine types of malware, namely kelihos_v3, vundo, rammit,
lollipop, simda, tracur, obfuscator.ACY and gatak. The methods
used are text and hex commands and LSTM [7]. Also, in 2016
there was research on evaluating machine learning methods such
as the Hidden Markov Model [8] and SVM [9] in determining
malware classification.

We use word embedding techniques in processing to convert
malware system call sequences into vectors to achieve an increase
in capturing the relationship between n-grams in the system call
sequence and then proceeding to LSTM for the classification
process. In essence, this approach expected to improve accuracy
and precision for most families of malware, which brings a
significant improvement from the methods used by previous
researchers and thus can help to classify malware more accurately.

All sections of the paper have been organized as follows.
Section 2 discusses related works on the detection and
classification of malware. In section 3 provides details of the
background Theories, word embedding, and deep learning
methods. Section 4 discusses the details of the dataset, the
methodology used, and the evaluation design. Section 5 discusses
the details of all experimental results, including training and testing
results. The conclusion and future work are places in section 6.

2. Related Works

Previous researchers have shown that using program behavior
features such as API calls can detect malware, including
metamorphic and polymorphic malware, with high accuracy. This
is because, at a higher level, malware disguises itself by changing
their behavior or continuously changing their signatures. However,
to cause damage, they must execute and change execution

behavior more difficult. This can make them harmless. Therefore,
this approach targets malware at the execution level.

The first researcher who used a deep learning-based malware
detection (DLMD) approach relied on static methods to predict
behaviors that can be executed using system call sequences that
provide sequences taken from running processes. Using SVM and
CNN the results show that this method is quite effective in
detecting polymorphic and metamorphic malware with an
accuracy and detection rate of 89% to 96% [10]. In the proposed
DLMD technique, SVM is used as a feature selector and CNN
autoencoder is used as a feature extractor. After that, a Multilayer
perceptron is used as a classifier.

Other researchers develop an 18-layer deep residual network to
be issued bytecode to a 3-channel RGB image and then apply deep
learning to classify malware. To convert malware to images, they
first convert malware binaries to 8-bit vectors (bytecodes) [11].
After that, the bytecodes are converted into grayscale images with
contribution values from 0 to 255, each vector that turns into pixels
with added values from 0 to 255. In the next step, they then convert
the grayscale images to 3-channel RGB images with duplicate the
grayscale channel three times and then collect all three channels to
create an RGB image. Their experimental results show that the
network residual model achieves an average accuracy of 86.54%
with 5-fold cross-validation.

In [12], the author proposed a new malware detection method
based on Deep Graph Convolutional Neural Networks (DGCNNs)
to learn directly from the sequence of API calls and related
behavior graphs. The experimental results show that the model
reaches a similar area under the ROC curve (AUC-ROC) and F1-
Score of Long-Short Term Memory (LSTM) networks that
produce up to 96%.

In [13], the author proposed a method for detecting malware
variants that are packaged based on sensitive system calls and the
Deep Belief Network. Different experimental groups and different
data samples were used for analysis. The 10-fold cross-validation
method is used for classification. Theoretical analysis and
experimental results show that the proposed method can detect
packed malware which reaches an accuracy of 92% and requires a
detection time of fewer than 0.001 seconds.

In [14], the author proposed a conventional approach with
deep learning-based using Recurrent Neural Networks (RNN) that
are vulnerable to redundant API injection. They investigated the
effectiveness of Convolutional Neural Networks (CNN) against
injection of redundant APIs. Their malware detection system
converts malware files into image representations and classifies
image representations with CNN. CNN is implemented with
spatial pyramid pooling layers (SPP) to handle various input sizes.
They also evaluated the effectiveness of SPP and image color
space (greyscale / RGB) by measuring system performance on
unaltered data and adversarial data with the injected redundant
API. The results show that Naive SPP implementation is not
impractical due to memory constraints and effective greyscale
imaging against redundant API injection.

The last researcher proposed an approach of how deep learning
architecture using the stacked AutoEncoders (SAEs) model can be
designed for intelligent malware detection. The SAEs model

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 209

functions as a greedy layerwise training operation for unsupervised
feature learning, followed by supervised fine-tuning parameters
(eg Weights and offset vectors). Based on the representation of
different features, various types of classification methods, such as
Artificial Neural Networks (ANNs), Support Vector Machines
(SVM), Naïve Bayes (NB), and Decision Tree (DT) are used as a
model construction to detect malware. Most of these methods are
built on shallow learning architectures. Even though they have
succeeded in isolating malware detection but shallow learning
architectures are still unsatisfactory for malware detection
problems [15]. The experimental results of the method showed that
the proposed method achieves 96% accuracy. The bibliography
comparison of previous works are summarised in Table 1.

Table 1: Bibliography comparison

Author Dataset Method Accuracy Class
Malware

Rafique,
Ali,
Qureshi,
Khan, &
Mirza,
2019 [10]

10.868
Portable
Execution
(PE) files

SVM &
CNN

89% -

96%

6 Class
Malware

Yan Lu,
Jonathan
Graham,
Jiang Li,
2019 [11]

2949
Portable
Execution
(PE) files

Deep
Residual
Network

86.54% 5 Class
Malware

Oliveira,
Julho, &
Julho,
2019 [12]

42.797
Portable
Executable
(PE) files

LSTM &
DGCNN

92.7 -
96.8%

2 Class
Malware

Zhang,
Chang,
Han, &
Zhang,
2020 [13]

7.195
Portable
Executable
(PE) files

SVM &
Deep
Belief
Network

86.3% -
92.6%

4 Class
Malware

Ke He,
Dong-
Seong
Kim,
2018 [14]

2.413
Portable
Executable
(PE) files

CNN 95% 2 Class
Malware

Hardy,
Chen,
Hou, Ye,
& Li,
2016 [15]

22.500
Portable
Executable
(PE) files

SVM,
NB, DT,
ANN &
DL4MD

92% -
95%

2 Class
Malware

 Based on the results of the literature review, there have been
previous studies that have tried to classify malware based on
system call sequences data. But, the methods used before did not
achieve high classification accuracy. In other fields, many methods

of deep learning have proven to be more accurate and therefore we
use deep learning and the word2vec as a word embedding to
improve accuracy. Since deep learning models are used, therefore
we do not use feature extraction specifically like the study above.
However, we use a word embedding, which convert the input text
into numeric data as input to the LSTM model. As a result, it will
increase classification accuracy.

3. Background Theories

3.1. Word2Vect

Word2vec is a two-layer neural network that can process text
by converting words into vectors or can also be called
"vectorization." Input from word2vec is a collection of text, and
the output is a collection of vectors. Feature vector representing
words in a corpus. Word2vec is not a deep neural network.
Word2vec works by converting text into numerical forms which
can then be translated by deep neural networks. Word2Vec is a
word embedding technique that is quite popular and was
developed by[16] at Google.

Word2vec can also be applied to codes, likes, playlists, social
media graphics, sentiment sentences, and other verbal or symbolic
series where patterns can be seen. The purpose of word
vectorization is to group word vectors that are similar in vector
space, which can later detect mathematical equations. Word2vec
functions by making a distributed numerical vector representation
of a word. For example like in the context of an individual word.

Word2vec works automatically. With enough data usage and
context. Word2vec can make very accurate guesses about the
meaning of the words based on previous appearance or
interpretation. These guesses are used to build the association of
words with other words (e.g. "Male" means "boy" and "woman"
means "girl"), or classify a document and then group them
according to their topic. Clusters can form the basis of sentiment
analysis, e-commerce, search, malware analysis, and
recommendations in areas such as scientific research and legal
discovery. The output of word2vec is in the form of vocabulary
where each item has a vector, which can be entered into further
processes such as machine learning or deep learning. Also, it can
be used just to detect the relationship between these words.

Figure 1: Continuous bag-of-words architecture

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 210

Figure 1 is a Word2vec Continuous-bag-of-words (CBOW)
model. The way CBOW works is to take the context of each word
and then make it as input and try to predict words that fit the
context. As an example, When trying to predict the current target
word (the center word) based on the source context words
(surrounding words) [17]. If we make a simple sentence like “the
black cat jump over the very big goat” this can be pairs of
(context_window, target_word) where if we consider a context
window of size 2, we have examples like ([the, cat], black), ([cat,
over], jump), ([very, goat], big) and so on. This model tries to
predict target_word based on context_window words.

3.2. Long Short-Term Memory (LSTM)

LSTM was first introduced by Sepp Hochreiter and Jurgen
Schmidhuber in 1997 [18]. LSTM is a type of repetitive neuron
that has been shown to increase the ability of RNN. LSTM can
remove the effects of the problem by vanishing and bursting
gradients, and is better to data-sensitivity relationships [19].
LSTM launched the forget gate inside the LSTM neuron, which
allows accessing the information requested by the neuron
allowing its access to focus on the critical parts and discard the
information that is not useful.

Figure 2: LSTM architecture

Figure 2 shows the structure of the LSTM. The key to LSTM
architecture is its cell state. Cell state can be interpreted as a
memory of a network and can delete or add information to a
structure called a gate. For each “t” time-step in LSTM can be
described by using this formula [20]:

𝑓𝑓𝑡𝑡 = σ �𝑊𝑊𝑡𝑡 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� (1)
𝑖𝑖𝑡𝑡 = σ (𝑊𝑊𝑖𝑖 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (2)

𝐶̃𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑊𝑊𝐶𝐶 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝐶𝐶 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝐶𝐶) (3)
𝐶𝐶𝑡𝑡 = 𝑖𝑖𝑡𝑡 ∗ 𝐶̃𝐶𝑡𝑡 + 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 (4)

𝑂𝑂𝑡𝑡 = σ (𝑊𝑊𝑜𝑜 ∗ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜 ∗ ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (5)
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (6)

while 𝑓𝑓𝑡𝑡 is forget gate, 𝑖𝑖𝑡𝑡 is the input gate, 𝑂𝑂𝑡𝑡 is output gate 𝐶𝐶𝑡𝑡 is
a memory cell, ℎ𝑡𝑡 is a hidden layer, 𝑥𝑥𝑡𝑡 is input when time “t”, σ
is sigmoid activation function, tanh is hyperbolic tangent
activation function, 𝑊𝑊𝑡𝑡 𝑊𝑊𝑖𝑖𝑊𝑊𝐶𝐶𝑊𝑊𝑜𝑜𝑈𝑈𝑓𝑓𝑈𝑈𝑖𝑖 𝑈𝑈𝐶𝐶𝑈𝑈𝑜𝑜 are weight matrices
for controlling the input and 𝑏𝑏𝑓𝑓𝑏𝑏𝑖𝑖𝑏𝑏𝐶𝐶𝑏𝑏𝑜𝑜 are bias vector.

Figure. 3: LSTM steps

Figure 3 shows the steps contained in the LSTM model
architecture. There are four steps in LSTM namely: Step A. First,
the model needs to determine what needs to be changed from the
state of the cell. Figure 3 (A) will have a value called forget gate
𝑓𝑓𝑡𝑡. The input of this step is the output of the previous step, which
written by ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡 input. The activation function will give a
result of “0” or “1”, where “0” means "not let anything pass" and
“1” means "remember everything".

The next step is to determine what information will be added
to the state of the cell. Shown by Figure 3 (B), Equations (2), and
(3). At this stage, the input is ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡. The first layer is called
the sigmoid layer, which serves to determine which part to be
updated. And the tahn layer is to create a new candidate value 𝐶𝐶𝑡𝑡.
In the next step, the two layers will be combined to update the
status of 𝐶𝐶𝑡𝑡 cell.

In step C, the old cell will be multiplied by 𝑓𝑓𝑡𝑡 so that it can
forget things that are no longer needed, so new information that
will enter can be easily added to the cell's memory status. This
section is shown in Figure 3 (C) and Equation (4). In the final step,
the output of ℎ𝑡𝑡 is shown in figure 3 (D), Equation (5), and (6).
Output results are based on the state of the cell but in the state that
is being filtered. Initially, the sigmoid layer was applied to the
previous output ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡 input to determine the 𝑂𝑂𝑡𝑡 gate output
value. The resulting value is between “0” and “1”, which indicates
part of the cell state is output. Then the state of a cell 𝐶𝐶𝑡𝑡 is changed
by the tanh function to get the value between “-1” and “1”. The
value of the changed cell status is then multiplied by the output
value at the 𝑂𝑂𝑡𝑡 gate, which ends with ℎ𝑡𝑡 output and this output
will be used for the next step in the model.

Figure 4: Nested LSTM architecture

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 211

3.3. Nested Long Short-Term Memory (NLSTM)

Figure 4 is an architectural drawing of a Nested LSTM [21].
Nested LSTM is a simple extension of the LSTM model that
adding depth through nesting into the model. Inside Nested LSTM
there are memory cells that make up internal memory and can
only be accessed through external memory cells by applying a
temporal hierarchy. The gate output in LSTM encodes the
intuition that irrelevant memories at the current time step may still
need to be remembered. Nested LSTM uses this intuition to create
a temporal memory hierarchy. In Nested LSTM, access to internal
memories is maintained in the same way, so that long-term
information that is only situationally relevant can be selectively
accessed. The equation in Nested LSTM can be described as
follows:

ℎ�𝑡𝑡−1 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 (7)
𝑥𝑥�𝑡𝑡 = 𝑖𝑖𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥𝑡𝑡𝑊𝑊𝑥𝑥𝑥𝑥 + ℎ𝑡𝑡−1𝑊𝑊ℎ𝑐𝑐 + 𝑏𝑏𝐶𝐶) (8)

𝐶𝐶𝑡𝑡 = ℎ�𝑡𝑡−1 + 𝑥𝑥�𝑡𝑡
𝚤𝚤𝑡̃𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥 + ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑖𝑖 + 𝑏𝑏�𝑖𝑖)
𝑓𝑓𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ (𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥 + ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑓𝑓 + 𝑏𝑏�𝑓𝑓)

𝐶̃𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝑐̃𝑐𝑡𝑡−1 + 𝚤𝚤̃𝑡𝑡 ∗ tanh(𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥 + ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑐𝑐 + 𝑏𝑏�𝑐𝑐)

(9)
(10)
(11)
(12)

𝑜𝑜�𝑡𝑡 = tanh(𝑥𝑥�𝑡𝑡𝑊𝑊�𝑥𝑥𝑥𝑥 + ℎ�𝑡𝑡−1𝑊𝑊�ℎ𝑜𝑜 + 𝑏𝑏�𝑜𝑜) (13)
ℎ�𝑡𝑡 = 𝑜𝑜�𝑡𝑡 ∗ tanh(𝐶̃𝐶𝑡𝑡) (14)

𝐶𝐶𝑡𝑡 = ℎ�𝑡𝑡 (15)

Where, 𝑓𝑓𝑡𝑡 is forget gate, 𝑓𝑓𝑡𝑡 is inner forget gate, 𝑖𝑖𝑡𝑡 is the
input gate, 𝚤𝚤̃𝑡𝑡 is inner input gate, 𝑂𝑂𝑡𝑡 is the output gate, 𝑜𝑜�𝑡𝑡 is inner
output gate, 𝐶𝐶𝑡𝑡 is a memory cell, 𝐶̃𝐶𝑡𝑡 is an inner memory cell, ℎ𝑡𝑡
is a hidden layer, ℎ�𝑡𝑡 is an inner hidden layer, 𝑥𝑥𝑡𝑡 is input when
time “t,” 𝑥𝑥�𝑡𝑡 is inner input when time “t,” σ is sigmoid activation
function, tanh is hyperbolic tangent activation function,
𝑊𝑊𝑥𝑥𝑥𝑥𝑊𝑊ℎ𝑐𝑐 are weight matrices, 𝑊𝑊�𝑥𝑥𝑥𝑥𝑊𝑊�ℎ𝑖𝑖𝑊𝑊�𝑥𝑥𝑥𝑥 𝑊𝑊�ℎ𝑓𝑓𝑊𝑊�𝑥𝑥𝑥𝑥𝑊𝑊�ℎ𝑐𝑐𝑊𝑊�𝑥𝑥𝑥𝑥𝑊𝑊�ℎ𝑜𝑜

are inner weight matrices 𝑏𝑏𝐶𝐶 is bias vector and 𝑏𝑏�𝑖𝑖 𝑏𝑏�𝑓𝑓 𝑏𝑏�𝑐𝑐 𝑏𝑏�𝑜𝑜 are the
inner bias vector.

3.4. Support Vector Machine (SVM)

SVM is machine learning that is usually used for classification
or regression. SVM is also a type of supervised learning. The main
purpose of SVM is to determine data with decision boundaries and
extend to non-linear boundaries using kernel tricks [22]. SVM is
used in many applications such as word sentiment, categorization
of text and documents, pattern recognition, face recognition,
handwriting analysis, and binary classification. the idea behind
SVM is to share data with the best method. The binary
classification used to compile we need to classify 2 data sets. In
multi-classification, the most frequent method is to create a one-
versus-rest classifier (OVA) where each category is divided, and
all other categories are combined and to choose the class that
classifies collecting data with the largest margins. Divide the class
into binary problems. The classifier learning step is carried out by
all training data, taking certain class patterns as positive and all
other examples as negative. Support Vector Machine has three
main parameters, namely, C, gamma, and kernel. The kernel is
always used as the Radial Base Function (RBF) because of its best
performance [23]. While C and gamma are hyperparameters that
have different values and produce different accuracy and results.

4. Research Methodology

4.1. Dataset Generation

 We collect malware samples and track the behavior of
malware using Cuckoo malware analysis [24]. The malware
collection consists of samples collected from two primary sources:
Virus Share [25] and GitHub / TheZoo [26]. We chose this source
because it provided a large and varied sample Portable Executable
(PE) file for evaluation. Because malware authors can use
obfuscation and packers code for sub-vertical static analysis, we
use dynamic malware analysis to collect data about malware
behavior. Then, several tools allow tracking malware execution
and gathering logs from the order of execution [27]. We use
Cuckoo Sandbox, which is open-source and provides a controlled
environment for executing malware. In the dataset experiment,
that will be used as many as 13356 data, where the data is divided
into three groups, namely training, validation, and testing.

Table 2: Description of malware dataset

Malware Training
Data

Validation
Data

Testing
data

Total

Adware 2159 719 719 3597
Backdoor 504 167 167 838
Packed 664 220 220 1104
Riskware 733 243 243 1219
Trojan 2484 827 827 4138
Virus 592 197 197 986
Worm 886 294 294 1474

Total 8012 2672 2672 13356

 Table 2 shows the distribution of the amount of training and
testing data used in this research. At the training stage, the model
will be trained using 8012 data, while at the data testing stage will
be tested using 2672 data. Experiments will be conducted on both
models. Prediction of testing data will be an experimental result
where the results will be described through a confusion matrix so
that the accuracy of each model is obtained.

4.2. Word Embedding

 We extracted the PE file by preprocessing the PE Headers
and opcodes from the code section. To use this data in the
classification process, we need to make numerical vectors with
word embedding. The PE file is run in the Cuckoo sandbox which
is a malware analysis tool. Can extract API calls from PE files
during execution. The sandbox tool is configured on Ubuntu
18.04.2 LTS along with the Windows 7 virtual environment using
the Oracle virtual box where the PE files are executed. Virtual
environments help in such a way that malicious files are executed
and behave in the same way as in a conventional system [6]. This
is very helpful in understanding malware behavior when trying to
infect a system.

 During PE file execution, the Cuckoo sandbox generates log
files. The log file contains snapshots taken during execution
(behavior profile) [28]. This is done for every sample that is
executed. Each sequence of API calls is recorded according to the

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 212

class label specified by Kaspersky [29] and VirusTotal [30]. We
determined seven classes of malware (Adware, Backdoor, Packed,
Riskware, Trojan, Virus, and Worm). The API call log that has
been collected is always long and continuous. We will apply text
mining with word2vec techniques. To select API calls that are
relevant for classification. Word2vec helps identify a set of API
calls that are more common in the malware class. This works in a
way that if there is a word API call, it often appears in a class. But
when it appears in many other classes, it is not a unique identifier
and must be given a lower score. Only the words API calls with
high scores or frequently appearing words are considered as PE
file profile behavior.

 Word2vec has two techniques, namely Skip-gram and
Continuous Bag of Words (CBOW). This CBOW method takes
the context of each word from the whole sentence or paragraph as
input and tries to predict the word for word that fits the context.
In contrast, the skip-gram model predicts the meaning of words
after searching for their target words, and the author uses CBOW
for this research. First, we did a mapping for seven labels and
turned it into one-hot encoding. Then, the writer converts the
whole sentence to the lower case and removes the punctuations.
The next step is to create a word2vec embedding model generator
to convert words to vectors with the specified model size.

Figure 5: Code snippet for Word Bag

The next step is to create a Word Bag with the same number
of words counted in various types of malware that is calculated to
help determine how relevant a word is to a specific class or how
often the word appears in the word bag. The code snippet for
Word Bag is shown in Figure 5.

Figure 6: Code snippet from changing word to vector

 The word was changed to vector using the word2vec
embedding model that was created, as shown in Figure 6. After
getting the vector for the word, the average value of the vector
(mean) is taken and multiplied (multiplied) by the frequency of

words in the class and label. The following entire preprocess
process is summarized below:

• Enter a sentence and repeat each word
• For each word, it will be changed to represent a numeric

/ vector.
• Take the mean vector and multiply with the number of

classes and add them as features.
• Pad the sentence to fixed-length 128 then move to the

next sentence.

Figure 7: Illustration of preprocessing stages

After going through this process, as illustrated in figure 7, a
fixed length of 128 vectors is obtained as a feature for each
sentence. If a sentence has more than 128 words, the word will be
truncated, and if it has less than 128 words, then padding "0" will
be added so that each sentence has the same length.

After the feature making process, data mining classification is
applied using a classification approach. We use Long Short-Term
Memory (LSTM). Based on the type of API call chosen to
describe a particular class of malware, the classification approach
helps in concluding whether the file is malicious by determining
the class in which the malware is. Because the process ends with
the accuracy of determining the class in which the file is located
after behavioral detection. All PEs have a direct relationship with
the Operating System (OS) via the system calls API. This shows
that API calls can easily notify malware behavior when
attempting to execute.

4.3. Deep Learning Model

 Deep Learning is one area of artificial neural networks to deal
with problems on more large datasets. Deep Learning provides a
very compelling architecture for supervised learning. By adding
more layers to the deep learning model, it can do better at
represent labeled malware data. To implement Deep Learning
techniques for malware classification, a computer-based program
is needed that can do computing. Therefore it is necessary to
design an algorithm that can support the development of programs
for this research. The algorithm used in this study is divided into
three main parts, namely the training algorithm, the testing

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 213

algorithm, and the classification algorithm. These three
algorithms follow the concept of writing code with API and the
basic theory of Machine Learning for feature learning. In the
training algorithm, five main stages will be carried out, namely
the stages of Data Augmentation, Load Training Data, Modeling
Long Short-Term Memory (LSTM), Training Model, and Final
Weight Storage.

 The LSTM model has several layers, including the
embedding layer, LSTM layer, and Output layer. The input of the
model is the preprocessing text that has been transformed into
numeric where the input length is 128, where each number or
vector represents a word, at the embedding layer, the input will be
transformed into a vector that has a length of 128 vectors.
Furthermore, LSTM consists of 3 gates, which will process each
input vector to produce 128 vectors and where each output is
connected to the output layer. At the output layer, there are seven
neurons. each of these neurons has softmax activation to make a
value in each classification. The classification prediction results
are the highest output value.

 The Nested LSTM model made consists of several layers,
including the Embedding layer, Nested LSTM layer, and Output
layer. Similarly, the LSTM input model of the Nested LSTM
model is the preprocessing text that has been changed to numeric,
where the length of the input is different where each number
represents a word. At the embedding layer, the input will be
transformed into a vector that has a length of 128. Furthermore,
the Nested LSTM cell consisting of 3 gates (depth = 2) will
process each input vector to produce 128 output vectors where
each output is connected to the output layer. At the output layer,
the same number neurons like LSTM and each of these neurons
have softmax activation, which results in a value for each
classification.

Support Vector Machine Model has three main parameters,
namely C, Gamma, and Kernel. The kernel is always used as the
Radial Base Function (RBF) because of its best performance. C
and gamma are hyperparameters that have different values
between the two and produce different accuracy and results. We
need to find the best C and gamma values. That is why we use
GridSearch. In GridSearch, we make all possible C and gamma
combinations and then choose the one that has the best. Sklearn
has a GridSearch Cross-Validation (CV) function that takes the
SVM model, the Cs and Gammas grid parameters, and the number
of folds. The number of folds means that the data will be divided
into that many folds. In this case, it is three and then is trained on
two and tested on one.

4.4. Evaluation Design

In this research, the dataset will be used as many as 13356
data, where the data is divided into three groups, namely training,
validation, and testing. Data need to be converted in numerical
value before going into the deep learning model. So the first step
is to convert labels to one-hot encoding. After that, sentences are
being converted into lowercase and remove punctuations to create
a clean word2vec model using CBOW. The deep learning model
will be trained using 8012 data, while the data testing stage will
be tested using 2672 data. The LSTM model uses Adam optimizer
using 64 batch sizes and 30 epochs because after several test we

found that this combination works best on accuracy and added
with 512 dense layers with 20% dropping units rate to prevent
overfitting and also using softmax for classification. Whereas the
Nested LSTM model uses Adam optimizer using 64 batch sizes
and 50 epochs added with 1024, 2048, and 7 dense layers with
recurrent dropping to prevent overfitting and also using softmax
for classification. The Support vector machine uses the RBF
kernel and Grid Search Cross-Validation for hyperparameter
tuning to find the best value for the C parameter and gammas for
the training model. In this research, performance will be measured
based on the level of accuracy, recall, precision, and f1-score
achieved to measure the performance, the results of the evaluation
will be set forth in the form of a confusion matrix. The confusion
matrix contains information from actual classifications and
predicted classifications [31]. All methods were implemented on
Python 3.6, Jupyter Notebook 6.0.3, Tensorflow 1.15.0 version,
Intel Core i5-6400 (with 16 GB RAM), and Nvidia GeForce GTX
1050 Ti GPU.

5. Experimental Results

5.1. Training Result

 After the two models are made, the model is trained using
13356 training data. After several trials, we decided to use 30
epochs with 64 batch sizes for the LSTM model and 50 epochs
with 64 batch sizes for the nested LSTM model because they
produce high accuracy in training.

Figure 8: Accuracy and loss of the LSTM model

Figure 8 shows the training process of the LSTM model. The
accuracy and loss of the model during training are indicated by
the line above, the blue line shows the data in training, and the
yellow line shows the validation data. The accuracy and loss of
the LSTM model always increase from the start. At the end of the
epoch, the accuracy reached 98%, and the loss was 0.14%.

Figure 9 shows the results of the training and validation
process of the Nested LSTM model. The results of the accuracy
and loss accuracy of this model can be seen in the line above, the
blue line shows the data in training and the yellow line shows the
validation data. the level of accuracy and loss in this model is
quite good with an increase from the beginning to the end of the

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 214

test. At the end of the epoch, the accuracy reached 93.1%, and the
loss was 0.18%.

Figure 9: Accuracy and loss of the Nested LSTM model

5.2. Testing Result of LSTM Model

 After the LSTM and Nested LSTM models are created and
trained, the SVM is built and tested only as a benchmark to
compare the two models above. All three models were tested
using 2672 test data.

Figure 10: LSTM confusion matrix

 Figure 10 shows the results of LSTM model testing, where
the test results are shown using the confusion matrix. As we can
see in every malware label, there is not much miss. This is because
the loss rate of testing data is only 0.18%. The biggest label miss
here is a virus where 30 labels are considered backdoor. The rest
showed outstanding results with miss under 10. Thus, the testing
accuracy obtained from the LSTM model is 98.61%.

Table 3: Details of the LSTM model results

Classification Precision Recall F1-score
Adware 100% 100% 100%
Backdoor 95% 91% 91%
Packed 98% 99% 98%
Riskware 97% 99% 99%
Trojan 100% 100% 100%
Virus 94% 93% 95%
Worm 99% 99% 99%
Average 97.57% 97.29% 97.43%
Accuracy 98.61%

 Table 3 shows all the precision, recall, and f1-scores of the
LSTM model from each malware. The LSTM method obtained an
average precision of 97.57%, a recall of 97.29%, and an f1-score
of 97.43%.

5.3. Testing Result of Nested LSTM Model

 Figure 11 shows the results of Nested LSTM model testing,
where the test results are shown using the confusion matrix. As
we can see in every malware label, there is not much miss. It is
because the loss rate of testing data is only 0.18%. The biggest
label miss here is a backdoor where 66 labels are considered as a
virus. The rest showed outstanding results with miss under 20.
The testing accuracy obtained is 93.11%.

Figure 11: Nested LSTM confusion matrix

Table 4: Details of the Nested LSTM model results

Classification Precision Recall F1-score
Adware 98% 100% 97%
Backdoor 55% 72% 67%
Packed 93% 71% 83%
Riskware 88% 87% 89%
Trojan 100% 99% 97%
Virus 65% 75% 76%
Worm 92% 92% 93%
Average 84.43% 85.14% 86.00%
Accuracy 93.11%

 Table 4 shows all the Precision, Recall, and F1-scores of the
model from each classification. The Nested LSTM method
obtained an average precision of 84.43%, a recall of 85.14%, and
an f1-score of 86.00%.

5.4. Testing Result of Support Vector Machine Model

 We also developed Support Vector Machine (SVM) so that it
can be used as a comparison or benchmark. To see which ones
perform better using the same word embedding method.

Figure 12: SVM confusion matrix

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 215

 Figure 12 shows the results of the SVM testing model, where
the test results are shown using the confusion matrix. As we can
see in every malware label, there is much miss. For example, the
Virus miscalculated up to 91 labels. Followed by almost every
label more than 30 miss labels because of a low level of accuracy,
and this is why we propose to use deep learning methods because
this type of data is not suitable for SVM. The testing accuracy
obtained is only 84.50%

Table 5: Details of the SVM model results

Classification Precision Recall F1-score
Adware 94% 100% 97%
Backdoor 50% 100% 67%
Packed 70% 100% 83%
Riskware 85% 100% 92%
Trojan 100% 66% 80%
Virus 40% 100% 57%
Worm 78% 100% 87%
Average 73.86% 95.14% 80.43%
Accuracy 84.50%

Table 5 shows all the results of the classification label,
precision, recall, and f1-scores of the SVM model from each
classification. The SVM method obtained an average precision of
73.86%, a recall of 95.14%, and an f1-score of 80.43%.

5.5. Summary of Testing Results

 This section presented the result of all methods, including our
proposed method, and compared it to other existing methods,
which is SVM. Our proposed methods can overcome others. The
results are shown in Table 6.

Table 6: Results comparison of all models

Method Accuracy Precision Recall F1-score
LSTM 98.61% 97.57% 97.29% 97.43%
Nested LSTM 93.11% 84.43% 85.14% 86.00%
SVM 84.50% 73.86% 95.14% 80.43%
CNN 96.60% 95.71% 95.12% 95.62%
DRN 86.54% 84.97% 84.23% 84.67%
DBN 92.60% 96.30% 89.60% 92.80%
DGCNN 96.87% 88.79% 92.83% 90.76%
DL4MD 95.64% 93.06% 94.60% 94.52%

Table 6 shows the overall comparison of all methods. We also
make plot early stopping in LSTM and Nested LSTM train
process so that we can take the best accuracy model when the
training process happens. Overall, the table above shows that the
LSTM model produces the best accuracy of 98.61% among the
three methods, although the difference in accuracy does not differ
significantly from the Nested LSTM. Both LSTM and Nested
LSTM methods are still better than SVM methods. It shows that
the deep learning method is far more accurate compared to
ordinary machine learning methods.

6. Conclusion and Future Work

 In this paper, we investigate the effectiveness of malware
system call sequences that transformed into vectors and use
word2vec as word embedding and then enter the LSTM layer
repeatedly for the classification process with non-linear activation

functions like Softmax. We have also carried out various
experiments with different parameters, network structures, and
added early stopping plots to get the best model accuracy in the
training process. The design of the model is also evaluated using
different methods such as Nested LSTM and SVM as benchmarks.
From the three models, it can be concluded that the LSTM method
gets the highest accuracy reaching 98.61% in the real-world data
set. Overall, LSTM is included as the most effective approach to
learning long-range dependencies in cybersecurity tasks and more
appropriate methods for detecting malware through system call
sequences.

 From this research, it can be concluded that the experimental
results with the LSTM network are straight forward. Still, we have
not tried to use more complex LSTM networks, such as use many
different layers, use more automatic decoders or use word
embedding techniques other than word2vec. It because such a
network architecture will cost us more and more complex
preprocessing, network architecture, and a clean dataset probably
will improve the results.

References

[1] N. Aziz, Z. Yunos, and R. Ahmad, “A management framework for
developing a malware eradication and remediation system to mitigate
cyberattacks,” in Lecture Notes in Electrical Engineering, 481, 513–521,
2019.

[2] R. Bavishi, M. Pradel, and K. Sen, “Context2Name: A Deep Learning-
Based Approach to Infer Natural Variable Names from Usage Contexts,”
2018.

[3] C. Raghuraman, S. Suresh, S. Shivshankar, and R. Chapaneri, “Static and
dynamic malware analysis using machine learning,” in Advances in
Intelligent Systems and Computing, 1045, 793–806, 2020.

[4] Abbasi, “Leveraging behavior-based rules for malware family
classification,” Dec. 2019.

[5] H. Lim, “Detecting Malicious Behaviors of Software through Analysis of
API Sequence k-grams,” Comput. Sci. Inf. Technol., 4, no. 3, 85–91, 2016.

[6] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based
on API call sequence analysis,” Int. J. Distrib. Sens. Networks, 2015.

[7] V. Zenkov and J. Laska, “Dynamic data fusion using multi-input models
for malware classification,” 2019.

[8] M. Imran, M. T. Afzal, and M. A. Qadir, “Malware classification using
dynamic features and Hidden Markov Model,” in Journal of Intelligent and
Fuzzy Systems, 31(2), 837–847, 2016.

[9] A. F. Agarap, “Towards Building an Intelligent Anti-Malware System: A
Deep Learning Approach using Support Vector Machine (SVM) for
Malware Classification,” 2017.

[10] M. F. Rafique, M. Ali, A. S. Qureshi, A. Khan, and A. M. Mirza, “Malware
Classification using Deep Learning based Feature Extraction and Wrapper
based Feature Selection Technique,” 1–20, 2019.

[11] Y. Lu, G. Jonathan, and L. Jiang, “Deep Learning Based Malware
Classification Using Deep Residual Network,” 2019.

[12] A. Oliveira, U. N. De Julho, and U. N. De Julho, “Behavioral Malware
Detection Using Deep Graph Convolutional Neural Networks,” 1–17, 2019.

[13] Z. Zhang, C. Chang, P. Han, and H. Zhang, “Packed malware variants
detection using deep belief networks,” MATEC Web Conf., 309, 02002,
2020.

[14] K. HE and D.-S. KIM, “Malware Detection with Malware Images using
Deep Learning Techniques,” 2018.

[15] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “DL4MD: A Deep Learning
Framework for Intelligent Malware Detection,” Proc. Int. Conf. Data Min.,
61–67, 2016.

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations ofwords and phrases and their compositionality,” Adv.
Neural Inf. Process. Syst., 3111-3119, 2013.

[17] D. Meyer, “How exactly does word2vec work ?,”
Uoregon.Edu,Brocade.Com, 1–18, 2016.

[18] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., 9, no. 8, 1735–1780, 1997.

[19] A. Sherstinsky, “Fundamentals of Recurrent Neural Network (RNN) and

http://www.astesj.com/

R.J. Maulana et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 4, 207-216 (2020)

www.astesj.com 216

Long Short-Term Memory (LSTM) network,” Phys. D Nonlinear Phenom.,
404, p. 132306, Mar. 2020.

[20] F. Miedema, “Sentiment Analysis with Long Short-Term Memory
networks,” 1–17, 2018.

[21] J. R. A. Moniz and D. Krueger, “Nested LSTMs,” J. Mach. Learn. Res., 77,
530–544, 2017.

[22] Y. Ahuja and S. Kumar Yadav, “Multiclass Classification and Support
Vector Machine,” Global Journal of Computer Science and Technology
Interdisciplinary, 12(11), 14–19, 2012.

[23] C. Brew, “Classifying ReachOut posts with a radial basis function SVM,”
2016.

[24] L. Wang, B. Wang, J. Liu, Q. Miao, and J. Zhang, “Cuckoo-based malware
dynamic analysis,” Int. J. Performability Eng., 15(3), 772–781, 2019.

[25] “VirusShare.com.” [Online]. Available: https://virusshare.com/. [Accessed:
18-Apr-2020].

[26] G. D. Webster, Z. D. Hanif, A. L. P. Ludwig, T. K. Lengyel, A. Zarras, and
C. Eckert, “SKALD: A scalable architecture for feature extraction, multi-
user analysis, and real-time information sharing,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
9866 LNCS, 231–249, 2016.

[27] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A.
Kiayias, “Scalability, fidelity and stealth in the DRAKVUF dynamic
malware analysis system,” ACM Int. Conf. Proceeding Ser., 2014-Decem,
no. December, 386–395, 2014.

[28] S. Jamalpur, Y. S. Navya, P. Raja, G. Tagore, and G. R. K. Rao, “Dynamic
Malware Analysis Using Cuckoo Sandbox,” in Proceedings of the
International Conference on Inventive Communication and Computational
Technologies, ICICCT 2018, 2018, 1056–1060, 2018.

[29] “Kaspersky Cyber Security Solutions for Home & Business | Kaspersky.”
[Online]. Available: https://www.kaspersky.com/. [Accessed: 18-Apr-
2020].

[30] “VirusTotal.” [Online]. Available:
https://www.virustotal.com/gui/home/upload. [Accessed: 26-Apr-2019].

[31] A. K. Santra and C. J. Christy, “Genetic Algorithm and Confusion Matrix
for Document Clustering.” 2012.

http://www.astesj.com/

	1. Introduction
	2. Related Works
	3. Background Theories
	3.1. Word2Vect
	3.2. Long Short-Term Memory (LSTM)
	3.3. Nested Long Short-Term Memory (NLSTM)
	3.4. Support Vector Machine (SVM)

	4. Research Methodology
	4.1. Dataset Generation
	4.2. Word Embedding
	4.3. Deep Learning Model
	4.4. Evaluation Design

	5. Experimental Results
	5.1. Training Result
	5.2. Testing Result of LSTM Model
	5.3. Testing Result of Nested LSTM Model
	5.4. Testing Result of Support Vector Machine Model
	5.5. Summary of Testing Results

	6. Conclusion and Future Work
	References

