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 Air pollution is responsible for increased morbidity and mortality due to respiratory 
problems mainly caused by long term exposure. Although the emissions of principal air 
pollutants are highly regulated, there is a lack of information about the real extent of 
personal exposure for an accurate health impact assessment. To tackle these challenges, 
local air pollution measurements and citizen involvement based on the small IoT devices 
became necessary. The Tel-MonAer platform is based on IoT devices and Edge/Cloud 
computing technologies and allows the (near) real-time monitoring of Particulate Matter 
air pollutants considering the complex chemistry and influence of various parameters (i.e. 
air humidity, wind speed, temperature). The aim of this paper is the assessment of the 
influence that air humidity has on the PM concentrations measured with IoT devices based 
on laser beam technologies. The results showed that in order to increase the accuracy of 
PM concentrations values a threshold value for relative humidity of 80% needs to be 
considered.  When humidity values are below 80%, the PM concentration values are 
considered valid, while for values over the threshold, a specific correction algorithm needs 
to be applied. This paper presents the correction algorithm (based on the type of sensor 
and humidity) and the testing results (an increase of at least 2.5 times of the correlation 
coefficient between the corrected and reference values). 
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1. Introduction 

This paper is an extension of the work originally presented in 
CSCS22: The 22nd International Conference on Control Systems 
and Computer Science, Bucharest, 2019 [1]. 

Worldwide, air pollution has extensive effects on the 
environment, human health and global economy, as research 
showed correlation between premature deaths and low air quality 
[2,3]. The extent of the consequences of air pollution levels are 
strongly related to the pollutant concentrations and the level of 
exposure. Until recently, the assessment of air quality has been 
strongly reliant on traditional monitoring networks, because of 
their accuracy, but they also have some disadvantages that should 
not be disregarded [4,5]. The main issues of these monitoring 
networks are high costs of acquisition, maintenance requirements, 
improper placement in areas with low pollution and the limited 
number of fixed stations, due to legal restrictions for location [6]. 
Therefore, the need for alternative air pollution measurements is 

indisputable, in the context of spatial variability of air quality [7-
9]. As a result of the variety of sensors on the market, the increased 
computing power and new communication protocols and the 
community-led sensing initiative, the topic of air pollution became 
a key research topic, at local and regional scale [10]. 

The research community expressed concerns particularly 
regarding the dangerous effects on human health of two key 
pollutants: nitrogen dioxide and particulate matter (PM). The 
latter is one of the most dangerous pollutants in terms of health 
effects, as it can cause a wide range of negative reactions, even at 
low concentrations [11]. Among them, the PM10 (PM with 
diameter lower than 10 µm) and PM2.5 (PM with diameter lower 
than 2.5 µm) are considered to have the greatest impact, as their 
effects are not only related to pollutant concentrations, but also to 
the frequency and the duration of exposure [12]. For individuals, 
there are also other factors that play important roles in the extent 
of air pollution effects, such as health status and age [13]. 
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The prime sources of particulate matter in the atmosphere are 
either natural, such as volcano eruptions and forest fires, or 
human-made, such as traffic, industry, agriculture, construction 
and other combustion processes. PM concentrations are 
particularly important to monitor due to the fact that they can be 
emitted not only from direct emission sources, but also from 
chemical reactions between different gases, such as NOx and SO2 
[14]. A comprehensive characterization of PM has to consider 
multiple factors: (1) mass; (2) elemental composition; (3) water-
soluble ionic species; and (4) organic compounds. The traditional 
sampling systems based on gravimetric measurements of collected 
particles generate direct measurements of airborne particle mass. 
Moreover, during the sampling process, there is the possibility of 
losing the semi-volatile organic compounds and semi-volatile 
ammonium compounds (such as NH4NO3). The composition of 
the sample of PM is also decisive for the accuracy of the 
measurements, because the presence of ionic species (i.e. sulfate 
and nitrate compounds) increases the liquid water uptake of 
suspended particles and therefore, the particle dimension. 
Therefore, the chemical composition of the sample and the 
temperature heavily influence the correct assessment of PM 
concentrations in the atmosphere [15]. 

This paper presents an analysis of the variation of particulate 
matter (PM10 and PM2.5) concentrations in relation to relative 
humidity. Chapter 2 compiles related work for data accuracy of 
PMs, Chapter 3 discusses the method that it is used, Chapter 4 
presents the results, and lastly, Chapter 5 concludes the paper. 

2. Related Work 

The effects of different parameters on the data accuracy of PM 
concentrations were approached in several papers. The influence 
of wind and precipitation on different-sized particulate matter 
concentrations were investigated in paper [16], showing that the 
effects of atmospheric conditions differ, depending on the size of 
the particulate matter.  The increase in wind speed can decrease the 
concentrations of fine PM, while decreasing the concentrations of 
coarse PMs. The authors also found a stronger negative impact of 
precipitation on PM10 than on PM2.5. 

In paper [17], authors analyze the way PM10 concentrations are 
influenced by different meteorological parameters, such as 
pressure, relative humidity, temperature, wind speed, wind 
direction, CO, SO2, NO, NO2. A quantile regression model has 
been employed and the results showed that the influence of the 
independent variables was significant in at least one or more 
quantiles of the PM10 concentrations. Among the analyzed 
parameters, relative humidity was proven to have a significant 
impact on quantiles 0.05 to 0.3 and an insignificant impact at 
higher quantiles.  

The topic of the relationship between relative humidity and PM 
concentrations was approached in paper [18]. Authors found that 
PM concentrations in the atmosphere are closely correlated with 
the levels of relative humidity. It has been shown that high 
humidity conditions (between 70-100%) led to a reduction in PM2.5 
concentrations, while low-humidity conditions (below 70%), led 
to the increase in PM2.5 concentrations. In case of PM10 
concentrations, humidity values below 45% had an accumulation 
effect, causing an increase in concentration, while an environment 
with humidity levels above 45% led to lower concentrations.  

3. Methods 

3.1. Tel-MonAer platform 

The aim of the Tel-MonAer project was the development of a 
mobile, extensible and scalable system which integrates 
technologies such as the Internet of Things and Edge/Cloud 
Computing, for the purpose of monitoring and performing real 
time analysis of the risk factors of public health and the 
environment. The architecture of the IoT platform is presented in 
Figure 1. 

 
Figure 1: NETIoT architecture 

 
(a).BEIA Consult, Romania. 

 
(b).University Politehnica of Bucharest, Romania 

Figure 2: Installed air-quality sensors that send the data the Tel-MonAer 
platform. 
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The platform registers every hardware device employed by the 
end-user, such as sensors or device gateways, with a unique ID. 
The data from the sensors is firstly received by the MQTT 
protocol, through a device gateway and then forwarded to a cloud 
gateway. The Tel-MonAer system is capable of simultaneously 
monitoring different air quality parameters such as SO2, NOx, CO, 
O3, PM10, PM2.5, as well as meteorological parameters (wind 
direction and speed, pressure, temperature, relative humidity). 

The air quality data is currently being collected from IoT 
sensors in two locations: the premises of BEIA Consult 
International and University Politehnica Bucharest, as shown in 
Figure 2. 

Tel-MonAer is designed to allow some specific features like 
availability and scalability. Moreover, the platform will permit 
further development. The architecture of the platform is based on 
microservices, because of the advantages of this model, such as 
independent, faster and more cost-effective development of each 
microservice and dedicated and specific databases for each 
component.  

The high volumes of data stored by the Tel-MonAer platform 
demand a scalable and performant storage layer. For this purpose, 
Apache Cassandra database has been used because of its ability to 
scale almost linearly, to tackle failover situations and to 
automatically replicate data in more data centers.  

The data is further processed by the platform, using two types 
of processing. Batch processing is used for analyzing the data 
received from multiple sensors and within a specific time frame 
and for performing predictions of possible evolutions. Real-time 
processing is used for event detection. We used Apache Spark, a 
general use engine for both real-time and batch processing, 
because of its advantages, such as in-memory processing, real-time 
stream processing and sophisticated analytics support. 

3.2. Details of the method used 

The parameters of the data set used to perform the analysis are: 
PM10 and PM2.5 concentration values, atmospheric pressure, 
atmospheric temperature and relative humidity. The measurements 
were performed in Bucharest using Libelium sensors. The 
parameters were measured between the 1st of November 2018 and 
the 28th of January 2019, with a frequency of 15 minutes.   

 The process of data acquisition follows several steps: accessing 
the gateway interface, connecting to the MySQL database interface 
to access the sensor data, logging into the phpMyAdmin interface, 
querying the database for hourly average values, downloading the 
data selected by the query function.   

4. Experimental Results 

The dataset resulted from the registered measurements 
contains 2133 values for every parameter. Firstly, a qualitative 
analysis of the data has been performed, in order to compare the 
measured values with standard data requirements. Secondly, a 
preliminary analysis has been carried out using statistical 
descriptive methods for the parameter, such as variation, mean 
value and standard deviation [1].   

The variation of PM10 and PM2.5 concentrations function of 
relative humidity is presented in Figure 3 and Figure 4, 

respectively. The results show an increase in PM concentrations 
for values of relative humidity greater than 90%. This is a strong 
indication of a measurement error, caused by the measurement 
method or by the complex chemistry of PMs.     

 
Figure 3: PM10 concentration vs relative humidity for the entire data set 

 
Figure 4: PM2.5 concentration vs relative humidity for the entire data set 

Considering the need to ensure the accuracy of measurements 
and the previous measurement results, it is necessary to determine 
a threshold value of relative humidity from which the 
measurements accuracy decrease. For this purpose, Pearson’s 
correlation coefficients between relative humidity and PM 
concentrations were calculated for different data sub-sets. The 
results shown in Figure 5 indicate a stronger correlation for both 
types of PMs when relative humidity values are higher than 80%. 

 
Figure 5: The absolute values of Pearson’s correlation coefficients between 

PM2.5 and humidity, respectively PM10 and humidity, for selected data sub-sets. 
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In order to perform a comparative analysis, the absolute value 
of the correlation coefficients was used, and the threshold value of 
relative humidity was established at 80%. The dataset that resulted 
consists of 591 values and represents 27.7% of the total values 
registered. 

The variation of measured PM10 and PM2.5 concentrations for 
the data sub-set corresponding to values of relative humidity lower 
than 80% are presented in Figure 6. For the same data sub-set, 
Figure 7 shows the PM10 and PM2.5 concentrations function of 
relative humidity. 

 
Figure 6: Variation of measured values for PM10 and PM2.5 concentration for 

the data sub-set (humidity < 80%). 

 
Figure 7: PM2.5 and PM10 concentration vs relative humidity for the data sub-

set (humidity < 80%). 

Table 1: Correction factors for humidity classes 

Class name Range of variation, 
(%) 

Correction factor 

K1 ≤ 80 1 

K2 80-85 1.5152 

K3 85-90 2.3008 

K4 90-95 3.3807 

K5 95-98 6.6515 

K6 > 98 14.4549 

 
In order to make corrections that eliminate the influence of 

humidity on the values of PM concentrations, it is proposed a 
division by humidity classes for which the values of correction 
factors have been estimated. The correction factor values for 

humidity classes were calculated as average values of the 
corresponding correction factors for the humidity values of each 
variation interval. The resulting values are presented in Table 1. 

4.1. Algorithm for correcting concentrations of PM2.5 and PM10 

Based on the information and data measured in the Tel-
MonAer project, a correction algorithm (presented below) was 
developed for the concentration values of PM2.5 and PM10. 

Step 1. Determination of the correction factor for 
humidity 

Each measured value of the relative humidity falls 
into the corresponding humidity class (according to 
Table 1) and then the correction factor 
corresponding to the class is identified) 

Step 2. Correction for humidity of PMx concentration 

For each value of the PMx concentration measured, 
the following formula is applied: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐻𝐻 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝐹𝐹

           (1) 

Where:  

PMx – x fraction of particulate matter (e.g. PM2.5 
and PM10); 

Conc PMx corr H – the value of PMx concentration 
as a function of humidity; 

Conc PMx measured – the value of the measured 
PMx concentration; 

FC – the value of the correlation factor. 

Step 3. Making the correction by reporting to the 
reference methods 

For each value of the concentration corrected in Step 
2, the formula applies: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐻𝐻)         (2) 

Where the function is specific to each type of sensor, 
pollutant and mediation period. 

Step 4. Calculation of the final concentration for the 
specified mediation interval. 

The average value of the corrected concentrations 
for the specified mediation periods (hour, day) is 
calculated. 

 For the application and testing of the calculation algorithm, the 
concentration data of PM2.5, PM10 and relative humidity acquired 
using a Libelium SCP station (with OPC-N3 sensor) was used. The 
station was installed outside the building of the CAMPUS Center, 
within the Politehnica University of Bucharest (Figure 8). The data 
set used corresponds to the period March 13-May 13, 2019. 

The corrected values of the concentrations of PM2.5 and PM10 were 
calculated with the measurements made by the National 
Environmental Protection Agency, at the Morii Lake measuring 
point within the National Network for Air Quality Assessment 
(Figure 9). 
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Figure 8: Installation of the measuring equipment Libelium SCP at the CAMPUS 

center 

 
Figure 9: Distance between the Morii Lake monitoring point and the CAMPUS 

monitoring point 

The correction algorithm was applied for PM2.5 and PM10 and 
the results were compared with the values of the measured 
concentrations at Morii Lake measurement point in the National 
Air Quality Assessment network. 

 
Figure 10: Histogram of relative humidity for the test period 

4.2. Application of the algorithm for PM2.5 

During the analyzed period (March 13 – May 13, 2019), there 
were recorded hourly values of relative humidity (Figure 10) 
below 80% in 915 hours (69% of the total) and values greater than 

98% in 231 hours (17.42%). Thus, the correction algorithm for 
humidity will lead to the modification of the values for 31% of the 
recorded values. 

The hourly concentrations measured (Figure 11) during the 
testing phase of the algorithm recorded values below 7 μg / Nm3 
in 32.43% of hours, values less than 22 μg / Nm3 being measured 
in 80.24% of the total number of hours. Also 43 values over 67 
μg / Nm3 were recorded.  

 
Figure 11: Histogram of the values of PM2.5 concentrations measured during the 

test period 

By applying the algorithm, the very small values (below 7 μg 
/ Nm3) of the measured concentrations were increased and 
represent 1.52% of the total. Values lower than 22 μg / Nm3 
represent 83.45% of the total number of hours. The number of 
values greater than 67 μg / Nm3 was reduced to one value (Figure 
12). 

 
Figure 12: Histogram of PM2.5 concentration values corrected after applying the 

algorithm 

 
Figure 13: Measured and corrected concentration values of PM2.5 for the test 

period 
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Figure 13 shows the values of PM2.5 concentrations measured 
and corrected for the test period. It is observed the elimination of 
the extreme values generated by the increase of humidity and the 
increase of the small values which represents the elimination of 
the underestimation of the measured values. 

4.3. Application of the algorithm for PM10 

The hourly concentrations measured (Figure 14) during the 
testing phase of the algorithm recorded values below 12 μg / Nm3 
in 44.49% of the hours, values less than 44 μg / Nm3 being 
measured in 92.23% of the total number of hours. Also, 33 values 
of over 92 μg / Nm3 were recorded. 

 
Figure 14: Histogram of PM10 concentration values measured during the 

test period 

By applying the algorithm, the very small values (below 12 
μg / Nm3) of the measured concentrations were increased and 
represent 0.5% of the total. The number of concentrations greater 
than 92 μg / Nm3 was reduced to a single value (Figure 15). 

 
Figure 15: Histogram of PM10 concentration values corrected after applying 

the algorithm 

The following figure shows the values of PM10 
concentrations measured and corrected for the test period. It is 
observed the elimination of the extreme values generated by the 
increase of humidity and the increase of small values which 
represents the elimination of the underestimation of the measured 
values (Figure 16). 

 
Figure 16: Values of concentrations measured and corrected by PM10 for 

the test period 

4.4. Performance evaluation of the algorithm 

The monitoring station at Morii Lake is urban-background 
type, the measured values being representative on an area with a 
radius of 1-5 km around the station. The CAMPUS Center where 
the Libelium sensors were located is within the representative area 
(1.8 km from the station). By placing it at a higher height, the 
effect of the pollution generated by car traffic was reduced, but it 
is also possible to reduce the measured values due to the height at 
which they were located.  

The hourly PM2.5 concentrations measured at the monitoring 
station at Morii Lake (Figure 17) were below the value of 22 μg / 
Nm3 in 82.69% of the total number of hours.  

 
Figure 17: Histogram of the values of PM2.5 concentrations measured at the 

Morii Lake point from the National Air Quality Network 

 
Figure 18: Values of corrected PM2.5 concentrations and those measured by 

ANPM for the test period 
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The comparative graphical representation of the values of the 
corrected PM2.5 concentrations and those measured by ANPM 
(Figure 18) during the testing period of the algorithm indicates 
close values and similar evolution trend. 

The hourly PM10 concentrations measured at the Morii Lake 
monitoring station (Figure 19) were below the value of 44 μg / 
Nm3 in 94.94% of the total number of hours.  

 
Figure 19: Histogram of the values of PM10 concentrations measured at the Morii 

Lake point from the National Air Quality network 

The comparative graphical representation of the values of the 
corrected PM10 concentrations and those measured by ANPM 
(Figure 20) during the testing period of the algorithms indicates 
close values and similar evolution trend.  

 
Figure 20: Values of corrected and officially measured concentrations of PM10 

for the test period 

The efficiency of the correction algorithm was evaluated at 
this stage by the value of the Pearson correlation coefficients 
(Table 2).  

Table 2: Pearson’s correlation coefficient values for the analyzed data sets 

Concentration Correlation coefficient 
Measured values 
vs. ANPM values 

Corrected values 
vs. ANPM values 

PM2.5 0.268 0.688 
PM10 0.216 0.663 

 

This shows a 2.5-fold increase in the correlation coefficient 
for PM2.5 concentrations, from a value of 0.268 (Libelium 
measured data vs. ANPM measured data). 

For PM10 concentrations, the value of the correlation 
coefficient increased 3-fold, from 0.216 (Libelium measured data 
vs ANPM measured data) to 0.663 (Libelium corrected data vs. 
ANPM measured data). 

5. Conclusions and Future Work 

The influence of relative humidity on the PMs concentration 
values is significant for the devices based on laser measurement 
technology. For this type of IoT devices we propose a threshold 
value for relative humidity of 80% under which to consider PMs 
measured concentration as valid. For the situation when relative 
humidity has values over 80%, a specific algorithm was 
developed. The algorithm corrects the PMs measured values 
considering the type of the sensors and the value of humidity.  

The correction algorithm was tested on a data set containing 
PMs concentration values and other meteorological parameters 
for a period of two months. The results show an increase of at least 
2.5 times of the correlation coefficient between the corrected 
values and those measured by the reference station of the National 
Air Quality Monitoring Network. 

Future work will consider further testing of the algorithm and 
the development of a specific ML algorithm for air quality 
predictions.  
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