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 In this paper, a multiple-objective Metaheuristics study is discussed. Initially, three mono-
objective metaheuristics will be explored in order to design and optimize Radio-Frequency 
integrated inductors. These metaheuristics are: An evolutionary algorithm called The 
Differential Evolution (DE), An algorithm supported on Newton's laws of gravity and 
motion called the Gravitational Search Algorithm (GSA) and, finally, A swarm intelligence 
algorithm called the Particle Swarm Optimization (PSO). The performances of these three 
mono-objective metaheuristics are evaluated and compared over three benchmark 
functions and one application to optimize the layout of a RF silicon-based planar spiral 
inductor, the double π-model is adopted. Secondly, three references multi-objective 
metaheuristics using Pareto front are used respectively the multi-objective PSO (MOPSO), 
the Pareto envelope-based selection algorithm-II (PESAII) and the multi-objective 
evolutionary algorithm based on decomposition (MOEA/D). The performances of these 
multi-objective optimization algorithms are evaluated and compared over two bi-objective 
benchmark functions and the same application used in the first section. Two conflicting 
performances were optimized, namely the quality factor ‘Q’ (to be maximized) and the 
device area ‘dout’ (to be minimized) for the RF inductor. It was concluded that the multiple-
objective PSO are significantly more efficient and robust for difficult problems than the 
other metaheuristics. 
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1. Introduction  

Nowadays, the advances in the integration technology agree 
the conception and the realization of complex integrated electronic 
systems. Therefore, the decision-making must be broached in an 
optimal way. Decision making can be seen as a set of the following 
steps: “Formulation”, “Modelling”, “Optimization”, and 
“Implementation” of the problem [1]. In order to increase the 
accuracy of the optimization model, or algorithm, up to an 
adequate solution is establish, the decision making process could 
be repeated. The block "Optimization of the problem" is a vital part 
of this process and can be found in many areas, like engineering 
among others, and particularly in the topic of Radio Frequency 
(RF) circuit design [2-4].  

The mono-objective optimization algorithms are classified into 
two categories: the heuristics and the metaheuristics algorithms. In 
fact, the first category is developed to solve a specific problem [5]. 

The second category represent a group of optimization techniques 
where theses popularity are increased during the last two decades 
and being considered the most successful and promising 
optimization algorithms [6–8]. The most used ones in the literature 
are the Evolutionary Algorithms (EA) such as local search (LS), 
simulated annealing (SA), tabu search (TS), genetic algorithms 
(GA) [9-14] etc. 

Recently, a new group of nature inspired metaheuristic 
algorithms were published in literature. These metaheuristics are 
part of Swarm Intelligence. These techniques are based on animal 
behaviour and insect conduct, aiming to mimic their skills solving 
daily problems. In the area of Radio Frequency (RF) circuit design, 
Swarm Intelligence (SI) techniques are broadly applied, and 
among such techniques the PSO “Particle Swarm Optimization” 
[15–17], and the ACO “Ant Colony Optimization” [18–21], are the 
most used. 

In this paper a multiple-objective metaheuristics study is 
discussed. Firstly, we propose to evaluate and compare such 
references mono-objective metaheuristics optimizing such 
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benchmark functions and one Radio-Frequency application in 
terms of convergence, robustness and time computing. Three 
mono-objective algorithms are considered: An evolutionary 
algorithm entitled the Differential Evolution (DE), an algorithm 
based on Newton's laws of gravity and motion entitled the 
Gravitational Search Algorithm (GSA) [22, 23], and a swarm 
intelligence algorithm entitled the Particle Swarm Optimization 
(PSO). The drive issue for this comparative study is to give some 
sort of substantiation for the choice of the “best” metaheuristic 
among others [24]. Secondly, multi-objective problems are 
discussed. A study was conducted to the maximization of the 
quality factor Q and the minimization of the device area dout for the 
Radio-Frequency (RF) integrated inductor circuit [25-30]. Three 
algorithms for multi-objective Pareto optimization [31-39] are 
used. An evaluation concerning the performances of the three 
abovementioned multi-objective metaheuristics: the convergence 
and the robustness analyses are offered [40-41]. 

The structure of this work is the following. Section 2 presents 
a summary of the mono-objective metaheuristics used. Results and 
analysis regarding the convergence and the robustness study of the 
three algorithms over three benchmarks functions are offered in 
Section 3. Section 4 reports the application of these mono-
objective optimization applied to the layout of a RF silicon-based 
planar spiral inductor. Section 5 presents the uses of multi-
objective algorithm to optimize both the maximum quality factor 
and to minimize the device area of the RF inductor with three 
multi-objective algorithms: the multi-objective particle swarm 
optimization (MOPSO), the Pareto Envelope-based Selection 
Algorithm II (PESAII) and the Multi-Objective Evolutionary 
Algorithm based on Decomposition (MOEA/D). A comparison of 
its performance’s meters is concluded. Finally, Section 6 wrap up 
the final remarks, conclusion and future works. 

2. An overview on the mono-objective metaheuristics  

2.1. Differential Evolution algorithm 

In 1997, Storn and Price developed the differential evolution 
(DE), which belongs to evolutionary algorithm category. It is an 
effective, robust and simple global optimization algorithm [13].  

Differential evolution algorithm is similar to the genetic 
algorithm [25], uses similar genetic operators like crossover, 
mutation and selection operators. Comparing both algorithms, the 
best solutions achieve are dependent of the process, the genetic 
algorithm relies on crossover operators while the differential 
evolution algorithm on the mutation operation (differential 
strategy) [26]. DE generates new candidates (trial vectors) of its 
population according to target vector manipulation and difference 
vector. Afterwards, it compares the performance of the resulting 
candidate against the original members, and if it shows to have a 
better solution, it changes it; else, keep the original candidate. The 
differential evolution algorithm technique uses three operators: 
mutation, crossover and selection. 

2.1.1. Mutation Operator 

The mutation operator is defined as follows: 

1
1 2 3 ( )k k k k

i r r rV X F X X+ = + −  (1) 

Where Vk+1 is the ith trial vector produced by the mutation 
strategy; k represents the generation to which the population 
belongs; r1, r2, and r3 are mutually exclusive integers arbitrarily 
generated from 1 to N (N is the population size) and F is a scaling 
factor with optimal value in the range of 0.5 to 1.0. 

2.1.2. Crossover Operator  

One the mutation operation is done, the crossover operator is 
applied to maintain the miscellany of the population. The crossover 
operator generates the offspring individual Ui at the kth generation 
by selecting the solution component values from Xi or Vi, using the 
following equation (2): 
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where CR: the crossover probability ∈[0, 1]. 

2.1.3. Selection Operator  

The selection operator is adopted to compare the trial vector 
k
iU with the target vector k

iX if the fitness of the trial vector is more 
suitable than the target vector. Such operation, which occurs every 
kth generation, is presented in equation (3): 
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where f: the fitness function. 

The flowchart of DE algorithm is given in Figure 1. 

 

2.2. Gravitational Search Algorithm  

In [22, 23], the authors proposed the gravitational search 
algorithm as a new swarm intelligence metaheuristic. This 
metaheuristic is based on Newton's laws of gravity and motion. In 
GSA, a cluster of agents (solutions) named masses are used to 
solve and find the optimal solution (best agent). Based on the 
gravitational force, where all objects are attracted among each 
other, and this force causes a global movement of such objects 
towards objects with heavier masses [23]. The weightier masses, 
representing the best solutions, are known for moving slowly 
compared to those less heavy. The GSA is represented by N 
agents, where the position of the ith object is defined with (4): 

1( ,..., ,..., ) for 1,2,...,= =d N
i i i iX x x x i N  (4) 

where d
ix  is the position of ith object in the dth dimension and N is 

dimension of the problem to be optimized.  

The mass values of every objects are defined by (5): 
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where ( )ifit t , ( )iM t  represents the fitness value and the mass value 
of the object i at t, and ( )worst t is evaluated by (6): 

{1,..., }( ) max ( )jj Nworst t fit t∈=  (6) 

To estimate the total forces and the acceleration of an agent, it 
should be evaluated over gravity law, equation (7), then equation 
(8). Resulting, the new velocity is calculated by equation (9) and 
the new position is computed by equation (10).  

,

( ) ( )
( ) ( ) ( ( ) ( ))

( )
j id d d

i j j i
j kbest j i ij

M t M t
F t rand G t x t x t

R t ε∈ ≠

= −
+∑  (7) 
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d i
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M t
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( 1) ( ) ( )d d d
i i i iv t rand v t a t+ = × +  (9) 

( 1) ( ) ( 1)d d d
i i ix t x t v t+ = + +  (10) 

where ( )ijR t  is the Euclidian distance between two agents, i and j 
defined as 2( ) || ( ), ( ) ||=ij i jR t X t X t  . kbest is the set of first K agents 
with the best fitness value and biggest mass. kbest is a function of 
time, which is initialized to k0 at the beginning and is decreased 
with time. k0 is adjusted to N and reduced linearly to 1. Moreover, 
G is reduced in a exponentially way from G0 toward zero by time. 

The flowchart of GSA algorithm is given in Figure 2. 

2.3. Particle swarm optimization 

The particle swarm optimization algorithm is a swarm-
intelligent metaheuristic proposed by Kennedy and Eberhart [15]. 
PSO is an optimization algorithm that describes the social behavior 
of animals like birds and fish in search of food. 

In PSO, each particle (solution) flies through the design/search 
space and moves randomly in the following three simple rules: 

• Cohesion: the particles are attracted to the average position 
of the group or best position ‘pbest’; 

• Alignment: the optimal value attained until here via every 
particle in the social neighbourhood ‘lbest’, 

• Separation: to avoid collisions, particles keep a certain 
distance between them, the optimal particle position found 
in all the swarm ‘gbest’. 

Therefore, the new velocity and the particle position on the next 
iteration are performed through equations (11) and (12): 

i i i i g i
k 1 k k 1 1 k k 2 2 k kv v c r (p x ) c r (p x )+ = ω + − + −

      (11) 

i i i
k 1 k k 1x x v+ += +
  

 (12) 

kω is an inertia weight, defined via a decreased inertia function by 
equation (13) in the training progress for objective the reduction of 
the influence of the past velocities. 

 
Figure 1: DE Flowchart 

 

 
Figure 2: GSA Flowchart 
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Where  

1c : the cognition learning rate,  

2c : the social learning rate, 
i
kp  : the best individual position, 
g
kp : the best global position, 

1,2r : two random parameters ∈[0,1]. 

max min
max k k

k k iter
total _ iter
ω −ω

ω = ω −  (13) 

where 
max
kω : the initial weight,  
min
kω : the final weight, 

 total_iter: the number of the total iteration, 
 iter: the number of the current iteration. 

The flowchart of PSO algorithm is given in Figure 3. 

3. Application examples: the mono-objective problems  
 

A. Benchmark function 

Three mono-objective metaheuristics are used respectively the 
DE, GSA and PSO over three benchmark functions. A robustness 
study regarding the aforementioned metaheuristics is presented. 
The parameters used to characterize the three algorithms are shown 
in Tables 1, 2 and 3. For simulation and study proposes, the three 
metaheuristics were tested 100 times for each one of the 
benchmark functions. 

 
Figure 3: PSO Flowchart 

Table 1: The DE parameters  

Population 
size 

Number of 
Iterations. beta_min beta_max CR 

100 1000 0.2 0.8 0.2 

Table 2: The GSA parameters 

Number of 
agents 

Number of 
Iterations. 

Elitist 
Check Rpower min_flag 

100 1000 1.0 1.0 1.0 

Table 3: The PSO parameters  

Swarm size Number of 
Iterations. w c1 c2 

100 1000 1.0 1.5 2.0 

3.1. Benchmark function application  
In object to check performances of such mono-objective 

metaheuristics, a bunch of commonly used benchmark functions, 
considering this sort of problems/algorithms, were used [24]. 
These problems permit testing these mono-objective algorithms to 
confirm their convergence, concerning the approximation to the 
global solution [8, 18, 24]. The set of three benchmark functions 
are offered in Table 4. 

Table 4: The benchmark functions  

Item Function Objective functions to minimize 

Function #1 
2

1
1

n

i
i

F x
=

= ∑  

Range: [-100; 100]; Dim n=2 

Function #5 
1

2 2 2
1

1
5 [100( ) ( 1) ]

−

+
=

= − + −∑
n

i i i
i

F x x x  

Range: [-30; 30]; Dim n=2 

Function #7 

 

[ ]
1

4(1:7 * ).
n

i
iF ddim x ran

=

= +∑  

Range: [-1.28; 1.28]; Dim n=2 
 

3.2. Optimization results 

# Function F1 

The results of the benchmark function F1 are compared via the 
correspondent three optimization algorithms, as illustrated in 
Figure 4. 

A Boxplots representation is used (due to probabilistic 
characteristic of these metaheuristics) to display the distribution of 
obtained measures [27]. In the following, 100 runs are considered 
for this function. The robustness analysis using the box-plot for the 
benchmark function F1 is presented in Figure 5. 

# Function F5 

The results of the benchmark function F5, via the 
correspondent three optimization algorithms, are represented in 
Figure 6. 
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In the following, 100 runs are considered for function F5. The 
robustness analysis using the box-plot for the benchmark function 
is presented in Figure 7. 
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Figure 4: Convergence results of F1 with GSA, DE and PSO. 

 
Figure 5: Robustness analysis of F1 

0 100 200 300 400 500 600 700 800 900 1000

 Iteration

0

20

40

60

80

100

120

140

160

180

 B
es

t-s
o-

fa
r

 F5

GSA

DE

PSO

0 100 200 300 400 500 600 700 800 900 1000
10 -40

10 -30

10 -20

10 -10

10 0

10 10

 
Figure 6: Convergence results of F5 with GSA, DE and PSO. 

 
Figure 7: Robustness results of F5. 

# Function F7 
The optimization results of the benchmark function F7, via the 

corresponding three algorithms, is illustrated in Figure 8. 100 runs 
are considered for function 7. The robustness analysis using the 
box-plot for the benchmark function F7 is presented in Figure 9. 
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Figure 8: Convergence results of F7 with GSA, DE and PSO. 

 
Figure 9: Robustness results of F7. 

Figure 10 presents a Radio Chart representation of the average 
(AVG) execution times over 100 runs of three algorithm GSA, DE 
and PSO for the three benchmark functions. 
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Figure 10: The average computing time of GSA, DE and PSO. 

In accordance with the convergence of results regarding the 
three mono-objective metaheuristics according to the three 
benchmarks functions (Figures 4, 6 and 8) and the robustness 
results displayed in Figures 5, 7 and 9, we notice that DE and PSO 
have the better results compared to GSA. 

The average executing time is illustrated in Figure 10. This 
figure shows that PSO is faster than DE and GSA. 

Therefore, and according to the results achieved, the PSO 
algorithm is the most efficient algorithm, as it presents a best 
compromise among convergence, robustness and computational 
time. 

B. Application example: RF spiral inductors  

a. An overview on the integrated spiral inductors   

CMOS technology is nowadays the only option able to fit the 
low-cost demand and to integrate digital, as well as analog radio-
frequency (RF) modules on a single chip to realize the RF system 
on-chip (SoC). The efficiency and reliability of CMOS-RF blocks 
can be improved by means of on-chip passive devices (same 
substrate), such as voltage-controlled oscillators (VCO), low-noise 
amplifiers (LNA) and especially CMOS spiral inductor. Spiral 
inductor is broadly used and their applications in millimeter-wave 
circuit are investigated. High performance on-chip inductor has 
become increasingly important with their increasingly frequencies 
operation of the circuits. 

Integrated spiral inductors models are based on the layout 
parameters, as displayed in Figure 11. These parameters are: 

• w: the inductor width, 
• s: the spacing between track, 
• n: the number of turns,  
• Nside: the inductor shape (square, hexagonal, octagonal),  
• din: the internal diameter, 
• dout: the external diameter. 

 
Figure 11: Layout characteristics for a square inductor.  

 For assessing the quality of the inductor design, different 
characteristics may be considered: the quality factor (Q), the 
operation frequency for the maximum Q, the self-resonant 
frequency fSR, the inductance value L or the area. In this work, two 
parameters are selected: the quality factor Q and the device area 
dout. Therefore, all the abovementioned characteristics are strongly 
dependent on the spiral inductor geometric parameters, 
technological constraints parameters and the application of this RF 
inductor. 

At high frequencies, the simple but widely used single-π 
equivalent-circuit model can’t accurately characterize the 
electrical performance of silicon-based planar spiral inductor. 
Many other equivalent-circuit inductor models have been reported 
in past decade [28]. In this paper, the double-π model is adopted 
and illustrated in Figure 12. This model lumped-element is 
evaluated with a wide range of equations and these values are 
specified in [29-30]. This model is represented by:  

• DC parameters (Rs, Rp, Lo, Lp); 
• Crossover capacitance, Cs: referred as the capacitance 

between the spiral and the underpass required to connect 
the outside to the inner turn of the planar inductor;   

• Metal-to-metal capacitance, Cc: effect due to the proximity 
of inductor tracks;   

• Metal-to-substrate capacitance, Cox; 
• Rsub and Csub: the ohmic losses in the conductive silicon 

substrate;   
• Rsc: the electric coupling between lines over the 

conductive substrate. 

 

Figure 12:   Inductor double π-model. 

Table 5: Physical parameters 
Parameters Value 

Metal Thickness (t) 2.8 µm 

Space between turns (s) 2.5 µm 

Sheet Resistance 10 mΩ/   

Oxide Thickness 5.42 µm 
Oxide Thickness between spiral and 

underpass 0.26 µm 

Oxide Permittivity (εr) 4 

Substrate Thickness 700 µm 

Substrate Permittivity (εr) 11.9 

Substrate Resistivity 28 Ω cm 

89.91 179.83 269.74 359.65

F1

89.95

179.89

269.83

359.78
F5

91.2

182.41

273.61

364.81

F7

GSA

PSO

DE
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b. Optimization results  

In this section, results highlight the ability of the PSO algorithm 
to perform the spiral inductor on Silicon technologies, the 
UMC130 technology is addressed. The conception for two 
inductors with 5.0 nH value, 6 nH value operating at 0.7 and 1 
GHz, respectively, is considered. The technological and physical 
parameters are presented in Table 5, whereas the determination of 
the layout parameters is enabled with the uses of the constraint’s 
parameters or technology constraints represented in Table 6. In 
addition, is considered a minimum space between tracks (s) of 2.5 
µm and a maximum output diameter dout of 250 µm. 

Table 6: Constraints parameters  

Parameters Min Max 

w (µm) 5.0 20.0 

din(µm) 20.0 80.0 

n 1.5 15.5 

The inductor quality factor Q, desired to be higher as possible, 
is the objective function to be optimized. 

Figures 13 displays the optimization results with PSO 
algorithm (13.a, 13.b) for two inductors: the first inductor of 5.0 
nH value operating at 0.7 GHz and the second inductor of 6 nH 
value operating at 1 GHz. The maximization of the quality factor 
Q is addressed.  

 
(a) 

 

(b) 

Figure 13: Optimization results with PSO (Quality factor Q vs. Generation): (a) 5 
nH, frequency= 0.7 GHz, (b) 6 nH, frequency= 1 GHz. 

Table 7 gives the optimization results values (inductor sizes) 
with PSO algorithm. 

Table 7: Optimization and simulation results  

L = 5nH, Frequency = 0.7 GHz 

Algorithm w 
(µm) 

din 
(µm) 

n  dout-Op 
(µm) 

QOp 

PSO 10.88 60.40 5.67  206.91 6.81 

L = 6nH, Frequency = 1.0 GHz 

Algorithm w 
(µm) 

din 
(µm) 

n  dout-Op 
(µm) 

QOp 

PSO 9.00 61.90 6.08  196.90 9.13 
 

4. Application examples: the multi-objective Optimization 
Algorithms 

4.1.  The multi-objective particle swarm optimization  

Multi-Objective Particle Swarm Optimization (MOPSO) is 
proposed by Coello et al., [31]. The goal of the MOPSO and 
generally all the multi-objective algorithms is to provide a set of 
Pareto optimal solutions (with non-dominated solutions) of the 
aforementioned problem. All the non-dominated particles, this 
means all solutions, in the swarm are then collected into a sub-
swarm named repository, and each particle selects its global best 
target. A group of MOPSO can be found in related literature, like: 

• The non-dominated sorting PSO [32], 
• The MOPSO using the Crowding Distance mechanism 

associated with a mutation operator which increasing the 
exploration ability of the particles and maintains the 
diversity of non-dominated solutions in the external archive 
by MOPSO-CD [33-35], 

• The MOPSO using the Crowding Distance mechanism 
associated with a mutation operator and the Roulette Wheel 
selection technique to select social leader or global best to 
avoid an excessive number of non-dominated solutions in 
the external archive MOPSO-CDR [36]. 

The MOPSO version used in this paper use the Grid Making 
technique, instead of the crowing-distance computation which 
requires sorting the population consistent with each objective 
function value in ascending order of magnitude. This version uses 
the Grid Making technique with the mutation operator and the 
Roulette Wheel selection called MOPSO-GMR [37]. The 
flowchart of MOPSO algorithm is given in Figure 14. 

4.2. Multi-Objective Evolutionary Algorithm based on 
Decomposition 

The multi-Objective Evolutionary Algorithm supported on 
Decomposition (MOEA/D) is an evolutionary algorithm. The 
MOEA/D has adopted a technique that consists in decomposing 
the multi-objective optimization problems into several single-
objective, called sub-problems. Each sub-problem has its own best 
solution ever found which is determined associating all of solutions 
found by algorithm. There are several methods to define the 
decomposed objective functions, for example: the weighted sum, 
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the distance or the norm of difference vector, the predefined ideal 
point in the objective space. The MOEA/D algorithm is developed 
by Zhang and Li [38]. The flowchart of MOEA/D algorithm is 
given in Figure 15. 

4.3. Pareto Envelope-based Selection Algorithm II   

The third multi-objective algorithm is an evolutionary 
algorithm: Pareto Envelope-based Selection Algorithm II (PESA-
II). The PESA-II is based in the same genetic algorithm mechanism 
associated with the selection based on Pareto envelope. The PESA-
II is configured with an external archive to save the approximate 
Pareto solutions. This means that the Parents and the mutants are 
selected based on the grids created as well as in the geographical 
distribution of archive members (external archive) [39]. 

The general process of the PESAII algorithm is as follows, with 
IP is the size of the internal population and EP is the size of the 
external populations(archive). The flowchart of PESAII algorithm 
is given in Figure 16. 

 
Figure 14: MOPSO Flowchart 

4.4. Performances metrics: Hypervolume (HV)  

The quality of the Pareto Fronts obtained by the multi-
objectives algorithms can be evaluated through a few metrics. 
The most used performance metric was the hypervolume (HV) 
metric, also known as S-metric or hyper-area. The hypervolume 
indicator considers all three aspects: accuracy, diversity and 
cardinality. 

 
Figure 15: MOEA/D Flowchart 

 

 
Figure 16: PESAII Flowchart 

Thus, it is possible to measure the size of the objective space 
enclosed by an approximation set. To compute such enclosed space 
a reference point must be adopted. Figure 17 display a graphical 
representation of this performance indicator. Whenever one 
approximation set completely dominates another approximation 
set, the first HV will be superior than the second. Therefore, the 
HV is supposed to be Pareto compliant [40-41]. 
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Figure 17: Example of the dominated Hypervolume in 2D. 

4.5. Results of the test function and RF inductor applications 

The aim consists of optimizing two conflicting 
performances: maximizing the Quality factor Q, and 
minimizing the device area, dout by generating the trade-off 
surface (Pareto front). We give optimization results using the 
well-known PESAII and MOEA/D techniques for a RF 
inductor with value of 6 nH at 1 GHz. Also, two test function 
of ZDT family are used for benchmarking the performance of 
multi-objective Pareto optimization methods are illustrated in 
table 8.  

Table 8: Multi-objective benchmark functions of Zitzler (ZDT) 

Item Function Objective functions to minimize 
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Figure 18: Pareto Front (MOPSO vs. PESAII vs MOEA/D) for ZDT1. 

Figure 18, 19 and 20 represents the Pareto fronts obtained 
using MOPSO, PESAII and MOEA/D for ZDT1, ZDT6 and RF 
inductor application, respectively. Where it can be noticed that the 
better distribution given by MOPSO, when compared to PESAII 
and MOEA/D. 

 

Figure 19: Pareto Front (MOPSO vs. PESAII vs MOEA/D) for ZDT6. 

 

Figure 20: Pareto Front (MOPSO vs. PESAII vs MOEA/D) for RF inductor. 

4.5.1. The hyper-volume indicator HV 

Table 9 presents the average, maximum, minimum, and 
deviation values of the hypervolume indicator, over 20 runs of 
each algorithm, for two test function ZDT1, ZDT6 and the RF 
inductor application. 

Table 9: Average, max, min, and standard deviations of the hypervolume 
indicator 

  PESAII MOEA/D MOPSO 

ZDT1 

Avg 0.6918 0.7291 0.7587 

Max 0.7087 0.7563 0.7609 

Min 0.6643 0.6488 0.7558 

Std 0.0139 0.0346 0.0019 

ZDT6 

Avg 0.4782 0.4506 0.4869 

Max 0.4873 0.4843 0.4893 

Min 0.4675 0.3840 0.4849 

Std 0.0063 0.0577 0.0016 

RF 
Inductor 

Avg 0.5235 0.3272 0.5496 

Max 0.5260 0.4113 0.5508 

Min 0.5196 0.2663 0.5476 

Std 0.0025 0.0577 0.0017 
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Figure 21 represents the average value of the HV indicators 
for the 3 multi-objective problems. As a consequence, the 
MOPSO algorithm admits the highest average value of the HV 
indicator. 

 
Figure 21: Average values of the HV indicators for the 3 multi-objective 

problems 

4.5.2. Computing time 

The maximum and the minimum execution times over 20 runs 
of each algorithm, is given in Table 10. Figure 16 displays the 
average value of the execution times. 

Table 10: Average, Max and Min of the execution time 

Time(S)  PESAII MOEA/D MOPSO 

ZDT1 

Avg 152.69 278.48 62.94 

Max 157.56 281.77 73.90 

Min 149.64 275.02 55.67 

ZDT6 

Avg 130.46 281.47 58.55 

Max 137.07 294.05 66.35 

Min 125.49 268.88 54.36 

RF 
Inductor 

Avg 105.91 166.25 54.71 

Max 106.53 221.28 58.07 

Min 105.28 141.38 51.58 

 
Figure 22: AVG execution time considering the three multi-objective problems 

A comparison of the execution times is illustrated using the 
Radio Chart representation (figure 12) aiming to highlight the 
speediness of each algorithm. It can easily conclude that MOPSO 
is the faster when compared with other metaheuristics. 

5. Conclusion  

An objective comparison among the optimization results 
obtained via multiple-objective metaheuristics, dealing with 
performance optimization of RF circuits, is presented in this work. 
In first part, mono-objective metaheuristics are used. Among 
these metaheuristics the Swarm Intelligence metaheuristics like 
the Particle Swarm Optimization (PSO) and the Evolutionary 
Algorithms such us the Gravitational Search Algorithm (GSA) 
and the differential evolution algorithm (DE). These three 
algorithms were used to optimize three benchmark functions and 
the RF integrated inductors configured with the inductor double 
π-model. Results obtained shows that the use of swarm-based 
techniques in sizing and designing RF circuit offers a good 
argument, principally the PSO algorithm. In second part of this 
paper, we applied the multi-objective technique to solve two 
conflicting performances problem: the quality factor (Q) 
maximization as well as the minimization of the device area (dout) 
of the same RF application example using three multi-objective 
algorithms: firstly the multi-objective particle swarm optimization 
(MOPSO); secondly the multi-objective Evolutionary Algorithm 
based on decomposition (MOEA/D) and, a third one, the Pareto 
Envelope-based Selection Algorithm-II (PESA-II) by generating 
the trade-off surface (Pareto-front). The results obtained, which 
are supported by two performance metrics, a) the hypervolume 
indicator (HV) and b) the execution time, shows the following: 
MOPSO is better than other metaheuristics according to HV 
indicators, also MOPSO is the faster than other metaheuristics 
according to the CPU computing times. 
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