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 Perishable inventory management contributes simultaneously to society and the economy, 
by reducing food wastage and capitalizing on the freshness of goods. For this reason, 
countless mathematical models have been developed for their effectiveness and cost-
efficient management. Yet, the majority of these models can only optimize systems for a 
limited time frame, allowing for small gains in operations management, but failing to 
change the recurring patterns in inventory levels. System dynamics (SD) modelling shifts 
emphasizes these patterns and the recurring decisions that make them. Moreover, the 
framework has generated insight for other supply chain cases that could not have been 
derived from a short-term perspective. Thus, the current study now seeks to apply the SD 
framework in modelling perishable inventory systems, in designing policies that benefit the 
environment and the economy by reducing waste production and increasing the viability of 
goods reaching the customer. In particular, it evaluates the impact of opposing issuance 
policies (i.e. First-In-First-Out (FIFO) and Last-In-First-Out (LIFO)) on perishables to 
demonstrate the potential of SD in improving perishable inventory management. The 
simulated results share the sentiments of optimization models, that FIFO will ultimately 
generate less wastes and incur less material costs. Yet, the simulations also reveal 
implementing FIFO will result in larger fluctuations in inventory levels, which imply 
greater inconsistency in age-based quality. These suggest that LIFO would be preferable 
for quality-sensitive products, while FIFO would be preferable for cases sensitive to waste 
production. The current study demonstrates the efficiency of system dynamics in generating 
insight beyond that which can be derived from the existing mathematical models. Future 
studies may likewise extend this approach in the evaluation of policies on the use of 
technology in perishable inventory systems, which are the prevalent in present literature. 
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1. Introduction 

In inventory models, perishability is a physical property of 
inventories that results in the eventual expulsion of these goods 
from the system as waste [1]–[3]. In terms of social and 
commercial impact, studies on the management of perishables 
have prevailing importance. Products necessary to sustain human 
life, such as food and healthcare, possess this characteristic [4], [5]. 
In particular, the case of blood banks has received much attention 

from studies on perishable inventories. Due to the instability of 
supply and short validity of blood units, a precise and quantified 
means of managing these inventories are much needed [4], [6]. 
Blood banks are a strong example of how perishability as a product 
characteristic can complicate inventory systems, and can be used 
to generate insight on how other perishable products are best to be 
managed [6]. 

Perishability complicates the traditional inventory and supply 
chain models. The typical components of such models are profit 
and sustainability measures, capacity constraints, and demand 
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distributions [7], [8]. However, policies that prove optimal for non-
perishables are not necessarily optimal for perishables [5], [6]. In 
some models, perishability is represented as the deterioration of 
product quality [5], [9]. This can affect demand or the allowable 
pricing, thereby sharply differentiating the scenario described from 
inventory systems that do not differentiate between fresh and aged 
inventories. The transition of inventories from a state of salability 
to wastes is another differentiating factor. The production of 
wastes affects system capacity [10], [11], and any wastes generated 
may incur disposal costs [11], [12]. In this case, perishability 
affects key system constraints and parameters. Some studies on 
this subject have been dedicated to studying the differences 
between perishable and non-perishable systems. These have 
proven that the differences between perishables and non-
perishables result in different optimal policies for each kind of 
inventory. 

The majority of studies in this area are optimization models. 
From the models themselves, decisions on production quantity and 
product timing can be determined for a given set of parameters. In 
turn, managerial insights on managing inventory given similar 
parameters can be derived from the quantitative behavior of the 
variables. The optimization of inventory systems is a continuously 
growing body of research, with models growing in scale and 
complexity, or through the incorporation of new components such 
as technology enhancements [3], [13]. Aside from this, research 
efforts are also being invested in identifying the most efficient 
algorithms for the model [9], [14]. All in all, advancements in this 
area are geared towards achieving greater accuracy and numerical 
exactness. However, a weakness of this approach could be that the 
emphasis on these aspects of modelling shifts the focus away from 
insight-generation. While the models are becoming increasingly 
adept at describing specific scenarios, it may be noted that real 
inventory systems are constantly subject to external change. Thus, 
regardless of the level of exactness that is achieved by these 
models, its direct applicability to real systems will always be 
limited.  

In response to these issues with current modeling approaches, 
applying the system dynamics methodology can augment these 
through (1) its applicability to large-scale systems which 
mathematical modeling may be inefficient for [15], (2) its 
emphasis on patterns of behavior over numerical exactness [16], 
[17], and (3) its limitation to constant system elements, as opposed 
to designing in response to external factors [18], [19]. The first two 
attributes make system dynamics apt for identifying key areas for 
solution implementation. Specifically, it can be used to identify the 
most influential variables in the system. This is insightful for future 
studies, which can delve more specifically in those areas. The third 
attribute aids in generating insight for recurrent managerial 
policies as opposed to period-specific decisions. These are more 
aligned with real managerial practices which, where rules and 
guidelines are favored to specific values.  

In this study, the system dynamics (SD) methodology is 
applied to the case of perishable inventory systems. This is done 
for the purpose of demonstrating how the SD methodology can be 
applied in designing managerial guidelines, with proof that use of 
these guidelines will generate significant improvement for the 
system. As SD has already generated insights for general supply 
chain settings [20], [21], this study now investigates how 

perishability can alter the results, given that perishability has been 
proven to be a significant differentiating factor in previous studies 
[22]–[24]. Through its high-level perspective, the current study 
aims to identify impactful areas for solution development in the 
perishable inventory scenario. In this way, it can contribute to the 
area of study with suggestions for future studies focusing on these 
specific areas. 

2. Literature Review 

2.1. Inventory System Dynamics 

There seems to be a limited research concerning inventory 
system dynamic (ISD) studies, thus there is potential to address 
multiple unexplored research gaps [19]. The challenge then is to 
find a purposeful gap to address, and justifying why system 
dynamics (SD) methodology would be more appropriate over 
methods that allow for more quantitative accuracy and 
optimization. In this respect, a review of the existing ISD studies 
is conducted to (1) learn the research objectives that prompted the 
use of SD, (2) understand how the ISD study relates to other 
inventory models using different methods, (3) understand how 
managerial and policy-making insights are derived from such 
studies, and (4) determine the main contribution of individual ISD 
studies. 

In a literature review on SD applications in renewable energy 
supply chains, Saavedra 2018 observed that related studies seems 
to have objectives of either (1) improving understanding of the 
supply chain; or (2) developing modelling and simulation 
approaches. As a framework for understanding, SD is effective in 
depicting complex cause-and-effect chains and various sectors 
through its diagram-based modelling approach. From its 
diagramming methods alone, insight can be derived from the 
network of interrelationships between variables. On the other 
hand, as a simulation tool, the effectiveness of SD in providing 
insight is still being validated. This is due to its lack of quantitative 
accuracy and the lack of studies in this area.  

Generally, a well-accepted method of applying SD is to use the 
diagramming approach to identify problematic areas, and apply 
sensitivity analysis to determine the most efficient area for solution 
[25]. This is the approach taken by studies seeking to apply the SD 
framework in a specific context. On the other hand, in studies that 
assess the methodology itself, SD has been coupled with various 
methods to augment its lack of numerical soundness, and the lack 
of perspective in other modeling approaches [19]. 

Given its frequent applications in sustainable supply chain 
models, there is often a part of SD studies that compares its 
methods with the likes of operations research and life cycle 
assessment (LCA), and validates that it can produce insights 
beyond those that can be derived from other modeling approaches. 
In comparing supply chain models using SD with those using other 
methodologies, Saavedra 2018 concluded that a major difference 
between SD and LCA is its focus on the behavioral patterns of 
variables within a model, such as the intermittency and variability 
of its values. On the other hand, the focus on LCA is on aggregate 
performance, such as the total volume of emissions [18]. 

The SD methodology also allows for a wide range of variables 
to be modeled and simulated efficiently, given its lack of numerical 
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exactness. In a literature review, it was observed that most SD 
supply chain models had a macroscopic perspective consisting of 
economic and environmental impact. Next in quantity were SD 
studies with an inter-organizational scope, and last were studies 
with an intra-organizational scope. On the contrary, for operations 
research-based studies, the order from highest to lowest volume of 
publications is intra-organizational, inter-organizational and 
macroscopic [19]. This can alter the kinds of policies that may be 
developed and simulated using each method. 

SD can be a means of extending optimized parameters into 
concrete policies, particularly in cases with multiple parameters of 
a different nature. Song 2018 created a model to simulate the 
application of optimized parameters for technology, environment, 
energy and economy in a system where they are interrelated. These 
parameters were derived using data envelopment analysis (DEA), 
which augments the lack of numerical accuracy in most SD 
models. SD then strengthens the policy-making approach by 
highlighting the physical relationship between variables. 

Scenario analysis, such as applying different parameters to 
represent different cases, is a quick means of validating the 
model’s logic and policy development. In validation, it allows for 
multiple real-life case parameters to be applied to prove the 
validity of the causal relationships and the completeness of the 
model. In policy-making, a number of alternative solutions can 
also be generated and simulated, by shifting model parameters 
[18]. 

Overall, SD studies have contributed to the field of study with 
insight for how certain resources can be managed with optimal 
results [25]; knowledge on the opportunities and limitations of 
simulation methods [18]; and the creation of hybrid models 
combining SD with more math-based methodologies [19]. 

2.2. Perishable Inventory Systems 

Perishable Inventory Systems (PIS) have received much 
attention in literature as early as the 1990s, up until recent time [5]. 
Earlier studies simply sought to incorporate ‘perishability’ as an 
attribute of inventory. Nonetheless, more recent studies seek to 
determine the kinds of managerial strategies and policies that may 
be applied to perishable inventories [2], [26] 

In a literature review conducted in [5], studies from 2012 to 
2015 were segregated according to the different policies being 
implemented in each study. It was found that the top policies being 
studied during that period were (1) credit and payment policies, (2) 
supply chain information sharing, and (3) pricing and markdown 
problems. There were notably few studies on the use of the 
introduction of advanced monitoring technology, and on classic 
issuance policies (i.e. FIFO, LIFO).  

Since then, there has been an increase in models on the 
integration and use of monitoring technology in perishable 
inventory systems. [6] have introduced the use of RFID technology 
in monitoring of unit age and cost to the dual-sourcing problem for 
perishables. This was evaluated against fixed and exponential 
product lifetime scenarios, to gain insight on specific potential 
applications for this strategy. More recently, [3] have developed an 
IoT-based model for monitoring perishables in shared storage. 
Given the potential for cross-perishability, which refers to the 
increase or decrease in deterioration rate resulting from shared 

storage, information monitoring in this manner could then allow 
for lowering of deterioration costs, inventory level, and quality loss 
for the system. On a two-stage optimization model for pricing and 
replenishment of PIS, the recommended extension is also the 
incorporation of RFID and point-of-sales data in decision-making 
[7].  

It seems to be reasonable for research to progress in this 
direction given the rise of Industry 4.0 [27], [28]. However, the 
implementation of advanced systems, similar to the 
aforementioned, are still dependent on fundamental decisions in 
inventory management. This is evidenced by the way that these 
technologies are modeled in conjunction with inventory 
management policies from classic literature [29]. Yet, these 
policies are still among the top policies being studied from 2012 to 
2015, as identified by [5]. 

Over the years, there have been few changes to the 
performance functions used for perishable inventory models which 
enable ease of comparison. Financial measures such as profit and 
cost are still used in almost every PIS study. The percentage of 
profit growth or cost reductions resulting from the implementation 
of certain policies is typically used as the measure of performance 
in these cases [4], [6], [26]. Profit can be affected by perishability 
through the decline of demand alongside quality [30]. It can also 
manifest as disposal costs [2], [8] and wastes [7].  

Wastes differ from financial measures as they are a physical 
outcome of the PIS policy. By quantifying waste production, a 
model can also be assessed for its sustainability [10], [11]. The 
minimization of waste, separate from its contributions to cost, is 
used as an objective in a number of studies [5]. In this way, the 
model can differentiate between financial and physical outcomes, 
given that the volume of wastes would not always be economically 
relevant in all cases.  

Another physical outcome of PIS policy is the service level, or 
the ability to meet customer demand [28]. In the model of [7], 
service level is the probability of stockout in the replenishment 
cycle resulting from the policy. Monitoring the service level of PIS 
prevents over-emphasis on cost efficiency, in a more tangible way 
than revenues. Aside from this, the model of [4] has made use of 
the average age of inventories being sold, to represent the quality 
of the products.  

The perishable nature of inventories in PIS is represented as a 
finite lifetime. This leads to wastes at the end of the product 
lifetime [11], [12], and declining demand over time for a specific 
unit [5], [9], [31]. In most PIS models, a scenario analysis is 
conducted for various rates of deterioration. Generally, the higher 
the deterioration rate, the greater the amount of waste [7]. 
However, this can also vary depending on the stochastic 
distribution of a product’s lifetime, and the kind of policy being 
implemented. The model of [6] demonstrates that dual-sourcing 
can produce greater cost savings in cases where lifetime is fixed 
with a shorter average, and when lifetime is exponentially 
distributed with a longer average.  

Generally, a number of policies have proven effective in 
managing PIS, with immediate improvements in cost and material 
efficiency. Optimization models demonstrate how such policies 
can be applied with optimal results for a given set of parameters. 
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However, the existing methodologies have proven to be inefficient 
for policy-to-policy comparison, given the variability in model 
structures and sensitivity to parameters. Thus, the basis of 
determining best practices based on the existing studies could still 
be improved. 

2.3. FIFO and LIFO Issuance Policies 

Issuance policies are an integral part of an inventory 
management problem. In general, the parameters under study in 
such a problem are pricing, inventory costs, and deterioration rate 
[7], [32]. These parameters are present in almost all studies and are 
used to evaluate specific policies being applied, or intended for 
application, on real inventory systems. These policies can include 
issuance policies (i.e. FIFO and LIFO), which relate to the order at 
which goods of the same kind at different ages are dispatched to 
the customer. Based on the review of Janssen (2016), issuance 
policies appear to be an overlooked area in literature. However, 
based on the current review that was conducted, it seems that most 
studies include issuance policies as a parameter, instead of treating 
it as a focus of the study. The review of literature in this area is 
thus segmented in two ways: (1) studies considering issuance 
policies as a parameter, and (2) studies explicitly focused on 
evaluating or identifying optimal issuance policies. 

Using a policy as a parameter means that it can be changed to 
allow the analyst to see various scenarios. [23] sought to determine 
how the centralization of inventory could be beneficial in 
managing a perishable supply network. Specifically, the case 
under consideration was a blood supply chain with inventory 
located at a single blood bank and being supplied to multiple 
hospitals. FIFO was explicitly modeled for this case, as this is the 
standard for inventories in the healthcare service industry. [10] 
adapted a modeling and simulation analysis methodology 
determine the impact of a closing day constraint for the inventory 
of stores. The objective of the study was to determine if the 
existence of a closing day would lead to more aged inventory as 
closing day approach, as is the case in real grocery store 
inventories. It was found that the closing day constraint did result 
in simulated behavior being closer to the real behavior of 
inventories. In another study, [11] assessed the quantitative impact 
of micro-periodic inventory management policies, for how these 
may potentially improve costs and waste production. Under this 
approach, a single day was broken into morning, midday, 
afternoon and evening periods. This likewise made use of a mixed 
FIFO and LIFO approach. It was found that costs were reduced 
significantly from micro-periodic management, as compared to 
daily planning.  

One reason why a mixed approach is taken in most studies is 
so that the exact impact of each policy will not have to be 
considered. This recognizes that there are, in fact, real differences 
between the effects of applying each policy, particularly on 
perishables. The models that explicitly analyze the issuance 
policies seek to determine what these effects are and how they can 
be managed most effectively to meet the goals of the system. [12] 
compared the viability of FIFO and LIFO for managing perishable 
inventories using a modified Economic Manufacturing Quantity. 
Said model was modified to give consideration for fixed order 
quantity and joint ordering policies. This revealed that LIFO could 
prove optimal under linearly decreasing price structures. This 

finding is relevant given that it is generally accepted that FIFO has 
superior performance on perishables [19], [23]. 

In most cases, issuance policies are modeled as a two-
warehouse problem. Under LIFO, the first inventories to be sold 
would come from the rented warehouse; while under FIFO, the 
first sales are taken from the owned warehouse. A model for this 
problem was developed by [32], who assessed each issuance 
policy for its overall costs, given deterioration and holding costs. 
It was found that FIFO was less expensive when the cost 
parameters were lower for the owned warehouse than in the rented 
warehouse. As this is the case for most entities, it may be 
concluded that the study recommends FIFO under LIFO given the 
parameters that were considered. [9] extends the study of issuance 
policies for two-warehouse inventory systems to the use of 
modified FIFO (MFIFO) and modified LIFO (MLIFO) policies. 
Under the MFIFO rule, the FIFO rule is followed as far as the 
inventory in demand is available. When unavailable, the backorder 
gets assigned to the lowest priority level in the next period [28]. 
The model was structured in such a way that allowed for easy 
comparison between policies by relaxing a few constraints. It was 
found that when deterioration rate was different between the rented 
and owned warehouses, holding cost could make a significant 
difference in the optimality of each policy. 

MFIFO and MLIFO are already evolutions of the existing 
issuance policies. It is understood that FIFO and LIFO each have 
weaknesses, and thus improvements can be made in their exact 
rules. [31] proposed the development of a new issuance policy 
entitled Allowance-in-Fraction-Out which has specific rules for 
when to apply FIFO and LIFO. This is likewise applied to the two-
warehouse inventory problem, wherein the decision to switch is 
based on the fraction of rented warehouse inventory to owned 
warehouse inventory. Across various cases of deteriorating 
behavior, value of information, and perishability, it was found that 
the mixed method could have benefits in transportation costs and 
the occurrence of sub-replenishments. 

In recent literature, most studies treat issuance policies as a 
parameter. Moreover, most studies assume a mixed issuance 
policy structure to protect the model from the effects of using any 
specific policy. However, this suggests that inventory will be taken 
randomly from a company, which is understandably not the case 
in inventory systems. The most advanced study in this area seeks 
to determine the appropriate rules for using FIFO and LIFO, and 
managing their negative repercussions. This would imply that 
further study is needed of the explicit behaviors of FIFO and LIFO 
to determine how they may be managed productively. 

3. Methodology 

In this study, the system dynamics (SD) methodology is used 
to model a perishable inventory model, and simulate the 
application of certain policies and methods. This method is 
efficient for analyzing patterns of behavior, as it emphasizes long-
term patterns over quantitative accuracy [16], [17]. It is also 
efficient in expanding the scope of a model to encompass all 
variables that could have significant feedbacks on the key variables 
under study [20]. SD emphasizes the importance of feedbacks in a 
system, showing how the system’s behavior is actually the result 
of these internal feedbacks, and not external factors [16]. In 
problem solving, this maintains the focus on constant factors, 

http://www.astesj.com/


P. Ching et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 69-81 (2019) 

www.astesj.com     73 

rather than externalities which may or may not be present. In this 
way, the SD methodology is well-suited for evaluating policies in 
the long-term, and managing any negative repercussions that may 
result from their application. 

The SD framework is applied with the intention of designing 
policies that will improve the sustainability and quality goals of the 
system. Most perishable inventory models attempt to address 
sustainability goals by having waste minimization as one of its 
objectives [30], [33]. The connection of waste minimization to 
sustainability implies that through waste reduction, resource 
consumption is also reduced. On the other hand, quality goals can 
be met in terms of age-based quality, by minimizing the time a unit 
spends in the system from production to sale [4]. Age or, 
conversely, freshness is an apt representation of quality for 
perishables given the fact that (1) perishables are typically fast-
moving consumer goods which vary little from unit to unit, and (2) 
perishables will definitely degrade in some way over time, making 
age a significant component of quality, even if it is not the sole 
component. 

The SD methodology classifies variables as stock, flow, 
auxiliary or exogenous based on their role in the model. Stock 
variables accumulate over time based on previous values; flow 
variables represent this rate of accumulation; auxiliaries serve as 
the transition of stocks to flows; and exogenous variables are 
parameters whose values are externally determined. A discussion 
of how the variables were classified, and of their respective 
equations is given in Section 3.1. Following this, the variables 
determined in Section 3.1 are organized in a causal loop diagram 
in Section 3.2. This represents the relationship of the variables in 
an enclosed system. The variables and loop structure are then 
integrated in a stock-flow model for simulation and analysis in 
Section 3.3. 

3.1. Variables Definition 

Stock variables are those which increase or decrease in relation 
to their value in a previous period. This can be used to represent 
inventory levels which physically change over time. In this model, 
inventory is divided into two categories based on age. Hence, there 
is a variable representing Fresh Finished Goods Inventory (FFGI) 
and Previous Finished Goods Inventory (PFGI) respectively, as 
levels. By logic, FFGI is a function of production, sales, and 
leftover inventory in the current period (t). Since it is not an option 
to dispose freshly-produced goods in this model, there is no 
difference between the equation for FFGI in the perishables and 
non-perishables case. 

FFGI(t) = FFGI(t-1) + Prod.(t) - Sold F. Inv.(t) - Held Inv.(t) (1) 

PFGI represents inventory carried over from previous periods. 
In the perishable’s scenario, a fraction of inventory becomes waste 
at the end of each period. Mathematically, these differences 
between the perishables and non-perishables case are given in 
equations 2 and 3 respectively. 

PFGI(t) = PFGI(t-1) + Held Inv(t) - Sold P. Inv(t) - Wastes(t) (2) 

PFGI(t) = PFGI(t-1) + Held Inv(t) - Sold P. Inv(t) (3) 

Aside from variables that physically change in value, stock 
variables are also apt for representing human cognition in system 
dynamics models. Cognition is influenced by the occurrence or 

lack thereof of certain events. In consequence, these strengthen or 
weaken a certain idea, which in turn produces reactions affecting 
the other variables in the system. Such variables are usually not 
included in modeling as there is no definite metric to represent 
them. However, the soft emphasis on numerical accuracy in system 
dynamics allows for such variables to bear the same weight as 
tangible variables (i.e. inventory, cashflow). 

In this model, there are two cognition variables, both 
represented as ‘perception’. One of these is Perceived Quality 
(PQ), representing the customer’s flawed knowledge on the actual 
quality of goods produced by the producer. System dynamics 
recognizes the feedback delay in perception of performance, which 
results in there appearing to be no effect despite efforts toward 
improvement. PQ changes by a positive or negative value, 
depending on whether the quality in recent periods has been good 
or bad. However, PQ itself will always be a normalized value as 
the change happens in relation to previous values of PQ. 
Conversely, Perceived Demand (PD) represents the producer’s 
flawed knowledge on the actual volume of customer demand. In 
real applications, this would represent the degree of error in 
demand forecasts [34]. Likewise with PQ, PD changes by a 
positive or negative value depending on the recent demand values. 

The change in the value of stock variables at each period is 
defined as a flow variable. A stock can have inflows that add to its 
value, and outflows that reduce its value. In the case of FFGI, the 
inflow rate is Production (Prod), while the outflow rates are Held 
Inventory (Held Inv) and Sold Fresh Inventory (Sold F. Inv). Prod 
is based on the value of PD, which represents the use of forecasts 
in deciding on production quantities [32], [35].  

Prod(t) = PD(t) (4) 
 

Held Inv is equal to the current value of FFGI, as all fresh 
inventory that is not sold will be carried over to the next period as 
PFGI. Held Inv represents the transition of FFGI into PFGI by 
being an outflow of the former into the latter. The also represents 
the aging of products in the system. In essence, there are only two 
age classes of goods--fresh and previous. While this may not 
capture the exact age of the inventory pieces, it is nonetheless 
sufficient to show the impact of FIFO and LIFO. Further 
segmentation by age group may further complicate the model 
without generating additional insight to compensate for the effort. 

Held Inv(t) = FFGI(t) (5) 

FFGI and PFGI each have outflows in the form of sales, and 
the equations for these vary between the FIFO and LIFO cases 
given that the former prioritizes selling PFGI while the latter 
prioritizes selling FFGI [Parlar et al, 2011]. These are Sold Fresh 
Inventory (Sold F. Inv) and Sold Previous Inventory (Sold P. Inv). 
Mathematically, the prioritized inventory class is directly 
influenced by Customer Demand (Cust Dem), while the 
deprioritized class is a function of the sales for the prioritized class. 
The equations for the FIFO case are given in equations 6 and 7; 
and those for LIFO are given in equations 8 and 9. 

Sold F. Inv(t) = MIN(MAX(Cust Dem(t) - Sold P. Inv(t), 0), 
FFGI(t)) 

(6) 

Sold P. Inv(t) = MIN(Cust Dem(t), PFGI(t)) (7) 
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Sold F. Inv(t) = MIN(Cust Dem(t), FFGI(t)) (8) 

Sold P. Inv(t) = MIN(MAX(Cust Dem(t) - Sold F. 
Inv(t), 0), PFGI(t)) 

(9) 

For PFGI, there is an additional outflow in the form of Wastes. 
This variable is only present in the perishables case, as inventory 
can only be accumulated in the case of non-perishables. The 
variable Wastes is a function of the residual PFGI and a given rate 
of deterioration: 

Wastes(t) = (PFGI(t) - Sold P. Inv(t)) / DelayP (10) 

For the cognition variables Perceived Demand and Perceived 
Quality, it was previously mentioned that the change could be 
positive or negative depending on the recent values of the 
perceived information. These changes are the flow variables 
Change in Perceived Demand (CIPD) and Change in Perceived 
Quality (CIPQ). Mathematically, a positive change would result if 
the current value is greater than the perceived value, and a negative 
change if otherwise. In effect, the current values are normalized 
against previous values. A feedback delay is used to represent the 
limited influence on current values against long-standing 
perception. In equation form: 

CIPD(t) = (QOGS(t) – PQ(t)) / DelayPQ (11) 

CIPQ(t) = (Cust Dem(t) – PD(t)) / DelayPD (12) 

Aside from stock and flow variables, a system dynamics model 
contains auxiliary variables. These are components of flow 
variables. It can serve as a means of breaking down potentially-
complex equations for flows, both for ease of understanding and 
to highlight the behavior of specific components. Auxiliaries are 
derived from the behaviors of stock variables, and can link these 
to flows in the model. Unlike stock variables they are not a 
function of their previous value. While they do not change the 
overall system behavior, they are nonetheless important for clarity 
in representation.  

The model contains three auxiliary variables: Quality 
Multiplier (QM), Customer Demand (Cust Dem), and Quality of 
Goods Sold (QOGS). QM is an example of an auxiliary that exists 
for ease of understanding. Its value is equal to the value of 
Perceived Quality (PQ), yet the conversion is made to show the 
logic in making PQ part of the function of Cust Dem. Hence: 

QM(t) = PQ(t) (13) 
Cust Dem is a function of two variables, QM and a 

randomized demand value that is exogenous to the system (Natural 
Range of Customer Demand, NRCD). In effect, the perception of 
good quality positively influences demand by a margin, while the 
perception of poor quality has an inverse effect. As indicated by its 
usage in the previous equations, customer demand is the actual 
amount of purchases made by the customer in a single period. This 
consequently affects the sales variables, Sold Fresh Inventory and 
Sold Previous Inventory. The equation for this variable is given as:  

Cust Dem = NRCD * QM(t) (14) 

QOGS represents the quality of goods sold for a current 
period. In this model, the quality of the perishable product is solely 
based on freshness. Its value is derived from the amount of Sold 
Fresh Inventory (Sold F. Inv) in relation to Customer Demand 
(Cust Dem). Higher proportions of Sold F. Inv in Cust Dem would 

thus equate to better quality. As information on the quality of the 
producer’s goods is transmitted to the customer through sales, 
QOGS has a direct but gradual influence on PQ [30], [36]. 

QOGS(t) = 1 - Sold P. Inv(t) / Cust Dem(t) (15) 

The variables that are not directly influenced by any variable 
in the model are exogenous variables. The belief that the system’s 
behavior is primarily influenced by the feedbacks between its 
endogenous variables, rather than exogenous variables, are at the 
core of the system dynamics methodology. Hence, exogenous 
variables are typically represented by constant parameters, as proof 
that their value is of minor significance to the system’s behavior.  

Feedback delays are a common example of an exogenous 
variable. These represent delays in the transmission of information 
across the system. In equation form, these are variables that limit 
the flow of information to a cognition variable. In this model, these 
delays exist in the flow variables for Perceived Quality and 
Perceived Demand, as Delay in Perception of Quality (DelayPQ) 
and Delay in Perception of Demand (DelayPD). Physical delays 
are another common exogenous variable, representing rates of 
transition from one state to another. In this model, the physical 
delay is the Delay in Perishing (DelayP). This delays the transition 
of inventory into wastes, according to a supposed validity period.  

An exogenous variable is also used to represent additional sectors 
of the system that can be simplified for ease of analysis. This can 
be done when the variables included in that sector are not explicitly 
being analyzed. In this model, the Customer Demand (Cust Dem) 
is understandably an outcome of Perceived Quality. Yet, it is also 
influenced by the availability of other options in the market; the 
demand of the customer’s own customer; and numerous other 
factors depending on the specific case and scenario. In effect, Cust 
Dem will have a degree of variability due to these other variables. 
To represent this, a Natural Range of Customer Demand variable 
is introduced as a random variable with a given range. 

 
Figure 1: Basic Structure of a System Dynamics Model. 

3.2. Interactions Between Endogenous Variables 

The greatest differentiating factor of the SD methodology is 
that it organizes variables into feedback loops. This follows the 
principle that a system’s behavior is influenced more by the 
system’s internal reactions than any external factor. A visual 
representation of the role of each kind of variable in a feedback 
loop is given in Figure 1. All loops include at least one stock 
variable, which shows how the current outcomes of a system result 
from behavior in a previous period. This progression of cause and 

http://www.astesj.com/


P. Ching et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 5, 69-81 (2019) 

www.astesj.com     75 

effect leading from past to current behavior is demonstrated 
through a progression of auxiliary variables. It is shown in Figure 
1 that auxiliary variables are the link from stock variables to flow 
variables, which mathematically means that the past values of a 
variable would change its next-period values. Finally, the 
exogenous variables are externally-determined and not influenced 
by any other variable in the system. Hence, there is no feedback 
leading to an exogenous variable. 

To demonstrate the cause-and-effect relationships in a SD 
model, variables are arranged in causal loops without 
differentiation between variables. The purpose of this is to 
emphasize the feedbacks within the system prior to explicit 
modeling. In developing the causal loop diagrams for this study, it 
became apparent that there would be different causal loops for the 
FIFO and LIFO cases respectively, due to the difference in 
inventory type affected by sales. Specifically, demand directly 
impacts aged inventory in the FIFO case, and fresh inventory in 
the LIFO case. Aside from this, both cases have the same loops, 
representing a common PIS structure to enable comparison. 

In PIS models, demand changes based on the age of inventory 
given the fact the that goods are deteriorating over time [5], [9]. In 
this model, a quality variable determined by age is positively 
linked to demand, meaning that demand will increase as quality 
improves. Quality is positively affected by the quantity of fresh 
inventory, and negatively affected by the quantity of aged 
inventory. This is how the reduction in demand caused by low-
quality or aged goods is interpreted in the model. The resulting 
demand has a delayed impact on production, representing how 
demand from previous periods can determine production levels in 
the coming periods through forecasts. Production quantities then 
add to the level of fresh inventory, and fresh inventory becomes 
aged inventory, by natural progression [4], [11], [37]. 

 
Figure 2: Causal Loop Diagram for FIFO Scenario. 

The amount of positive or negative relationships in a feedback 
loop determine the ‘positivity’ or ‘negativity’ of that loop. Even 
numbers of negative relationships create a positive loop, which 
prompts positive exponential growth in the variables involved. 
Odd numbers create a negative loop with negative exponential 
growth. In system dynamics, systems are understood to be 

composed of these positive or negative loops, which balance each 
other out. Following this perspective, the LIFO scenario is more 
balanced than the FIFO scenario, as it contains equal amounts of 
positive or negative loops. This suggests that behavior is more 
consistent under the LIFO scenario, than the FIFO scenario. 

 

Figure 3: Causal Loop Diagram for LIFO Scenario. 

3.3. Simulation Model Development  

Using VensimPLE software, a system dynamics (SD) model was 
developed to simulate the postulated behaviors of each variable 
and analyze their interactions. The general form of the SD model 
is shown in Figure 4. This shows the variables identified in Section 
3.1 in their proper form, and arranged in the feedback loops 
derived in Section 3.2. There are three major sections in the model: 
(1) the physical inventory system, which is also the main problem 
variable under study, (2) the perception of quality, representing the 
impact of the physical system on human receptors, and (3) the 
perception of demand, representing the human decisions which 
govern the physical system. These form a single loop that 
determines the behavior of the system. 

The model parameters are feedback delays, which can be 
adjusted to represent various scenarios. The Delay in Perishing 
represents the validity period of the goods, which can vary 
depending on the nature of the goods. In PIS for blood banks, this 
parameter strongly impacts system behavior given the brief and 
stringent validity period of the inventory [23]. For disaster relief 
operations where goods are hardier, the impact of this parameter is 
less strong, given that the goods are practically non-perishable [2]. 
For the same reason, there are few disaster relief supply chain 
studies which consider waste and disposal. 

The Delay in Perceived Quality represents how evident 
differences in quality may be to the customer. Smaller batch sizes 
and proximity to the end-customer can equate to shorter delays. In 
retail settings, which have this characteristic, demand is typically 
a function of quality [11]. On the other hand, upstream suppliers 
consider perishability in terms of waste and disposal costs, as 
opposed to impact on demand [23], [28].
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Figure 4: Structure of Inventory System. 

 
Figure 5: Simulated Fresh and Aged Inventory Levels. 
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The Delay in Perceived Demand represents inaccuracies in the 
forecasting techniques with regards to real demand. There are 
countless studies on forecasting techniques and replenishment 
policies, and each have proven effective in specific contexts and 
following specific demand distributions. In such cases, the policies 
are evaluated by the resulting service level [4], [7]. The current 
model extends this to examine the reactions between the 
performance of the policy and other components of the system.  

Following the structure in Figure 4, four models were created 
for each of the following scenarios: (1) FIFO applied to 
perishables, (2) FIFO applied to non-perishables, (3) LIFO applied 
to perishables, and (4) LIFO applied to non-perishables. The main 
difference between the perishables and non-perishables scenarios 
is the lack of a Waste outflow for aged non-perishable inventories. 
In this case, the only possible outflow is through sales. Given that 
the emphasis of this study is on perishable inventories, the policies 
that may trigger the disposal of non-perishables are not considered.  

By logic, FIFO and LIFO differ based on the priority of 
inventories to be sold. These differences were given in equation 
form in Section 3.1 and in diagram form in Section 3.2. It is 
necessary to generate a different model to represent each case 
given that the feedback relationships differ. Hence, this is not a 
case of merely adjusting parameters to represent a case, but making 
adjustments to the model parameter. Aside from priority of sales, 
the structure of the model given in Figure 4 is maintained for all 
versions, to allow for the results to be comparable with one 
another. The simulation results depict values for the behavior of 
variables over time. This is analyzed in graphical form to assess 
the model for patterns and identify areas for problem-solving. 

4. Simulation Results 

All inventory models have the objective of minimizing 
inventory levels, whether directly or indirectly. In optimization 
models, inventory levels are often linked to cost objectives through 
holding costs and disposal costs [15], [35]. In this way, minimal 
inventory levels becomes the most economic scenario for an 
inventory system. In simulation methodologies, inventory is 
physically monitored with the unstated understanding that it 
affects other performance indicators, such as cost and wastage [5], 
[7]. The system dynamics methodology is aligned with this 
perspective. This study likewise monitors physical inventory 
levels as a performance measure, and evaluates its effect on 
outcome and quality.  

As mentioned in Section 3.1, the perishable aspect of inventory 
is modelled by the transition of goods from a fresh state (Fresh 
Finished Goods Inventory) to an aged state (Previous Finished 
Goods Inventory). The model differentiates between inventory in 
only two ways, fresh and aged, based on their impact on the 
system. The system dynamics methodology is an efficient means 
of monitoring and analyzing such variables for this purpose. In 
mathematical models, inventory is represented in a very exact 
manner, indexed by time of production and sale [28], [31]. This 
can take the focus away from the more important implications of 
inventory. 

Four scenarios are simulated: FIFO applied to Perishables, 
FIFO applied to Non-Perishables, LIFO applied to Perishables, 
and LIFO applied to Non-Perishables. Each scenario is evaluated 

by its resulting inventory level. The analysis can be segmented into 
three parts: (1) A comparison between the Perishables and Non-
Perishables scenarios for logic-checking, (2) A comparison of the 
FIFO and LIFO scenarios for policy evaluation, and (3) 
Determining the optimal issuance policy to apply to perishable 
inventories. 

4.1. Comparison of Perishables and Non-Perishables Scenarios 

In Figure 5, sections a and c contain the simulated inventory 
levels for the perishables scenario, while sections b and d contain 
the results for non-perishables. In all cases, inventory levels exhibit 
oscillating behavior which is aligned with the behavior being 
demonstrated in other inventory models and supply chain industry 
studies [36]. The perishables and non-perishables scenarios differ 
in the long-term trend being demonstrated by inventory under each 
case. Under the non-perishables scenario, inventories exhibit an 
upwards trend, indicating the tendency for inventories to 
accumulate. Under the perishables scenario, inventory levels are 
stable in the sense that they exhibit no upwards or downwards 
trend. The volume of inventory in the perishables scenario is 
naturally regulated by the potential for wastes, which prevents 
accumulation. On the other hand, there is no negative feedback to 
control the volume of inventories in the non-perishables scenario, 
resulting in accumulation. 

The simulated behavior for non-perishables is aligned with the 
behavior of most forecast-based non-perishable inventory systems. 
There is evidence to support this in the management of mechanical 
parts inventory, which has a large amount of excess [38], [39]. The 
accumulation may also be attributed to the fact that production 
quantity was based solely on sales forecasts, without any regard 
for current inventories. This mimics decision-making for 
perishables more closely. Since goods manufactured in one period 
do not have the same external value as goods manufactured in a 
different period, past inventory cannot be fully utilized to supply 
current demand. Therefore, decision-making parameters such as 
current inventory and safety stock generally carry more weight in 
models for non-perishable inventories.  

The simulated behavior for perishable inventories follows the 
behavior of traditional inventory models (e.g. EOQ), which 
oscillate without any positive or negative trend. Inventory 
accumulates because of inaccuracies in forecast. Yet, because a 
fraction of perishable inventories become waste at the end of each 
period, inventories cannot accumulate. Instead, excess inventory 
from inaccuracies in in forecasting eventually leave the system as 
waste. This is not favorable given that the amount of inventory that 
become Wastes are just excess in a different form. It may only be 
said that inventory is more effectively-handled under the 
perishable scenario if the volume of its Wastes is not increasing in 
the same way excess inventory does for non-perishables. The 
simulated behaviors for waste, although oscillating, exhibit no 
increasing trend (see Figure 6). For these reasons, it may be 
concluded that perishable inventories do not have as strong of a 
tendency towards overproduction. 

It may be concluded based on the simulated results for Previous 
Finished Goods Inventory that the main issue in the management 
of perishable inventory is not preventing surpluses and shortages. 
Under common inventory management policies, perishability as a 
product characteristic results in an inventory system that is less 
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prone to such outcomes. Inventory models with the objective of 
determining an optimal stockout level could thus be redundant, or 
even counterproductive to the system’s natural ability to regulate 
itself. On the other hand, the system could benefit from the 
minimization of its peak inventory levels, or all-around variability. 

As the simulated behaviors follow the trend described by real 
industry data and by literature, the ensuing analysis can be deemed 
valid. A comparison may now be conducted between the FIFO and 
LIFO policies given the system structure. Based on the simulated 

values in Figure 5, it is apparent that the choice of issuance policy 
hardly makes a difference on inventory levels. On the other hand, 
there are clear differences between the FIFO and LIFO scenarios 
in the perishables case. 

4.2. Comparison of FIFO and LIFO Scenarios 

Generally, inventory levels are higher under the FIFO case. 
This is true for both the non-perishables and perishables cases. 
Figure 7 shows that in, the non-perishables case, inventory levels 
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exhibit the same upwards trend. Yet, once the values stabilize, the 
FIFO case will begin to exhibit consistently higher inventory 
levels. Its highest point and lowest point upon stabilization are 
higher than inventory at any point in time under LIFO. This is 
different from the case of perishables, where inventory levels have 
higher maximum peaks under FIFO but also lower LIFO peaks. 
However, based on the simulations, it would appear that FIFO 
exhibits higher inventory levels more often than it exhibits lower 
inventory levels.  

The higher inventories under FIFO may be attributed to the 
extent of feedback delay between production and demand. In the 
causal loop diagrams in Figure 2, there are multiple delays between 
Fresh Finished Goods Inventory and Demand under FIFO. This 
signifies that there are multiple delays between demand and 
production for forecasts based on it are actually sold. Hence, there 
is a higher propensity for overproduction or underproduction. In 
these cases, the problem is leaning towards overproduction given 
that current inventories are not considered in deciding on the 
quantity to produce in the next period. 

Based on the review of studies on PIS, there are more models 
were FIFO proved to be optimal than otherwise. These models are 
optimization models with the primary objective of minimizing 
costs. The potential for waste production is incorporated in the 
form of disposal costs or deterioration costs, which align the 
sustainability and economic objectives for the system. It is 
understandable for FIFO to be optimal following this perspective, 
as FIFO results in the lower minimum inventory values. However, 
in actual inventory systems, stable inventories are preferred over 
fluctuations.  

In literature, the case where LIFO proved to be optimal was the 
case where prices decreased linearly for each period that the 
inventory unit remained in the system. This would suggest that 
when quality affects revenues, LIFO becomes preferable. This is 
because the profit earned per unit would be more consistent. The 
key benefit to be derived from LIFO is consistency. In this model, 
quality affects revenues by acting as a multiplier to demand. 
Results showed that inventory levels were less variable for both 
perishables and non-perishables, which aligns with the 
suppositions from previous studies that LIFO can result in greater 
consistency. 

4.3. Evaluation of FIFO and LIFO Applied to Perishables 

For perishables, product quality is partially determined by the 
age of inventories. Hence, the volume of fresh and aged inventories 
can have an impact on demand. In this model, quality is given as 
the fraction of fresh inventories in relation to total inventories. 
Previously, it was mentioned that the levels of fresh and aged 
inventories that result from FIFO and LIFO respectively different 
greatly for perishables. This means that the use of FIFO and LIFO 
can also significantly alter the quality of perishable goods being 
sold. 

It has been mentioned that LIFO may promote greater 
consistency in an inventory system. This also manifests in the 
current model where quality is more consistent under LIFO due to 
the fact that the levels of both fresh and aged inventory are more 
consistent. Consistent quality also results in greater consistency of 
sales. Figure 8 contains the simulated values for sales of inventory, 

where it may be observed that Sold Fresh Inventory, which is the 
primary contributor to sales in LIFO, is high consistent. 

Under FIFO, sales of fresh and aged inventories both fluctuate. 
Specifically, the two inventories have an inverse relationship, as 
the sales that cannot be met with aged inventories will satisfied 
with fresh inventories. The fluctuations in quality also lead to 
fluctuations in demand, which feedbacks to inventory levels. 
When demand is high, it can prompt the production of new 
inventory, which has a negative effect on demand as the goods will 
be aged by the time they are sold. This problem is aggravated by 
the fact that there the production quantities derived from past 
demand will be misaligned with actual demand. When demand is 
rising, production will be higher, and conversely, when demand is 
dropping, production will be lower. This is the result of feedback 
delays between demand and production. 

There are also feedback delays upstream, in the customer’s 
perception of quality. The current model differentiates between 
actual quality and perceived quality, by the logic that there is a 
delay in the recognition of quality change when it comes to 
inventories. In most inventory models, the perception of quality 
and its resulting change in demand is instantaneous. However, this 
relationship is only descriptive of settings such as retail stores 
where customers see the physical units individually and its quality 
instantaneously affects the probability of purchase [8], [40]. This 
is not the case for entities where purchases are made in bulk, such 
as the manufacturing or warehousing settings. In such cases, the 
individual quality of units have little value in the system, which is 
evident by the miss-outs from sampling procedures [3]. There are 
also delays due to the fact that not all inventory units are assessed 
prior to production, and thus any information on quality would 
only be known after production or through customer returns [41]. 

FIFO exhibits longer cycles between the arrival and sale of an 
inventory unit. In the short term, this will result in (1) less wastes 
and lower inventory levels for the manufacturing firm, and (2) 
instances when sales may be lower in the periods during and 
following the end of an inventory cycle, when the leftover units 
have aged.  The trade-offs can be managed with a classical 
optimization model that can balance waste generation with 
freshness. On the other hand, the long-term impact of FIFO in the 
supply chain is inconsistent quality. This complicates reordering 
decisions downstream in the supply chain, by adding variability to 
product lifetimes. This in turn heightens the amplitudes of 
bullwhips being exhibited by the inventory levels of a supply 
chain. Therefore, in the long term, FIFO promotes variability and 
greater efforts being made by members of a supply chain to 
manage it.  

LIFO has the opposite effect on inventory levels in the short term; 
and will result in more consistent quality in the long term. While 
this lessens the complexity of decision-making for the members of 
the supply chain, there is nonetheless the issue of waste to be 
addressed. The consistent generation of waste would require 
greater efforts in waste management. On a positive note, the 
consistent waste generation would also regularize the demand for 
waste management, and through that require the standardization of 
waste management procedures. Currently, the efforts to minimize 
waste and the natural variability of production add complexity to 
decisions on when and where to set up waste management 
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facilities. Given the high investment required by such facilities, 
this generally results in there being insufficient infrastructure for 
this purpose. In this sense, the consistency promoted by 
implementations of LIFO would be beneficial, by giving a clearer 
perspective on the volume of waste management activity that 
would be needed. 

5. Conclusion 

In this study, classic FIFO and LIFO issuance policies were 
assessed for their impact in a perishable inventory system. The 
performance of these policies was evaluated in terms of their 
ability to meet sustainability and quality goals. Specifically, it 
aimed to improve sustainability through waste reduction and 
quality by maximizing the freshness of inventories in the system. 
While similar studies had been made in the past, the present study 
viewed the problem from a different approach, through the 
development of a system dynamics (SD) framework. Using the SD 
framework emphasizes the patterns of the inventory levels, rather 
than its exact values, allowing for the generation of insights that 
can be generalized regardless of lifetime variability.  

A simulation model was developed comprising of three major 
sections that eventually form a general single loop: (1) The 
physical inventory system, (2) The perception of quality, and (3) 
The perception of demand. Furthermore, feedback delays such as 
delays in perishing, perceived quality, and perceived demand were 
also considered. FIFO and LIFO models for both perishables and 
non-perishables products were then formed with the presence of 
Waste outflow variable as a distinguishing factor between non-
perishables and perishables model.    

Comparing the perishables and non-perishables scenario 
yielded that for all cases, inventory levels exhibit an oscillating 
behavior. Non-perishables showed upward trend due to 
accumulation of inventory since quantity to be produced relies 
solely on sales forecasts and that current leftover usable inventory 
was not factored in as to how much quantity is to be produced for 
the next period. This is to emulate perishables inventory systems 
wherein external values of goods differ per period. On the other 
hand, perishables seem to have no upward for downward trend and 
seem to follow the behavior of traditional inventory models like 
EOQ. Perishable inventories do not have strong tendency towards 
overproduction. Wastes is not increasing the same way excess 
inventory does for non perishables. Based on these observations, it 
may be counterproductive to determine the optimal stockout level 
of perishable goods since it seems to have its way of regulating 
itself. 

A comparison of the FIFO and LIFO scenarios showed that 
LIFO is preferable when revenues are heavily influenced by 
quality since LIFO promotes greater consistency in inventory 
system. Consistency in quality brings consistency in profit earned 
per unit and this was explicitly observed in Sold Fresh Inventory 
which is a primary contributor to the sales in LIFO.   

On the other hand, FIFO exhibits higher inventory levels which 
is attributed due to feedback delays between production and 
demand. Furthermore, FIFO system tends to lean towards 
overproduction since current leftover inventories were not factored 
into the decision for the amount or quantity to be produced for the 
next period. Also, fluctuations were observed in FIFO for both 

sales in fresh and aged inventories - as evidenced by its inverse 
relationship - lead to fluctuations in demand. Although FIFO may 
be more optimal for minimizing costs and inventory levels once 
wastes is treated as disposal costs or deterioration costs, actual 
inventory systems still prefer stable inventories rather than 
constant fluctuations. FIFO is preferable for cost-sensitive or 
waste-sensitive cases, while LIFO is preferable in quality-sensitive 
cases. 

The results of this study demonstrate the ability of SD to 
produce insights in addition to those that can be derived from 
optimization models. While the current study applied SD on 
classic inventory management policies (i.e. FIFO and LIFO), 
literature on perishable inventory models comprise various new 
policies and technologies that can be assessed more extensively 
using the SD framework. In particular, information technologies 
such as RFID and IoT have been proposed as means of monitoring 
the age-based quality of perishables with better accuracy, yet there 
is still the question of how to use this feedback effectively in 
decision-making. The current study serves as a starting point for 
future studies applying SD in evaluating and improving policies 
that will prove useful in a wide variety of cases. 

One of the major contributions of this study is its demonstration of 
the SD framework as a means of modelling and simulating policy 
outcomes that are difficult to, or cannot be specifically quantified. 
This is very relevant to the field as it recent literature centers on 
the application of information technology in inventory 
management. The effects of greater accuracy and shortened 
feedback granted by information technology are not directly 
quantifiable, making it a suitable extension of this policy. The 
study also contributes by providing insight on what the long-term 
implications of issuance policies could be, particularly in the area 
of sustainability. While it may appear that FIFO is the most 
efficient in terms of cost and waste generation, LIFO actually has 
more positive long-term implications by reducing complexity in 
supply chain decisions, and standardizing waste management 
efforts. 
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