

www.astesj.com 203

Parallel Hybrid Testing Tool for Applications Developed by Using MPI + OpenACC Dual-Programming
Model

Ahmed Mohammed Alghamdi*, Fathy Elbouraey Eassa

Department of Computer Science, King Abdul-Aziz University, Jeddah, Saudi Arabia

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 24 January, 2019
Accepted: 21 March, 2019
Online: 26 March, 2019

 Building massively parallel applications has become increasingly important with coming
Exascale related technologies. For building these applications, a combination of
programming models is needed to increase the system's parallelism. One of these
combinations is the dual-programming model (MPI+X) which has many structures that
increase parallelism in heterogeneous systems that include CPUs and GPUs. MPI +
OpenACC programming model has many advantages and features that increase
parallelism with respect heterogeneous architecture and support different platform with
more performance, productivity, and programmability.
The main problem in building systems with different programming models that it is a hard
job for programmers and it is more error-prone, which is not easy to test. Also, testing
parallel applications is a difficult task, because of the non-determined behavior of the
parallel application. Even after detecting the errors and modifying the source code, it is not
easy to determine whether the errors have been corrected or remain hidden. Furthermore,
integrating two different programming models inside the same application makes it even
more difficult to test. Also, the misusage of OpenACC can lead to several run-time errors
that compilers cannot detect, and the programmers will not know about them.
To solve this problem, we proposed a parallel hybrid testing tool for detecting run-time
errors for systems implemented in C++ and MPI + OpenACC. The hybrid techniques
combine static and dynamic testing techniques for detecting real and potential run-time
errors by analyzing the source code and during run time. Using parallel hybrid techniques
will enhance the testing time and cover a wide range of errors. Also, we propose a new
assertion language for helping in detecting potential run-time errors. Finally, to the best of
our knowledge, identifying and classifying OpenACC errors has not been done before, and
there is no parallel testing tool designed to test applications programmed by using the dual-
programming model MPI + OpenACC or the single-programming models OpenACC.

Keywords:
Software Testing
Hybrid Testing Tool
OpenACC
MPI
Dual-programming Model

1. Introduction

In recent years, building massively-parallel supercomputing
systems based on heterogeneous architecture have been one of the
top research topics. Therefore, creating parallel programs becomes
increasingly important, but there is a lack of parallel programming
languages, and the majority of traditional programming languages
cannot support parallelism efficiently. As a result, programming
models have been created to add parallelism to the programming
languages. Programming models are sets of instructions,
operations, and constructs used to support parallelism.

Today, there are various programming models which have
different features and created for different purposes; including
message passing, such as MPI [1] and shared memory parallelism,
such as OpenMP [2]. Also, some programming models support
heterogeneous systems, which consisting of a Graphics Processing
Unit (GPU) coupled with a traditional CPU. Heterogeneous
parallel programming models are CUDA [3] and OpenCL [4],
which are low-level programming model and OpenACC [5] as a
high-level heterogeneous programming model.

Testing parallel applications is a difficult task because parallel
errors are hard to detect due to the non-determined behavior of the
parallel application. Even after detecting the errors and modifying

ASTESJ

ISSN: 2415-6698

*Ahmed Mohammed Alghamdi, Email: amalghamdi@uj.edu.sa

Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com

https://dx.doi.org/10.25046/aj040227

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj040227

A.M. Alghamdi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com 204

the source code, it is not easy to determine whether the errors have
been corrected or hidden. Integrating two different programming
models inside the same application even make it more difficult to
test. Despite the available testing tools that detect static and
dynamic errors, still, there is a shortage in such a testing tool that
detects run-time errors in systems implemented in the high-level
programming model.

The rest of this paper is structured as follows. Section 2
describes the research objectives, while Section 3 briefly gives an
overview of some programming models and some run-time errors.
The related work will be discussed in Section 4, the proposed
architecture in Section 5, a discussion will be in Section 6 and
finally the conclusion with future work in Section 7.

2. Research Objectives

This research aims to develop a parallel hybrid testing tool for
systems implemented in MPI + OpenACC dual programming
model with C++ programming language. The hybrid techniques
combine static and dynamic testing techniques for detecting real
and potential run-time errors by analyzing the source code and
during run-time. Using parallel hybrid techniques will enhance the
testing time and cover a wide range of errors. The following are
the primary objectives of our research:

2.1. Provide new static testing techniques for detecting real and
potential run-time errors for systems implemented in dual
programming model (OpenACC and MPI) and C++
programming language.
These techniques are analyzing the source code before

compilation for detecting static errors. Some run-time errors can
also be detected from the source code, such as send-send deadlocks
in Figure 2 B. These errors should be sent to developers to solve
them because they will occur definitely in run-time. Also, potential
run-time errors are errors that might or might not be occurred after
compilation and during run-time. The reasons cause these potential
errors can be detected from the source code before compilation by
using static testing. However, if these errors have not been detected,
it will become run-time errors. As a result, the developers should
be warned about these errors and consider them; also our tool will
instrument these errors by using assertion language.

The source code will include a combination of the program
implemented in C++ and dual programming model source codes,
which leads to one big size source code including a considerable
number of statements. These static testing techniques will decrease
the time of detecting run-time errors after the compilation, which
will speed up the system testing time. These techniques also will
allow us to correct or inform developers by providing them with a
list of potential errors that in some cases in the running time these
errors might happen.

The following example in Figure 1 shows a potential run-time
error, when process_1 first receive request from any process beside
process_0, there is no problem. However, if process_1 receives
from process_0 first, the statement REC_FROM (P_0) will never,
and the process_1 will be waiting. In that case, from the source
code we discover that, somehow, this will cause a run-time error
(Deadlock). This situation called a potential deadlock.

Also, Figure 2 shows an example of a real run-time error called
(deadlock), which happened because of Process_0 block and

waiting for receiving from Process_1, which also block and
waiting for receiving from Process_0. Similarly, this also
happened between Process_2 and Process_3.

 Figure 1: Potential Deadlock caused by Wildcard Receive

Figure 2: Real Deadlocks caused by two different reasons

2.2. Providing a new assertion language for helping in detecting
potential run-time errors.

This assertion language will be used to specify the properties
of the programs under test and to verify that the developers'
assumptions of the program remain valid during the program run-
time. During testing, assertion statements help for the recording of
some information, testing the correctness of statements, and
monitor the values of variables. To do this, the dynamic tester will
automatically insert assertion statements into the code, then
provides a method for capturing, organizing, and analyzing
assertions output. This will help to increase the error detection
capability of a test by using the instrumentation technique. The
instrumentation approach based on the idea that the tested part of
a program can be specified regarding assertion or values that must
be assumed by variables at specific critical points in the program,
which can cause run-time errors [6].

 Usually, assertion statements start with comment symbol of
the programming language, such as "//" in C++, before each assert
statements. The main reason behind this is reducing the compiled
code that will be delivered to the customers because any statement
starts with the comment symbol will be ignored during the
compilation. In other words, the assert statements are in the source
code but not in the compiled code, which will be delivered to the
customers.

2.3. Provide new parallel dynamic testing techniques for detecting
run-time errors for systems implemented in dual programming
model (OpenACC and MPI) and C++ programming language.

These techniques will use the provided assertion language for
detecting errors that happened during run-time, by instrumenting
and analyzing the system during run-time. This is challenging
because different factors and complicated scenarios can cause
these errors. Also, testing parallel programs is a difficult task
because of the nature of such programs and their behavior. This
will add more work on the testing tool for covering every possible
scenario of the test cases and data. As a result, detecting parallel
run-time errors is more difficult. Furthermore, these dynamic
techniques are sensitive to the execution environment and can
affect the system execution time.

http://www.astesj.com/

A.M. Alghamdi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com 205

2.4. Integrated the provided techniques for developing a parallel
hybrid testing tool for systems implemented in dual
programming model (OpenACC and MPI) and C++
programming language.

Our proposed architecture will integrate static and dynamic
testing techniques for creating a new hybrid testing tool for parallel
systems. This allows us to take advantages of both previously
mentioned techniques for detecting some of the dynamic errors
from the source code by using the static testing techniques, which
will enhance the system execution time. Also, our system will
work in parallel to detect run-time errors, by creating testing
threads depending on the number of the application threads. Intra-
process and Inter-process run-time detections will be included in
our tool. The inter-process detector will be responsible for
detecting run-time errors that happened within the process, and the
Intra-process detector for detecting errors happened between
processes each other.

3. Background

In this section, the main components involved in our research
will be displayed and discussed. This will include the
programming models that will be used in our research and
describing why they have been chosen. Also, some run-time errors
and testing techniques will also be described and discussed in this
section.

3.1. OpenACC

In November 2011, OpenACC stands for open accelerators,
was released for the first time in the International Conference for
High-Performance Computing, Networking, Storage and Analysis
[7]. OpenACC is a directive-based open standard developed by
Cray, CAPS, NVIDIA and PGI. They design OpenACC to create
simple high-level parallel programming model for heterogeneous
CPU/GPU systems, that compatible with FORTRAN, C, and C++
programming languages. Also, OpenACC Standard Organization
defines OpenACC as "a user-driven directive-based performance-
portable parallel programming model designed for scientists and
engineers interested in porting their codes to a wide variety of
heterogeneous HPC hardware platforms and architectures with
significantly less programming effort than required with a low-
level model." [5]. The latest version of OpenACC was released in
November 2017. OpenACC has several features and advantages
comparing with other heterogeneous parallel programming models
including:

• Portability: Unlike programming model like CUDA works
only on NVIDIA GPU accelerators, OpenACC is portable
across different type of GPU accelerators, hardware,
platforms, and operating systems.[8]

• OpenACC is compatible with various compilers and gives
flexibility to the compiler implementations.

• High-level programming model, which makes targeting
accelerators easier, by hiding low-level details. For generation
low-level GPU programs, OpenACC relies on the compiler
using the programmer codes. [9]

• Better performance with less programming effort, which gives
the ability to add GPU codes to existing programs with less
effort. This will lead to reduce the programmer workload and

improve programmer productivity and achieving better
performance than OpenCL and CUDA. [10]

• OpenACC allows users to specify three levels of parallelism by
using three clauses:

o Gangs: Coarse-Grained Parallelism
o Workers: Medium-grained Parallelism
o Vector: Fine-Grained Parallelism

OpenACC has both a strong and significant impact on the HPC
society as well as other scientific communities. Jeffrey Vetter
(HPC luminary and Joint Professor Georgia Institute of
Technology) wrote: “OpenACC represents a major development
for the scientific community. Programming models for open
science by definition need to be flexible, open and portable across
multiple platforms. OpenACC is well-designed to fill this need.”
[5].

3.2. Message Passing Interface (MPI)

Message Passing Interface (MPI) [1] is a message-passing
library interface specification. In May 1994, the first official
version of MPI was released. MPI is a message-passing parallel
programming model that moves data from a process address space
to another process by using cooperative operations on each process.
The MPI aims to establish a standard for writing message-passing
programs to be portable, efficient, and flexible. Also, MPI is a
specification, not a language or implementation, and all MPI
operations are expressed as functions, subroutine or methods for
programming languages including FORTRAN, C, and C++. MPI
has several implementations including open source
implementations, such as Open MPI [11] and MPICH [12]; and
commercial implementations, such as IBM Spectrum MPI [13]
and Intel MPI [14]. MPI has several features and advantages
including:

• Standard: MPI is the only message passing library that can
be considered a standard. It has been supported on virtually all
HPC platforms. Also, all previous message passing libraries
have been replaced by MPI.

• Portability: MPI can be implemented on several platforms,
hardware, systems, and programming languages. Also, MPI
can work correctly with several programming models and
work with heterogeneous networks.

• Availability: Various versions of MPI implementations from
different vendors and organization are available as open
source and commercial implementations.

• Functionality: On MPI version 3.1 there are over 430
routines has been defined including the majority of the
previous versions of MPI.

The new MPI standardization version 4.0 [1] is in progress,
which aims to add new techniques, approaches, or concepts to the
MPI standard that will help MPI address the need of current and
next-generation applications and architectures. The new version
will extend to better support hybrid programming models
including hybrid MPI+X concerns and support for fault tolerance
in MPI applications.

3.3. Dual-Level Programming Model: MPI + OpenACC

Integrating more than one programming model can enhance
parallelism, performance, and the ability to work with

http://www.astesj.com/

A.M. Alghamdi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com 206

heterogeneous platforms. Also, this combination will help in
moving to Exascale systems, which need more powerful
programming models that support massively-parallel
supercomputing systems. Hybrid programming models can be
classified as:

• Single-Level Programming Model: MPI
• Dual-Level Programming Model: MPI + X
• Tri-Level Programming Model: MPI + X + Y

Figure 3: Multi GPU Programming with MPI and OpenACC [15]

In order to write portable and scalable applications for
heterogeneous architecture, the dual-programming model MPI +
OpenACC can be practical. It inherits the advantages, such as high
performance, scalability, and portability from MPI and
programmability and portability from OpenACC [16]. However,
this dual-programming model might introduce different types of
run-time errors, which have different behaviors and causes. Also,
some complexities and inefficiencies might happen including
redundant data movement and excessive synchronization between
the models, which need to be considered and take care of, but it is
better than using CUDA or OpenCL, which is more complicated
and harder to program, resulting in lower productivity.

3.4. Common Run-Time Errors

There are several types of run-time errors that happened after
compilation and cannot be detected by the compilers, which cause
the program not to meet the user requirements. These errors even
sometimes have similar names, but they are different in the reasons
that cause the run-time error or the error behavior. For example,
deadlock in MPI has different causes and behaviors comparing
with OpenACC deadlocks. Also, run-time errors in the dual-
programming model are different. Also, some run-time errors
happened specifically in a particular programming model. By
investigating the documents of the latest version of OpenACC 2.7
[17], we found that OpenACC has a repetitive run-time error that
if a variable is not present on the current device, this will lead to

run-time error. This case happened in non-shared memory devices
for different OpenACC clauses.

Similarly, if the data is not present, a run-time error is issued in
some routines. Furthermore, detecting such errors is not easy to do,
and to detect them in applications developed by dual-programming
model even more complicated. In the following, some popular run-
time errors will be displayed and discussed in general with some
examples.

3.4.1. Deadlock
A deadlock is a situation in which a program is in a waiting

state for an indefinite amount of time. In other words, one or more
threads in a group are blocked forever without consuming CPU
cycles. The deadlock has two types including resource and
communication deadlock. Resource deadlock is the situation
where a thread waits for another thread resource to proceed.

Similarly, the communication deadlock occurs when some
threads wait for some messages, but they never receive these
messages [18–20]. The reasons that cause deadlock are different
depending on the used programming models, systems nature and
behavior. Once the deadlock occurs, it is not difficult to detect, but
in some cases, it is difficult to detect them before it happened as
they occur under specific interleaving. Finally, deadlocks in any
system could be potential or real deadlocks.

3.4.2. Livelock
Livelock is similar to deadlock, except that livelock is a

situation that happened when two or more processes change their
state continuously in response to changes in the other processes. In
other words, it occurs when one or more threads continuously
change their states (and hence consume CPU cycles) in response
to changes in states of the other threads without doing any useful
work. As a result, none of the processes will make any progress
and will not complete [21,22]. In a livelock, the thread might not
be blocked forever, and it is hard to distinguish between livelock
and long-running process. Also, livelock can lead to performance
and power consumption problems because of the useless busy-wait
cycles.

3.4.3. Race Condition
A race condition is a situation that might be occurred due to

executing processes by multiple threads and where the sequence of
execution for the threads makes a difference in the result of the
concurrent execution. The execution timing and order will affect
the program's correctness [20,23]. Some researchers do not
differentiate between data race and race condition, which will be
explained in the data race definition.

3.4.4. Data Race
A data race happened when there are two memory accesses in

the program where they both are performed concurrently by two
threads or target the same location [23, 24]. For example, at least
one read and one write may happen at the same memory location,
at the same time. The relation between data race and race condition,
the race condition is a data race that causes an error. However, data
race does not always lead to a race condition.

3.4.5. Mismatching
Mismatching is a situation that happened in arguments of one

call, which can be detected locally and are sometimes even

http://www.astesj.com/

A.M. Alghamdi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com 207

detected by the compiler. Mismatching can be caused by several
forms including wrong type or number of arguments, arguments
involving more than one call, or in collective calls. Developers
need to make special attention when comparing matched pairs of
derived data types. Some examples of mismatching that occurred
in MPI as the following [23]:

• To send two (MPI INT, MPI DOUBLE) and to receive one
(MPI INT, MPI DOUBLE, MPI INT, MPI DOUBLE

• To send one (MPI INT, MPI DOUBLE) and to receive one
(MPI INT, MPI DOUBLE, MPI INT, MPI DOUBLE) (a so-
called partial receive).

3.5. Testing Techniques

There are many techniques used in software testing, which
include static, dynamic, as well as other techniques. Static testing
is the process of analyzing the source code before compilation
phase for detecting static errors. It handles the application source
code only without launching it, which give us the ability to analyze
the code in details and have full coverage. In contrast, the static
analysis of parallel application is complicated due to the
unpredicted program behavior, which is parallel application nature.
However, it will be beneficial to use static analysis for detecting
potential run-time errors and some real run-time errors that are
obvious from the source code, such as some types of deadlocks and
race condition.

Dynamic testing is the process of analyzing the system during
run-time for detecting dynamic (run-time) errors. It demands to
launch programs, sensitive to the execution environment, and slow
down the speed of application execution. It is useful to use
dynamic analysis in the parallel application, which gives the
flexibility to monitor and detect each thread of the parallel
application. However, it is difficult to cover the whole parallel
code with tests, and after correcting the errors, it cannot be
confirmed that errors are corrected or hidden.

 Finally, it is the error types and behaviors that determine
which techniques will be used, because static analysis and others
cannot detect dynamic techniques cannot detect some errors. As a
result, in our research, a hybrid technique will be used for different
purposes and reasons. Furthermore, this hybrid technology will be
working in parallel to detect parallel run-time errors and analyzing
the application's threads.

4. Related Works

Many studies have been done in software testing for HPC and
parallel software. These researches are varied, for different
purposes and scopes. These variations include testing tools or
detection for a specific type of errors or a different type of errors.
Some studies focus on using static testing techniques [25–28] to
detect errors by analyzing the source code and find real as well as
potential run-time errors [29,30]; dynamic testing techniques
[31,32] to detect errors after execution and at run-time; or hybrid
testing techniques [33–35]. Also, detecting errors in programming
models also varied from the testing tool for single level
programming model to the tri-level programming model. Even in
the same classification of programming model the variation
between testing the programming models themselves, because

each programming model has a different error to detect as
discussed earlier in Section 3.4.

For detecting a specific type of errors, there are many types of
research worked on detecting deadlock, livelock and race
condition by using different techniques. In deadlock detection,
there are many tools and studies that are using static or dynamic
testing techniques to detect deadlocks including resource and
communication deadlocks. UNDEAD [19] is a deadlock detection
and prevention, which helps to defeats deadlocks in production
software with enhancing run-time performance and memory
overheads. More deadlock detection can be found in [19,36] .
Regarding detecting data race, a hybrid test-driven approach has
been introduced in [35] to detect data race in task-parallel
programs. Also, many data race detection approaches in [28,37].
Finally, some livelock detection techniques have been proposed in
[21,22].

Regarding testing the programming model, many approaches
have been introduced to test and detect errors in parallel software.
Many studies have been done in a single level programming
models such as MPI, OpenMP, CUDA and OpenCL. While some
studies focus on dual-level programming models including MPI +
X hybrid programming models, which include homogeneous and
heterogeneous systems. One popular combination is MPI +
OpenMP, which appears in [33,38,39]. Some of these studies focus
on dynamic testing, while some of them in regression testing,
which is the process of analyzing the system after the maintenance
phase.

Figure 4: Our Proposed Architecture

Regarding open source testing tools, ARCHER [37] is a data
race detector for an OpenMP program that combines static and

http://www.astesj.com/

A.M. Alghamdi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com 208

dynamic techniques to identify data race in large OpenMP
applications. Also, AutomaDeD [42] (Automata-based Debugging
for Dissimilar Parallel Tasks) is a tool that detects MPI errors by
comparing the similarities and dissimilarities between tasks.
MEMCHEKER [11] allows finding hard-to-catch memory errors
in MPI application such as overwriting of memory regions used in
non-blocking communication and one-sided
communication. Furthermore, MUST [32] detects run-time errors
in MPI and report them to the developers, including MPI deadlock
detection, data type matching, and detection of communication
buffer overlaps.

Testing OpenACC has limited studies in testing and detecting
static and dynamic errors. There are some researches regarding
related OpenACC testing. In [43], they evaluate three commercial
OpenACC compilers by creating a validation suite that contains
140 test case for OpenACC 2.0. They also check conformance,
correctness, and completeness of specific compilers for the
OpenACC 2.0 new features. This test suite has been built on the
same concept as the first OpenACC 1.0 validation test suite in [44],
which three commercial compilers were evaluated including
CAPS, PGI and CRAY. Similarly, this OpenACC test suite was
published in [45] for OpenACC version 2.5, which is the past
version, to validate and verify compilers’ implementations of
OpenACC features.

Recently, another testing of the OpenACC application was
published in [46], which considered detecting numerical
differences that can be occurred due to computational differences
in different OpenACC directives. They proposed a solution for that
by generating code from the compiler to run each computes region
on both the host CPU and the GPU. Then, the values computed on
the host and GPU are compared, using OpenACC data directives
and clauses to decide what data to compare.

Despite the efforts that have been done in creating and
proposing software testing tools for parallel application, still, there
is a lot to be done primarily for OpenACC and for dual-
programming models for heterogeneous systems. Finally, in our
best knowledge, there is not a parallel testing tool built to test
applications programmed by using the dual-programming model
MPI + OpenACC.

5. Proposed Architecture

We propose a parallel hybrid testing tool for the dual-
programming model (MPI + OpenACC) and C++ programming
language as shown in Figure 4. This architecture has the flexibility
to detect potential run-time errors and report them to the developer,
detect them automatically by using assertion language and execute
them to get a list of run-time errors, or detecting dynamic errors.
This architecture uses hybrid testing techniques including static
and dynamic testing. The static testing part is shown in Figure 5
while the dynamic part in Figure 6.

 The source code includes C++ programming language and
MPI + OpenACC as dual-programming models. The part that
displayed in Figure 5 is responsible for detecting real and potential
run-time errors by using static testing. This part produces a list of
potential run-time errors for the developer.

Also, this list could be an input to the assertion process that
these potential errors will be automatically detected and avoided

during the dynamic testing part. Also, any real run-time errors also
will be addressed to the developed with warning messages, as these
errors must be corrected because they will defiantly occur during
run-time. Also, these real run-time errors that been discovered
from the source code can be automatically corrected before the
process move to the dynamic testing part, which reduces the testing
time and enhances the testing performance. The static part of the
architecture includes:

• Lexical analyzer: This will take the source code that
includes C++, MPI, and OpenACC as an input. This analyzer
will understand the source code because it has all the
information related to the programming language and the
determined programming models. This information includes
keywords, reserved words, operators, variable and constant
definitions. Then, it will convert the application source code
into tokens and allocate them into tables of tokens. The output
of this analyzer will be a token table, which includes token
names and their respective type.

• Parser: This Part is responsible for analyzing the syntax of
the input source code and confirming the rule of a formal
grammar. This process will produce a structural
representation of the input (Parser Tree) that shows the syntax
relation to each other, checking for correct syntax in the
process.

• State transit graph generator: This part will generate a state
graph for the user program, which includes C++, MPI, and
OpenACC. This state graph will be represented by any
suitable data structure such as a matrix or linked list.

Figure 5: Static Part of the Proposed Architecture

The dynamic testing part of the proposed architecture is shown
in Figure 6, which takes the source code and the assertion language
as an input and move them to the instrumental. The instrumental
depending on the semantics of the assertion language will produce

http://www.astesj.com/

A.M. Alghamdi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com 209

code in the targeted programming language. The instrumental
consist of four modules including; a lexical analyzer, parser,
semantic, and code translator. The instrumental will produce an
instrumented source code as an output. The instrumented source
code includes the user codes and the testing codes both of them
wrote in the user code programming language. Two methods can
do instrumentation. Firstly by adding the testing codes, assertion
statements, to the source code which leads to bigger code size as it
will have user code and testing code. The second method is by
adding the assert statements as calling of API functions, and these
functions will test the part of the code that needs to be tested. This
method leads to a smaller code size that any testing needed a call
statement will be written, and the function will do the test. It is
noticeable when we have the same testing code for several parts of
the user code, in the previous method this testing code will be
repeated many times, while in this method it will be only written
once and called multiple times.

Figure 6: Dynamic Part of the Proposed Architecture

Further investigation of the instrumentation will be considered
in our future progress. The resulted instrumented code will be
compiled and linked, which results in EXE codes including user
executable code and run-time subsystems. Finally, these EXE
codes will be executed and provide a list of run-time errors.

6. Discussion

There are many tools, and researches have been done to detect
a run-time error that occurs in parallel systems, which used MPI,
CUDA, and OpenMP programming models. However, even
though OpenACC can work in heterogeneous architecture,
hardware, and platforms, as well as used by non-computer science
specialist, which easily can have several errors. There is not a
research or testing tool that detects OpenACC run-time errors.
Also, OpenACC becomes increasingly used in different research
fields as well as one of the main programming models targeting
Exascale systems. Recently, OpenACC has been used in five of 13
applications to accelerate performance in the top supercomputer in
the world Summit. Also, three of the top five HPC applications are
using OpenACC as well. Therefore, this increased in using
OpenACC will come with more errors that need to be detected.

In our tool, we consider having hybrid testing techniques
including static and dynamic testing. This combination takes the
advantages of two testing techniques, reduces disadvantages, and
reduces the testing time. The first part of the hybrid technique is a
static testing technique which analyses the source code before
compilation to detect static errors. Some of the run-time errors can
also be detected from the source code and should be sent to
developers to solve them because they will occur definitely at run-
time. In addition, potential run-time errors are errors that might or

might not be occurred after compilation and during run-time based
on the execution behavior. The reasons that cause these potential
errors can be detected from the source code before compilation by
using static testing. However, if these errors have not been detected,
it will become run-time errors. As a result, the developers should
be warned to these errors and consider them.

The second part of the hybrid technique is a dynamic testing
technique that is detecting errors that happened during run-time,
by instrumenting and analyzing the system during run-time. This
is challenging because different factors and complicated scenarios
can cause these errors. In addition, testing parallel programs is a
difficult task because of the nature of such programs and their
behavior. This will add more work to the testing tool for covering
every possible scenario of the test cases and data. Furthermore,
these dynamic techniques are sensitive to the execution
environment and can affect the system execution time. Finally, it
is the run-time errors type and behavior that determines which
techniques will be used, because static analysis and others cannot
detect dynamic techniques cannot detect some errors.

7. Conclusion and Future Works

High-performance computing has become increasingly
important, and the Exascale supercomputers will be feasible by
2020; therefore, building massively parallel supercomputing
systems based on a heterogeneous architecture has become even
more important to increase parallelism. Using hybrid
programming models for creating parallel systems has several
advantages and benefits, but mixing parallel models within the
same application leads to more complex codes. Testing such
complex applications is a difficult task and needs new techniques
for detecting run-time errors.

We proposed a parallel hybrid testing tool for detecting run-
time errors for systems implemented in C++ and MPI + OpenACC.
This proposed solution integrates static and dynamic testing
techniques for building a new hybrid testing tool for parallel
systems. This allows us to take advantages of both previously
mentioned techniques for detecting some of the dynamic errors
from the source code by using the static testing techniques, which
will enhance the system execution time. Also, our system will
work in parallel to detect run-time errors, by creating testing
threads depending on the number of the application threads.

 In our future work, we will identify and classify the OpenACC
run-time errors and study their behavior and causes to be our guide
in building our testing tool. Also, we will implement our
architecture and evaluate its ability to detect OpenACC run-time
errors and also we will identify and address the run-time errors that
resulted from the dual-programming model MPI + OpenACC. Our
experiments will be conducted in AZIZ supercomputer, which is
one of the top ten supercomputers in the Kingdom of Saudi Arabia.
On June 2016, AZIZ was ranked No. 359 among the Top 500
supercomputers in the world.

Conflict of Interest

The authors declare no conflict of interest.

http://www.astesj.com/

A.M. Alghamdi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 2, 203-210 (2019)

www.astesj.com 210

Acknowledgment

This work was funded by the Deanship of Scientific Research
(DSR), King Abdulaziz University, Jeddah, under grant No.
(DG1440 - 12 - 611). The authors, therefore, acknowledge with
thanks DSR technical and financial support.

References

[1] Message Passing Interface Forum, “MPI Forum,” 2017. [Online]. Available:
http://mpi-forum.org/docs/.

[2] OpenMP Architecture Review Board, “About OpenMP,” OpenMP ARB
Corporation, 2018. [Online]. Available:
https://www.openmp.org/about/about-us/.

[3] NVIDIA Corporation, “About CUDA,” 2015. [Online]. Available:
https://developer.nvidia.com/about-cuda.

[4] Khronos Group, “About OpenCL,” Khronos Group, 2017. [Online].
Available: https://www.khronos.org/opencl/.

[5] OpenACC-standard.org, “About OpenACC,” OpenACC Organization, 2017.
[Online]. Available: https://www.openacc.org/about.

[6] F. E. Eassa, L. J. Osterweil, and M. Z. Abdel-mageed, “AIDA: a dynamic
analyser for Ada programs,” Inf. Softw. Technol., vol. 36, no. 2, pp. 107–117,
1994.

[7] SC11, “the International Conference for High Performance Computing,
Networking, Storage and Analysis,” 2011. [Online]. Available:
http://sc11.supercomputing.org/.

[8] A. Fu, D. Lin, and R. Miller, “Introduction to OpenACC,” 2016.
[9] M. Daga, Z. S. Tschirhart, and C. Freitag, “Exploring Parallel Programming

Models for Heterogeneous Computing Systems,” in 2015 IEEE
International Symposium on Workload Characterization, 2015, pp. 98–107.

[10] J. A. Herdman, W. P. Gaudin, O. Perks, D. A. Beckingsale, A. C. Mallinson,
and S. A. Jarvis, “Achieving portability and performance through OpenACC,”
Proc. WACCPD 2014 1st Work. Accel. Program. Using Dir. - Held
Conjunction with SC 2014 Int. Conf. High Perform. Comput. Networking,
Storage Anal., no. July 2013, pp. 19–26, 2015.

[11] The Open MPI Organization, “Open MPI: Open Source High Performance
Computing,” 2018. [Online]. Available: https://www.open-mpi.org/.

[12] MPICH Organization, “MPICH,” 2018. [Online]. Available:
http://www.mpich.org/.

[13] IBM Systems, “IBM Spectrum MPI,” 2018. [Online]. Available:
https://www.ibm.com/us-en/marketplace/spectrum-mpi.

[14] Intel Developer Zone, “Intel MPI Library,” 2018. [Online]. Available:
https://software.intel.com/en-us/intel-mpi-library.

[15] J. Kraus and P. Messmer, “Multi GPU programming with MPI,” in GPU
Technology Conference, 2014.

[16] J. Kim, S. Lee, and J. S. Vetter, “IMPACC: A Tightly Integrated
MPI+OpenACC Framework Exploiting Shared Memory Parallelism,” in
Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing - HPDC ’16, 2016, pp.
189–201.

[17] OpenACC Standards, “The OpenACC Application Programming Interface
version 2.7,” 2018.

[18] K. Shankari and N. G. B. Amma, “Clasp: Detecting potential deadlocks and
its removal by iterative method,” in IC-GET 2015 - Proceedings of 2015
Online International Conference on Green Engineering and Technologies,
2016.

[19] J. Zhou, S. Silvestro, H. Liu, Y. Cai, and T. Liu, “UNDEAD : Detecting and
Preventing Deadlocks in Production Software,” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering,
2017, pp. 729–740.

[20] J. F. Münchhalfen, T. Hilbrich, J. Protze, C. Terboven, and M. S. Müller,
“Classification of common errors in OpenMP applications,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 8766, pp. 58–72, 2014.

[21] M. K. Ganai, “Dynamic Livelock Analysis of Multi-threaded Programs,” in
Runtime Verification, 2013, pp. 3–18.

[22] Y. Lin and S. S. Kulkarni, “Automatic Repair for Multi-threaded Programs
with Deadlock / Livelock using Maximum Satisfiability,” ISSTA Int. Symp.
Softw. Test. Anal., pp. 237–247, 2014.

[23] B. Krammer and M. M. Resch, “Runtime Checking of MPI Applications
with MARMOT,” in Performance Computing, 2006, vol. 33, pp. 1–8.

[24] M. Cao, “Efficient , Practical Dynamic Program Analyses for Concurrency
Correctness,” The Ohio State University, 2017.

[25] E. Saillard, P. Carribault, and D. Barthou, “MPI Thread-Level Checking for
MPI+OpenMP Applications,” in EuroPar, vol. 9233, 2015, pp. 31–42.

[26] N. Ng and N. Yoshida, “Static deadlock detection for concurrent Go by
global session graph synthesis,” CC 2016 Proc. 25th Int. Conf. Compil.
Constr., vol. 1, no. 212, pp. 174–184, 2016.

[27] A. Santhiar and A. Kanade, “Static deadlock detection for asynchronous C#
programs,” in Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation - PLDI 2017, 2017, pp.
292–305.

[28] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, “An Extended Polyhedral
Model for SPMD Programs and Its Use in Static Data Race Detection,” 2017,
pp. 106–120.

[29] J. Jaeger, E. Saillard, P. Carribault, and D. Barthou, “Correctness Analysis
of MPI-3 Non-Blocking Communications in PARCOACH,” in Proceedings
of the 22nd European MPI Users’ Group Meeting on ZZZ - EuroMPI ’15,
2015, pp. 1–2.

[30] A. T. Do-Mai, T. D. Diep, and N. Thoai, “Race condition and deadlock
detection for large-scale applications,” in Proceedings - 15th International
Symposium on Parallel and Distributed Computing, ISPDC 2016, 2017, pp.
319–326.

[31] Y. Cai and Q. Lu, “Dynamic Testing for Deadlocks via Constraints,” IEEE
Trans. Softw. Eng., vol. 42, no. 9, pp. 825–842, 2016.

[32] RWTH Aachen University, “MUST: MPI Runtime Error Detection Tool,”
2018.

[33] E. Saillard, “Static / Dynamic Analyses for Validation and Improvements of
Multi-Model HPC Applications . To cite this version : HAL Id : tel-
01228072 DOCTEUR DE L ’ UNIVERSITÉ DE BORDEAUX Analyse
statique / dynamique pour la validation et l ’ amélioration des applicat,”
University of Bordeaux, 2015.

[34] Y. Huang, “An Analyzer for Message Passing Programs,” Brigham Young
University, 2016.

[35] R. Surendran, “Debugging, Repair, and Synthesis of Task-Parallel Programs,”
RICE UNIVERSITY, 2017.

[36] V. Forejt, S. Joshi, D. Kroening, G. Narayanaswamy, and S. Sharma,
“Precise Predictive Analysis for Discovering Communication Deadlocks in
MPI Programs,” ACM Trans. Program. Lang. Syst., vol. 39, no. 4, pp. 1–27,
Aug. 2017.

[37] Lawrence Livermore National Laboratory, University of Utah, and RWTH
Aachen University, “ARCHER,” GitHub, 2018. [Online]. Available:
https://github.com/PRUNERS/archer.

[38] B. Klemme, “Software Testing of Parallel Programming Frameworks,”
University of New Mexico, 2016.

[39] H. Ma, L. Wang, and K. Krishnamoorthy, “Detecting Thread-Safety
Violations in Hybrid OpenMP/MPI Programs,” in 2015 IEEE International
Conference on Cluster Computing, 2015, pp. 460–463.

[40] Allinea Software Ltd, “ALLINEA DDT,” ARM HPC Tools, 2018. [Online].
Available: https://www.arm.com/products/development-tools/hpc-
tools/cross-platform/forge/ddt.

[41] R. W. S. Inc., “TotalView for HPC,” 2018. [Online]. Available:
https://www.roguewave.com/products-services/totalview.

[42] G. Bronevetsky, I. Laguna, S. Bagchi, B. R. de Supinski, D. H. Ahn, and M.
Schulz, “AutomaDeD: Automata-based debugging for dissimilar parallel
tasks,” in IFIP International Conference on Dependable Systems &
Networks (DSN), 2010, pp. 231–240.

[43] J. Yang, “A VALIDATION SUITE FOR HIGH-LEVEL DIRECTIVE-
BASED PROGRAMMING MODEL FOR ACCELERATORS A
VALIDATION SUITE FOR HIGH-LEVEL DIRECTIVE-BASED
PROGRAMMING MODEL FOR,” University of Houston, 2015.

[44] C. Wang, R. Xu, S. Chandrasekaran, B. Chapman, and O. Hernandez, “A
validation testsuite for OpenACC 1.0,” in Proceedings of the International
Parallel and Distributed Processing Symposium, IPDPS, 2014, pp. 1407–
1416.

[45] K. Friedline, S. Chandrasekaran, M. G. Lopez, and O. Hernandez,
“OpenACC 2.5 Validation Testsuite Targeting Multiple Architectures,”
2017, pp. 557–575.

[46] K. Ahmad and M. Wolfe, “Automatic Testing of OpenACC Applications,”
in 4th International Workshop on Accelerator Programming Using
Directives, vol. 10732, 2018, pp. 145–159.

http://www.astesj.com/

	2. Research Objectives
	2.1. Provide new static testing techniques for detecting real and potential run-time errors for systems implemented in dual programming model (OpenACC and MPI) and C++ programming language.
	2.2. Providing a new assertion language for helping in detecting potential run-time errors.
	2.3. Provide new parallel dynamic testing techniques for detecting run-time errors for systems implemented in dual programming model (OpenACC and MPI) and C++ programming language.
	2.4. Integrated the provided techniques for developing a parallel hybrid testing tool for systems implemented in dual programming model (OpenACC and MPI) and C++ programming language.

	3. Background
	3.1. OpenACC
	3.2. Message Passing Interface (MPI)
	3.3. Dual-Level Programming Model: MPI + OpenACC
	3.4. Common Run-Time Errors
	3.4.1. Deadlock
	3.4.2. Livelock
	3.4.3. Race Condition
	3.4.4. Data Race
	3.4.5. Mismatching
	3.5. Testing Techniques

	4. Related Works
	5. Proposed Architecture
	6. Discussion
	7. Conclusion and Future Works
	Conflict of Interest
	Acknowledgment
	References

