
 

www.astesj.com     203 

 

 

 

 

Parallel Hybrid Testing Tool for Applications Developed by Using MPI + OpenACC Dual-Programming 
Model 

Ahmed Mohammed Alghamdi*, Fathy Elbouraey Eassa 

Department of Computer Science, King Abdul-Aziz University, Jeddah, Saudi Arabia 

A R T I C L E  I N F O  A B S T R A C T 
Article history: 
Received: 24 January, 2019 
Accepted: 21 March, 2019 
Online: 26 March, 2019 

 Building massively parallel applications has become increasingly important with coming 
Exascale related technologies. For building these applications, a combination of 
programming models is needed to increase the system's parallelism. One of these 
combinations is the dual-programming model (MPI+X) which has many structures that 
increase parallelism in heterogeneous systems that include CPUs and GPUs. MPI + 
OpenACC programming model has many advantages and features that increase 
parallelism with respect heterogeneous architecture and support different platform with 
more performance, productivity, and programmability.  
The main problem in building systems with different programming models that it is a hard 
job for programmers and it is more error-prone, which is not easy to test. Also, testing 
parallel applications is a difficult task, because of the non-determined behavior of the 
parallel application. Even after detecting the errors and modifying the source code, it is not 
easy to determine whether the errors have been corrected or remain hidden. Furthermore, 
integrating two different programming models inside the same application makes it even 
more difficult to test. Also, the misusage of OpenACC can lead to several run-time errors 
that compilers cannot detect, and the programmers will not know about them.   
To solve this problem, we proposed a parallel hybrid testing tool for detecting run-time 
errors for systems implemented in C++ and MPI + OpenACC. The hybrid techniques 
combine static and dynamic testing techniques for detecting real and potential run-time 
errors by analyzing the source code and during run time. Using parallel hybrid techniques 
will enhance the testing time and cover a wide range of errors. Also, we propose a new 
assertion language for helping in detecting potential run-time errors. Finally, to the best of 
our knowledge, identifying and classifying OpenACC errors has not been done before, and 
there is no parallel testing tool designed to test applications programmed by using the dual-
programming model MPI + OpenACC or the single-programming models OpenACC. 
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1. Introduction  

In recent years, building massively-parallel supercomputing 
systems based on heterogeneous architecture have been one of the 
top research topics. Therefore, creating parallel programs becomes 
increasingly important, but there is a lack of parallel programming 
languages, and the majority of traditional programming languages 
cannot support parallelism efficiently. As a result, programming 
models have been created to add parallelism to the programming 
languages. Programming models are sets of instructions, 
operations, and constructs used to support parallelism. 

Today, there are various programming models which have 
different features and created for different purposes; including 
message passing, such as MPI [1] and shared memory parallelism, 
such as OpenMP [2]. Also, some programming models support 
heterogeneous systems, which consisting of a Graphics Processing 
Unit (GPU) coupled with a traditional CPU. Heterogeneous 
parallel programming models are CUDA [3] and OpenCL [4], 
which are low-level programming model and OpenACC [5] as a 
high-level heterogeneous programming model. 

Testing parallel applications is a difficult task because parallel 
errors are hard to detect due to the non-determined behavior of the 
parallel application. Even after detecting the errors and modifying 
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the source code, it is not easy to determine whether the errors have 
been corrected or hidden. Integrating two different programming 
models inside the same application even make it more difficult to 
test. Despite the available testing tools that detect static and 
dynamic errors, still, there is a shortage in such a testing tool that 
detects run-time errors in systems implemented in the high-level 
programming model.  

The rest of this paper is structured as follows. Section 2 
describes the research objectives, while Section 3 briefly gives an 
overview of some programming models and some run-time errors. 
The related work will be discussed in Section 4, the proposed 
architecture in Section 5, a discussion will be in Section 6 and 
finally the conclusion with future work in Section 7.    

2. Research Objectives 

This research aims to develop a parallel hybrid testing tool for 
systems implemented in MPI + OpenACC dual programming 
model with C++ programming language. The hybrid techniques 
combine static and dynamic testing techniques for detecting real 
and potential run-time errors by analyzing the source code and 
during run-time. Using parallel hybrid techniques will enhance the 
testing time and cover a wide range of errors. The following are 
the primary objectives of our research:   

2.1. Provide new static testing techniques for detecting real and 
potential run-time errors for systems implemented in dual 
programming model (OpenACC and MPI) and C++ 
programming language. 
These techniques are analyzing the source code before 

compilation for detecting static errors. Some run-time errors can 
also be detected from the source code, such as send-send deadlocks 
in Figure 2 B. These errors should be sent to developers to solve 
them because they will occur definitely in run-time. Also, potential 
run-time errors are errors that might or might not be occurred after 
compilation and during run-time. The reasons cause these potential 
errors can be detected from the source code before compilation by 
using static testing. However, if these errors have not been detected, 
it will become run-time errors. As a result, the developers should 
be warned about these errors and consider them; also our tool will 
instrument these errors by using assertion language.  

The source code will include a combination of the program 
implemented in C++ and dual programming model source codes, 
which leads to one big size source code including a considerable 
number of statements. These static testing techniques will decrease 
the time of detecting run-time errors after the compilation, which 
will speed up the system testing time. These techniques also will 
allow us to correct or inform developers by providing them with a 
list of potential errors that in some cases in the running time these 
errors might happen. 

The following example in Figure 1 shows a potential run-time 
error, when process_1 first receive request from any process beside 
process_0, there is no problem. However, if process_1 receives 
from process_0 first, the statement REC_FROM (P_0) will never, 
and the process_1 will be waiting. In that case, from the source 
code we discover that, somehow, this will cause a run-time error 
(Deadlock). This situation called a potential deadlock. 

Also, Figure 2 shows an example of a real run-time error called 
(deadlock), which happened because of Process_0 block and 

waiting for receiving from Process_1, which also block and 
waiting for receiving from Process_0. Similarly, this also 
happened between Process_2 and Process_3. 

 
 Figure 1: Potential Deadlock caused by Wildcard Receive 

 
Figure 2: Real Deadlocks caused by two different reasons 

2.2. Providing a new assertion language for helping in detecting 
potential run-time errors. 

This assertion language will be used to specify the properties 
of the programs under test and to verify that the developers' 
assumptions of the program remain valid during the program run-
time. During testing, assertion statements help for the recording of 
some information, testing the correctness of statements, and 
monitor the values of variables. To do this, the dynamic tester will 
automatically insert assertion statements into the code, then 
provides a method for capturing, organizing, and analyzing 
assertions output. This will help to increase the error detection 
capability of a test by using the instrumentation technique. The 
instrumentation approach based on the idea that the tested part of 
a program can be specified regarding assertion or values that must 
be assumed by variables at specific critical points in the program, 
which can cause run-time errors [6]. 

 Usually, assertion statements start with comment symbol of 
the programming language, such as "//" in C++, before each assert 
statements. The main reason behind this is reducing the compiled 
code that will be delivered to the customers because any statement 
starts with the comment symbol will be ignored during the 
compilation. In other words, the assert statements are in the source 
code but not in the compiled code, which will be delivered to the 
customers.   

2.3. Provide new parallel dynamic testing techniques for detecting 
run-time errors for systems implemented in dual programming 
model (OpenACC and MPI) and C++ programming language.    

These techniques will use the provided assertion language for 
detecting errors that happened during run-time, by instrumenting 
and analyzing the system during run-time. This is challenging 
because different factors and complicated scenarios can cause 
these errors. Also, testing parallel programs is a difficult task 
because of the nature of such programs and their behavior. This 
will add more work on the testing tool for covering every possible 
scenario of the test cases and data. As a result, detecting parallel 
run-time errors is more difficult. Furthermore, these dynamic 
techniques are sensitive to the execution environment and can 
affect the system execution time.  
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2.4. Integrated the provided techniques for developing a parallel 
hybrid testing tool for systems implemented in dual 
programming model (OpenACC and MPI) and C++ 
programming language. 

Our proposed architecture will integrate static and dynamic 
testing techniques for creating a new hybrid testing tool for parallel 
systems. This allows us to take advantages of both previously 
mentioned techniques for detecting some of the dynamic errors 
from the source code by using the static testing techniques, which 
will enhance the system execution time. Also, our system will 
work in parallel to detect run-time errors, by creating testing 
threads depending on the number of the application threads. Intra-
process and Inter-process run-time detections will be included in 
our tool. The inter-process detector will be responsible for 
detecting run-time errors that happened within the process, and the 
Intra-process detector for detecting errors happened between 
processes each other.  

3. Background 

In this section, the main components involved in our research 
will be displayed and discussed. This will include the 
programming models that will be used in our research and 
describing why they have been chosen. Also, some run-time errors 
and testing techniques will also be described and discussed in this 
section.  

3.1. OpenACC 

In November 2011, OpenACC stands for open accelerators, 
was released for the first time in the International Conference for 
High-Performance Computing, Networking, Storage and Analysis 
[7]. OpenACC is a directive-based open standard developed by 
Cray, CAPS, NVIDIA and PGI. They design OpenACC to create 
simple high-level parallel programming model for heterogeneous 
CPU/GPU systems, that compatible with FORTRAN, C, and C++ 
programming languages. Also, OpenACC Standard Organization 
defines OpenACC as "a user-driven directive-based performance-
portable parallel programming model designed for scientists and 
engineers interested in porting their codes to a wide variety of 
heterogeneous HPC hardware platforms and architectures with 
significantly less programming effort than required with a low-
level model." [5]. The latest version of OpenACC was released in 
November 2017. OpenACC has several features and advantages 
comparing with other heterogeneous parallel programming models 
including: 

• Portability: Unlike programming model like CUDA works 
only on NVIDIA GPU accelerators, OpenACC is portable 
across different type of GPU accelerators, hardware, 
platforms, and operating systems.[8]     

• OpenACC is compatible with various compilers and gives 
flexibility to the compiler implementations.  

• High-level programming model, which makes targeting 
accelerators easier, by hiding low-level details. For generation 
low-level GPU programs, OpenACC relies on the compiler 
using the programmer codes. [9] 

• Better performance with less programming effort, which gives 
the ability to add GPU codes to existing programs with less 
effort. This will lead to reduce the programmer workload and 

improve programmer productivity and achieving better 
performance than OpenCL and CUDA. [10] 

• OpenACC allows users to specify three levels of parallelism by 
using three clauses:  

o Gangs: Coarse-Grained Parallelism  
o Workers: Medium-grained Parallelism 
o Vector: Fine-Grained Parallelism  

OpenACC has both a strong and significant impact on the HPC 
society as well as other scientific communities. Jeffrey Vetter 
(HPC luminary and Joint Professor Georgia Institute of 
Technology) wrote: “OpenACC represents a major development 
for the scientific community. Programming models for open 
science by definition need to be flexible, open and portable across 
multiple platforms. OpenACC is well-designed to fill this need.” 
[5].   

3.2. Message Passing Interface (MPI) 

Message Passing Interface (MPI) [1] is a message-passing 
library interface specification. In May 1994, the first official 
version of MPI was released. MPI is a message-passing parallel 
programming model that moves data from a process address space 
to another process by using cooperative operations on each process. 
The MPI aims to establish a standard for writing message-passing 
programs to be portable, efficient, and flexible. Also, MPI is a 
specification, not a language or implementation, and all MPI 
operations are expressed as functions, subroutine or methods for 
programming languages including FORTRAN, C, and C++. MPI 
has several implementations including open source 
implementations, such as Open MPI [11] and MPICH [12]; and 
commercial implementations, such as IBM Spectrum MPI [13] 
and Intel MPI [14]. MPI has several features and advantages 
including:  

• Standard: MPI is the only message passing library that can 
be considered a standard. It has been supported on virtually all 
HPC platforms. Also, all previous message passing libraries 
have been replaced by MPI. 

• Portability: MPI can be implemented on several platforms, 
hardware, systems, and programming languages. Also, MPI 
can work correctly with several programming models and 
work with heterogeneous networks.  

• Availability: Various versions of MPI implementations from 
different vendors and organization are available as open 
source and commercial implementations.  

• Functionality: On MPI version 3.1 there are over 430 
routines has been defined including the majority of the 
previous versions of MPI.   

The new MPI standardization version 4.0 [1] is in progress, 
which aims to add new techniques, approaches, or concepts to the 
MPI standard that will help MPI address the need of current and 
next-generation applications and architectures. The new version 
will extend to better support hybrid programming models 
including hybrid MPI+X concerns and support for fault tolerance 
in MPI applications. 

3.3. Dual-Level Programming Model: MPI + OpenACC 

Integrating more than one programming model can enhance 
parallelism, performance, and the ability to work with 
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heterogeneous platforms. Also, this combination will help in 
moving to Exascale systems, which need more powerful 
programming models that support massively-parallel 
supercomputing systems. Hybrid programming models can be 
classified as:  

• Single-Level Programming Model: MPI 
• Dual-Level Programming Model: MPI + X 
• Tri-Level Programming Model: MPI + X + Y   

 
Figure 3: Multi GPU Programming with MPI and OpenACC [15] 

In order to write portable and scalable applications for 
heterogeneous architecture, the dual-programming model MPI + 
OpenACC can be practical. It inherits the advantages, such as high 
performance, scalability, and portability from MPI and 
programmability and portability from OpenACC [16]. However, 
this dual-programming model might introduce different types of 
run-time errors, which have different behaviors and causes. Also, 
some complexities and inefficiencies might happen including 
redundant data movement and excessive synchronization between 
the models, which need to be considered and take care of, but it is 
better than using CUDA or OpenCL, which is more complicated 
and harder to program, resulting in lower productivity. 

3.4. Common Run-Time Errors 

There are several types of run-time errors that happened after 
compilation and cannot be detected by the compilers, which cause 
the program not to meet the user requirements. These errors even 
sometimes have similar names, but they are different in the reasons 
that cause the run-time error or the error behavior. For example, 
deadlock in MPI has different causes and behaviors comparing 
with OpenACC deadlocks. Also, run-time errors in the dual-
programming model are different. Also, some run-time errors 
happened specifically in a particular programming model. By 
investigating the documents of the latest version of OpenACC 2.7 
[17], we found that OpenACC has a repetitive run-time error that 
if a variable is not present on the current device, this will lead to 

run-time error. This case happened in non-shared memory devices 
for different OpenACC clauses. 

Similarly, if the data is not present, a run-time error is issued in 
some routines. Furthermore, detecting such errors is not easy to do, 
and to detect them in applications developed by dual-programming 
model even more complicated. In the following, some popular run-
time errors will be displayed and discussed in general with some 
examples.    

3.4.1. Deadlock 
A deadlock is a situation in which a program is in a waiting 

state for an indefinite amount of time. In other words, one or more 
threads in a group are blocked forever without consuming CPU 
cycles. The deadlock has two types including resource and 
communication deadlock. Resource deadlock is the situation 
where a thread waits for another thread resource to proceed. 

Similarly, the communication deadlock occurs when some 
threads wait for some messages, but they never receive these 
messages [18–20]. The reasons that cause deadlock are different 
depending on the used programming models, systems nature and 
behavior. Once the deadlock occurs, it is not difficult to detect, but 
in some cases, it is difficult to detect them before it happened as 
they occur under specific interleaving. Finally, deadlocks in any 
system could be potential or real deadlocks.     

3.4.2. Livelock 
Livelock is similar to deadlock, except that livelock is a 

situation that happened when two or more processes change their 
state continuously in response to changes in the other processes. In 
other words, it occurs when one or more threads continuously 
change their states (and hence consume CPU cycles) in response 
to changes in states of the other threads without doing any useful 
work. As a result, none of the processes will make any progress 
and will not complete [21,22]. In a livelock, the thread might not 
be blocked forever, and it is hard to distinguish between livelock 
and long-running process. Also, livelock can lead to performance 
and power consumption problems because of the useless busy-wait 
cycles.    

3.4.3. Race Condition 
A race condition is a situation that might be occurred due to 

executing processes by multiple threads and where the sequence of 
execution for the threads makes a difference in the result of the 
concurrent execution. The execution timing and order will affect 
the program's correctness [20,23]. Some researchers do not 
differentiate between data race and race condition, which will be 
explained in the data race definition.    

3.4.4. Data Race 
A data race happened when there are two memory accesses in 

the program where they both are performed concurrently by two 
threads or target the same location [23, 24]. For example, at least 
one read and one write may happen at the same memory location, 
at the same time. The relation between data race and race condition, 
the race condition is a data race that causes an error. However, data 
race does not always lead to a race condition. 

3.4.5. Mismatching 
Mismatching is a situation that happened in arguments of one 

call, which can be detected locally and are sometimes even 
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detected by the compiler. Mismatching can be caused by several 
forms including wrong type or number of arguments, arguments 
involving more than one call, or in collective calls. Developers 
need to make special attention when comparing matched pairs of 
derived data types. Some examples of mismatching that occurred 
in MPI as the following [23]:  

• To send two (MPI INT, MPI DOUBLE) and to receive one 
(MPI INT, MPI DOUBLE, MPI INT, MPI DOUBLE 

• To send one (MPI INT, MPI DOUBLE) and to receive one 
(MPI INT, MPI DOUBLE, MPI INT, MPI DOUBLE) (a so-
called partial receive).  

3.5. Testing Techniques 

There are many techniques used in software testing, which 
include static, dynamic, as well as other techniques. Static testing 
is the process of analyzing the source code before compilation 
phase for detecting static errors. It handles the application source 
code only without launching it, which give us the ability to analyze 
the code in details and have full coverage. In contrast, the static 
analysis of parallel application is complicated due to the 
unpredicted program behavior, which is parallel application nature. 
However, it will be beneficial to use static analysis for detecting 
potential run-time errors and some real run-time errors that are 
obvious from the source code, such as some types of deadlocks and 
race condition.   

Dynamic testing is the process of analyzing the system during 
run-time for detecting dynamic (run-time) errors. It demands to 
launch programs, sensitive to the execution environment, and slow 
down the speed of application execution. It is useful to use 
dynamic analysis in the parallel application, which gives the 
flexibility to monitor and detect each thread of the parallel 
application. However, it is difficult to cover the whole parallel 
code with tests, and after correcting the errors, it cannot be 
confirmed that errors are corrected or hidden. 

 Finally, it is the error types and behaviors that determine 
which techniques will be used, because static analysis and others 
cannot detect dynamic techniques cannot detect some errors. As a 
result, in our research, a hybrid technique will be used for different 
purposes and reasons. Furthermore, this hybrid technology will be 
working in parallel to detect parallel run-time errors and analyzing 
the application's threads.    

4. Related Works 

Many studies have been done in software testing for HPC and 
parallel software. These researches are varied, for different 
purposes and scopes. These variations include testing tools or 
detection for a specific type of errors or a different type of errors. 
Some studies focus on using static testing techniques [25–28] to 
detect errors by analyzing the source code and find real as well as 
potential run-time errors [29,30]; dynamic testing techniques  
[31,32] to  detect errors after execution and at run-time; or hybrid 
testing techniques [33–35]. Also, detecting errors in programming 
models also varied from the testing tool for single level 
programming model to the tri-level programming model. Even in 
the same classification of programming model the variation 
between testing the programming models themselves, because 

each programming model has a different error to detect as 
discussed earlier in Section 3.4.  

For detecting a specific type of errors, there are many types of 
research worked on detecting deadlock, livelock and race 
condition by using different techniques. In deadlock detection, 
there are many tools and studies that are using static or dynamic 
testing techniques to detect deadlocks including resource and 
communication deadlocks. UNDEAD [19] is a deadlock detection 
and prevention, which helps to defeats deadlocks in production 
software with enhancing run-time performance and memory 
overheads. More deadlock detection can be found in [19,36] . 
Regarding detecting data race, a hybrid test-driven approach has 
been introduced in [35] to detect data race in task-parallel 
programs. Also, many data race detection approaches in [28,37]. 
Finally, some livelock detection techniques have been proposed in 
[21,22].   

Regarding testing the programming model, many approaches 
have been introduced to test and detect errors in parallel software. 
Many studies have been done in a single level programming 
models such as MPI, OpenMP, CUDA and OpenCL. While some 
studies focus on dual-level programming models including MPI + 
X hybrid programming models, which include homogeneous and 
heterogeneous systems. One popular combination is MPI + 
OpenMP, which appears in [33,38,39]. Some of these studies focus 
on dynamic testing, while some of them in regression testing, 
which is the process of analyzing the system after the maintenance 
phase.  

 
Figure 4: Our Proposed Architecture 

Regarding open source testing tools, ARCHER [37] is a data 
race detector for an OpenMP program that combines static and 
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dynamic techniques to identify data race in large OpenMP 
applications. Also, AutomaDeD [42] (Automata-based Debugging 
for Dissimilar Parallel Tasks) is a tool that detects MPI errors by 
comparing the similarities and dissimilarities between tasks. 
MEMCHEKER [11] allows finding hard-to-catch memory errors 
in MPI application such as overwriting of memory regions used in 
non-blocking communication and one-sided 
communication. Furthermore, MUST [32] detects run-time errors 
in MPI and report them to the developers, including MPI deadlock 
detection, data type matching, and detection of communication 
buffer overlaps.    

Testing OpenACC has limited studies in testing and detecting 
static and dynamic errors. There are some researches regarding 
related OpenACC testing. In [43], they evaluate three commercial 
OpenACC compilers by creating a validation suite that contains 
140 test case for OpenACC 2.0. They also check conformance, 
correctness, and completeness of specific compilers for the 
OpenACC 2.0 new features. This test suite has been built on the 
same concept as the first OpenACC 1.0 validation test suite in [44], 
which three commercial compilers were evaluated including 
CAPS, PGI and CRAY. Similarly, this OpenACC test suite was 
published in [45] for OpenACC version 2.5, which is the past 
version, to validate and verify compilers’ implementations of 
OpenACC features.    

Recently, another testing of the OpenACC application was 
published in [46], which considered detecting numerical 
differences that can be occurred due to computational differences 
in different OpenACC directives. They proposed a solution for that 
by generating code from the compiler to run each computes region 
on both the host CPU and the GPU. Then, the values computed on 
the host and GPU are compared, using OpenACC data directives 
and clauses to decide what data to compare.  

Despite the efforts that have been done in creating and 
proposing software testing tools for parallel application, still, there 
is a lot to be done primarily for OpenACC and for dual-
programming models for heterogeneous systems. Finally, in our 
best knowledge, there is not a parallel testing tool built to test 
applications programmed by using the dual-programming model 
MPI + OpenACC.  

5. Proposed Architecture 

We propose a parallel hybrid testing tool for the dual-
programming model (MPI + OpenACC) and C++ programming 
language as shown in Figure 4. This architecture has the flexibility 
to detect potential run-time errors and report them to the developer, 
detect them automatically by using assertion language and execute 
them to get a list of run-time errors, or detecting dynamic errors. 
This architecture uses hybrid testing techniques including static 
and dynamic testing. The static testing part is shown in Figure 5 
while the dynamic part in Figure 6.  

  The source code includes C++ programming language and 
MPI + OpenACC as dual-programming models. The part that 
displayed in Figure 5 is responsible for detecting real and potential 
run-time errors by using static testing. This part produces a list of 
potential run-time errors for the developer.  

Also, this list could be an input to the assertion process that 
these potential errors will be automatically detected and avoided 

during the dynamic testing part. Also, any real run-time errors also 
will be addressed to the developed with warning messages, as these 
errors must be corrected because they will defiantly occur during 
run-time. Also, these real run-time errors that been discovered 
from the source code can be automatically corrected before the 
process move to the dynamic testing part, which reduces the testing 
time and enhances the testing performance. The static part of the 
architecture includes:  

• Lexical analyzer: This will take the source code that 
includes C++, MPI, and OpenACC as an input. This analyzer 
will understand the source code because it has all the 
information related to the programming language and the 
determined programming models. This information includes 
keywords, reserved words, operators, variable and constant 
definitions. Then, it will convert the application source code 
into tokens and allocate them into tables of tokens. The output 
of this analyzer will be a token table, which includes token 
names and their respective type.    

• Parser: This Part is responsible for analyzing the syntax of 
the input source code and confirming the rule of a formal 
grammar. This process will produce a structural 
representation of the input (Parser Tree) that shows the syntax 
relation to each other, checking for correct syntax in the 
process.       

• State transit graph generator: This part will generate a state 
graph for the user program, which includes C++, MPI, and 
OpenACC. This state graph will be represented by any 
suitable data structure such as a matrix or linked list. 

 

Figure 5: Static Part of the Proposed Architecture 

The dynamic testing part of the proposed architecture is shown 
in Figure 6, which takes the source code and the assertion language 
as an input and move them to the instrumental. The instrumental 
depending on the semantics of the assertion language will produce 
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code in the targeted programming language. The instrumental 
consist of four modules including; a lexical analyzer, parser, 
semantic, and code translator. The instrumental will produce an 
instrumented source code as an output. The instrumented source 
code includes the user codes and the testing codes both of them 
wrote in the user code programming language. Two methods can 
do instrumentation. Firstly by adding the testing codes, assertion 
statements, to the source code which leads to bigger code size as it 
will have user code and testing code. The second method is by 
adding the assert statements as calling of API functions, and these 
functions will test the part of the code that needs to be tested. This 
method leads to a smaller code size that any testing needed a call 
statement will be written, and the function will do the test. It is 
noticeable when we have the same testing code for several parts of 
the user code, in the previous method this testing code will be 
repeated many times, while in this method it will be only written 
once and called multiple times. 

 

Figure 6: Dynamic Part of the Proposed Architecture 

Further investigation of the instrumentation will be considered 
in our future progress. The resulted instrumented code will be 
compiled and linked, which results in EXE codes including user 
executable code and run-time subsystems. Finally, these EXE 
codes will be executed and provide a list of run-time errors.      

6. Discussion 

There are many tools, and researches have been done to detect 
a run-time error that occurs in parallel systems, which used MPI, 
CUDA, and OpenMP programming models. However, even 
though OpenACC can work in heterogeneous architecture, 
hardware, and platforms, as well as used by non-computer science 
specialist, which easily can have several errors. There is not a 
research or testing tool that detects OpenACC run-time errors. 
Also, OpenACC becomes increasingly used in different research 
fields as well as one of the main programming models targeting 
Exascale systems. Recently, OpenACC has been used in five of 13 
applications to accelerate performance in the top supercomputer in 
the world Summit. Also, three of the top five HPC applications are 
using OpenACC as well. Therefore, this increased in using 
OpenACC will come with more errors that need to be detected.  

In our tool, we consider having hybrid testing techniques 
including static and dynamic testing. This combination takes the 
advantages of two testing techniques, reduces disadvantages, and 
reduces the testing time. The first part of the hybrid technique is a 
static testing technique which analyses the source code before 
compilation to detect static errors. Some of the run-time errors can 
also be detected from the source code and should be sent to 
developers to solve them because they will occur definitely at run-
time. In addition, potential run-time errors are errors that might or 

might not be occurred after compilation and during run-time based 
on the execution behavior. The reasons that cause these potential 
errors can be detected from the source code before compilation by 
using static testing. However, if these errors have not been detected, 
it will become run-time errors. As a result, the developers should 
be warned to these errors and consider them.  

The second part of the hybrid technique is a dynamic testing 
technique that is detecting errors that happened during run-time, 
by instrumenting and analyzing the system during run-time. This 
is challenging because different factors and complicated scenarios 
can cause these errors. In addition, testing parallel programs is a 
difficult task because of the nature of such programs and their 
behavior. This will add more work to the testing tool for covering 
every possible scenario of the test cases and data. Furthermore, 
these dynamic techniques are sensitive to the execution 
environment and can affect the system execution time. Finally, it 
is the run-time errors type and behavior that determines which 
techniques will be used, because static analysis and others cannot 
detect dynamic techniques cannot detect some errors.   

7. Conclusion and Future Works 

High-performance computing has become increasingly 
important, and the Exascale supercomputers will be feasible by 
2020; therefore, building massively parallel supercomputing 
systems based on a heterogeneous architecture has become even 
more important to increase parallelism. Using hybrid 
programming models for creating parallel systems has several 
advantages and benefits, but mixing parallel models within the 
same application leads to more complex codes. Testing such 
complex applications is a difficult task and needs new techniques 
for detecting run-time errors. 

We proposed a parallel hybrid testing tool for detecting run-
time errors for systems implemented in C++ and MPI + OpenACC. 
This proposed solution integrates static and dynamic testing 
techniques for building a new hybrid testing tool for parallel 
systems. This allows us to take advantages of both previously 
mentioned techniques for detecting some of the dynamic errors 
from the source code by using the static testing techniques, which 
will enhance the system execution time. Also, our system will 
work in parallel to detect run-time errors, by creating testing 
threads depending on the number of the application threads. 

 In our future work, we will identify and classify the OpenACC 
run-time errors and study their behavior and causes to be our guide 
in building our testing tool. Also, we will implement our 
architecture and evaluate its ability to detect OpenACC run-time 
errors and also we will identify and address the run-time errors that 
resulted from the dual-programming model MPI + OpenACC. Our 
experiments will be conducted in AZIZ supercomputer, which is 
one of the top ten supercomputers in the Kingdom of Saudi Arabia. 
On June 2016, AZIZ was ranked No. 359 among the Top 500 
supercomputers in the world.   
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