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In this article we will present a method simplifying 3D point clouds. 
This method is based on the Shannon entropy. This technique of 
simplification is a hybrid technique where we use the notion of 
clustering and iterative computation. In this paper, our main 
objective is to apply our method on different clouds of 3D points. In 
the clustering phase we will use two different algorithms; K-means 
and Fuzzy C-means. Then we will make a comparison between the 
results obtained.
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1 Introduction

The modern 3D scanners are 3D acquisition tools
which are developed in terms of resolution and acqui-
sition speed. The clouds of points obtained from the
digitization of the real objects can be very dense. This
leads to an important data redundancy. This prob-
lem must be solved and optimal point cloud must be
found. This optimization of the number of points re-
sults in reducing the reconstruction calculation.

The problem of simplifying point cloud can be for-
malized as follows: given a set of points X sampling a
surface S, find a sample points X

′
with |X | ≤ |X |, Such

that X
′

sampling a surface S
′

is close to S. |X | is the
cardinality of set X. This objective requires defining a
measure of geometric error between the original and
simplified surface for which the method will resort
to the estimation of the global or local properties of
the original surface. There are two main categories
of algorithms to sampling points: sub-sampling algo-
rithms and resampling algorithms. The subsampling
algorithms produce simplified sample points which
are a subset of the original point cloud, while the re-
sampling algorithms rely on estimating the proper-
ties of the sampled surface to compute new relevant
points.

In the literature, the categories of simplification al-
gorithms have been applied according to three main
simplification schemes. The first method is simplifi-
cation by selection or calculation of points represent-
ing subsets of the initial sample. This method consists
of decomposing the initial set into small areas, each of
which is represented by a single point in the simpli-
fied sample [1-4]. The methods of this category are
distinguished by the criteria defining the areas and
their construction.

The second method is iterative simplification.
The principle of iterative simplification is to remove
points of the initial sample incrementally per geomet-
ric or topologic criteria locally measuring the redun-
dancy of the data [5-10].

The third method is simplification by incremen-
tal sampling. Unlike iterative simplification, the sim-
plified sample points can be constructed by progres-
sively enriching an initial subset of points or sampling
an implicit surface [11-18].

This paper will present a hybrid simplification
technique based on the entropy estimation [19] and
clustering algorithm [20].

It is organized as follows: In section 2, we will re-
call some density function estimators. In section 3,
we will present clustering algorithm. Then in section
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4, we will present our 3D point cloud simplification
algorithm based on Shannon entropy [21]. Section 5
will show the results and validation. Finally, we will
present the conclusion.

2 Defining the Estimation of Den-
sity Function and Entropy

There are several methods for density estimation:
parametric and nonparametric methods. We will
fcus on nonparametric methods which include the
kernel density estimator, also known as the Parzen-
Rosenblatt method [22,23] and the K nearest neigh-
bors (K-NN) method [24]. We will only use in this ar-
ticle K-NN estimator.

2.1 The K Nearest Neighbors Estimator

The algorithm of the k nearest neighbors (K-NN) [24]
is a method of estimating the nonparametric probabil-
ity of the density function. The degree of estimation
is defined by an integer k which is the number of the
nearest neighbors, generally proportional to the size
of the sample N. For each x we define the estimation
of the density. The distances between points of the
sample and x are as follows:

r1(x) < ... < rk−1(x) < rk(x) < ... < rN (x)

ri with (i = 1...k...N ) are distances sorted by ascending
order.
The estimator k-NN in dimension d can be defined as
follows:

pknn(x) =
k
N

Vk(x)
=

k
N

Cdrk(x)
(1)

where rk(x) is the distance from x to the kth near-
est point and Vk(x) is the volume of a sphere of radius.
rk(x) and Cd is the volume of the unit sphere in d di-
mension.
The number k must be adjusted as a function of the
size N of the available sample in order to respect the
constraints that ensure the convergence of the estima-
tor. For N observations, the k can be calculated as
follows:

k = k0
√
N

By respecting these rules of adjustment, it is cer-
tain that the estimator converges when the number N
increases indefinitely whatever is the value of k0.

2.2 Defining Entropy

Claude Shannon introduced the concept of the en-
tropy which is associated with a discrete random vari-
able X as a basic concept in information theory [21].
The distribution of probabilities p = p1,p2, ...,pN as-
sociated with the realizations of X. The Shannon en-
tropy is calculated by using the following formula:

H(p) = −
N∑
i=1

p(xi) log(p(xi)) (2)

Entropy measures the uncertainty associated with
a random variable. Therefore, the realization of the
rare event provides more information about the phe-
nomenon than the realization of the frequent event.

3 Clustering Algorithms Defini-
tion

X = {xi ∈ Rd}, i = 1, ,N is a set of observations de-
scribed by d attributes; the objective of clustering
is the structuring of data into homogeneous classes.
Clustering is unsupervised classification. The objec-
tive is to try to group clustered points or classes so
that the data in a cluster is as similar as possible.
Two types of approaches are possible; hierarchical
and non-hierarchical approaches[25].

In this article, we will concentrate on the non-
hierarchical approach which is encapsulated in both
the Fuzzy C-Means Clustering (FCM) algorithm
[26,20] and K-means algorithm (KM)[27].

3.1 Fuzzy C-Means Clustering Algorithm

Fuzzy c-means is a data clustering technique wherein
each data point belongs to a cluster to some degree
that is specified by a membership grade. This tech-
nique was originally introduced by J.C. Dunn[20], and
improved by J.C. Bezdek[26] as an improvement on
earlier clustering methods. It provides a method that
shows how to group data points that populate some
multidimensional space into a specific number of dif-
ferent clusters.

X = {x1,x2, ...,xn} is a given data set to be analysed,
and V = {v1,v2, ...,vc} is the set of centers of clusters
in X data set in p dimensional space Rp. Where N
is the number of objects, p is the number of features
and c is the number of partitions or clusters. FCM is a
clustering method allowing each data point to belong
to multiple clusters with varying degrees of member-
ship.

FCM is based on the minimization of the following
objective function

Jm =
c∑

i=1

N∑
j=1

um
ijD

2
ijA (3)

Where, D2
ijA is the distances between ith features

vector and the centroid of jth cluster. They are com-
puted as a squared inner-product distance norm in
Equation (4):

DijA =‖ xj − vi ‖= (xj − vi)TA(xj − vi) (4)

In the objective function in Equation (3), U is a fuzzy
partition matrix that is computed from data set X:

U = uij (5)

m is fuzzy partition matrix exponent for control-
ling the degree of fuzzy overlap, with m > 1. Fuzzy
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overlap refers to how fuzzy the boundaries between
clusters are. That is the number of data points that
have significant membership in more than one clus-
ter.

The objective function is minimized with the con-
straints as follows: uij ∈ [0,1]; 1 ≤ i ≤ c; 1 ≤ j ≤
N ;

∑c
i=1uij = 1; 0 <

∑N
i=1uij < N ;

FCM performs the following steps during cluster-
ing:

1. Randomly initialize the cluster membership
values, uij .

2. Calculate the cluster centres:∑N
i=1u

m
ij xj∑N

i=1u
m
ij

.

3. Update uij according to the following:

1∑N
k=1(DijA/DkjA)2/(m−1)

4. Calculate the objective function, Jm

5. Compare U (t+1) with U (t), where t is the itera-
tion number.

6. If ‖ U (t+1) −U (t) ‖< ε then it stop, or else returns
to the step 2. (ε is a specified minimum thresh-
old, in this case it uses ε = 10−5).

3.2 K-Means Clustering Algorithm

The K-Means algorithm (KM) iteratively computes the
cluster centroids for each distance measurement in or-
der to minimize the sum with respect to the specified
measure. The objective of the K-Means algorithm is
to minimize an objective function named by squared
error function given in equation (6) as follows:

Jkm(X;V ) =
c∑

i=1

N∑
j=1

D2
ij (6)

D2
ij is the chosen distance measure which is in Eu-

clidean norm: ‖ xij − vi ‖2, 1 ≤ i ≤ c,1 ≤ j ≤ Ni . Where
Ni represents the number of data points in ith cluster.
For c clusters, the K-Means algorithm is based on an
iterative algorithm that minimizes the sum of the dis-
tances of each object at its cluster center. The goal is
to have a minimum value of the sum of the distance
by moving the objects between the clusters. The steps
of K-means are as follows:

1. Centroids of c clusters are chosen from X ran-
domly.

2. Distances between data points and cluster cen-
troids are calculated.

3. Each data point is assigned to the cluster whose
centroid is close to it.

4. Cluster centroids are updated by using the for-
mula in Equation (7):

vi =
Ni∑
i=1

xij
Ni

(7)

5. Distances from the updated cluster centroids
are recalculated.

6. If no data point is assigned to a new cluster, the
execution of algorithm is stopped, otherwise the
steps from 3 to 5 are repeated taking into con-
sideration probable movements of data points
between the clusters.

4 Evaulation of the Simplified
Meshes

In order to give a theoretical evaluation for the simpli-
fication method, we have based on a metric of mean
errors, max error and RMS(root mean square error)
used by Cignoni et al.[28]. Where he measured the
Hausdorff distance between the approximation and
the original model. Hausdorff distance is defined as
follow:
Let X and Y be two non-empty subsets of a metric
space (M,d). We define their Hausdorff distance

dH = max{sup
x∈X

inf
y∈Y

(d(x,y), sup
y∈Y

inf
x∈X

(d(x,y))} (8)

In our experiments we will use the symmetric
Hausdorff distance calculated with the Metro soft-
ware tool[28].
In order to calculate the approximate error, we will re-
construct the models from the point clouds. We find
in the literature several reconstruction techniques
[29] to create a 3D model from a set of points.

In the next section, we will present our simplifi-
cation approach based on the estimation of Shannon
entropy and algorithm clustering. Where we will first
use the FCM algorithm and then replace it with the
KM algorithm and compare the results obtained from
the use of the two algorithms in our simplification
method. We have previously two types of nonpara-
metric estimators, the K-NN estimator and the Parzen
estimator. Each type has advantages and disadvan-
tages. For Parzen estimator, the bandwidth choice has
strong impact on the quality of estimated density [30].
For this reason, we will use K-NN estimator to esti-
mate the density function.
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5 Proposed Approach

Now, we will propose an algorithm to simplify dense
3D point cloud. First, this algorithm is based on the
entropy estimation algorithm. It allows the estima-
tion of the entropy for each 3D point of X as well as
making the decision to eliminate or to keep the point.
In this pproach we will use the K-NN estimator to es-
timate the entropy. Moreover, it is based on clustering
algorithm (KM or FCM) to subdivide point cloud X
into clusters in order to minimize the computation
time. The procedures are:

SIMPLIFICATION ALGORITHM

• Input

– X = {x1,x2, ,xN } : The data simple (point
cloud)

– S: threshold

– c: the number of clusters

• Begin

• Decomposing the initial set of points X into c
small areas denoting Rj (j = 1,2, ..., c), and using
clustering algorithm (FCM or KMA).

• For j = 1 to c

– Calculate global entropy of a cluster j by
using all data samples in Rj = {y1, y2, , ym}
according to the equation (2), Note this en-
tropy H(Rj ).

– Calculate the entropy H(Rj − yi) of point
cloud Rj less point yi(i = 1,2, ,m)

– Calculate 4Hi =| H(Rj ) − H(Rj − yi)| with
i = 1,2, ,m

– If 4Hi ≤ S Then
Rj = Rj − yi .

– End-if

• End for End.

6 Results and Discussion

To validate the efficiency of the use of the two clus-
tering algorithms FCM and KM in our simplifica-
tion method, we use three 3D models that represent
real objects such as Max Planck (fig. 1,b) and Atene
(fig. 1,a). Fig. (2,a), (2,b) show simplification re-
sults on various point cloud using FCM algorithm.
Fig. (3,a), (3,b) show simplification results on various
point cloud using KM algorithm.

(a) (b)

Figure 1: original point cloud, a) Atene, b) Max Planck

(a) (b)

Figure 2: Simplified point cloud using FCM algorithm, a) Atene,
b) Max Planck

(a) (b)

Figure 3: Simplified point cloud using KM algorithm, a) Atene,
b) Max Planck

(a)

(b)

(c)

Figure 4: Comparison of Max Planck mesh quality, a) Origi-
nal point cloud, b) simplified point cloud using FCM, c) simplified
point cloud using KM
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(a)

(b)

(c)

Figure 5: Comparison of Atene mesh quality, a) Original point
cloud, b) simplified point cloud using FCM, c) simplified point
cloud using KM

In this section, we will validate the effectiveness of
our proposed method. Actually, we have conducted a
comparison between the original and simplified point
cloud. Accordingly, we will use a comparison between
the original and simplified mesh.

Thereafter, we make a comparison between the
original mesh and the one created from the simpli-
fied point cloud. To reconstruct the mesh, we use ball
Pivoting method [31,29] or A.M Hsaini et al. method
[32]. Then, to measure the quality of the obtained
meshes, we compute the quality of the triangles using
the compactness formula proposed by Guziec [33]:

c =
4
√

3a

l21 + l22 + l23
(9)

Where li are the lengths of the edges of the triangle.
And a is the area of the triangle. We note that this
measure is equal to 1 for an equilateral triangle and 0
for a triangle whose vertices are collinear. According
to [34], a triangle is an acceptable quality if c ≥ 0.6.

In figures 4, 5, we have presented the trian-
gles compactness histogram of the two meshes. In
each figure, the first line presents the reconstructed
mesh from the original point cloud. The second line
presents the simplified point cloud using FCM algo-
rithm. The third line presents the simplified point
cloud using KM algorithm. Note that, the evaluation
of the mesh quality is achieved by the compactness of
the triangles.

Depending on [34] meshes are compact if the per-
centage of the number of triangles, which composes
mesh with compactness c ≥ 0.6 is greater than or equal
to 50%. Also, according to the histograms in figures
4 and 5, it is observed that the surfaces obtained from
the simplified point cloud are compact surfaces.

The table 1 also shows that the use of the KM and

FCM algorithms retains the compactness of the sur-
faces. However, the compactness obtained by the FCM
algorithm is greater than that obtained by KM for the
two surfaces.

Concerning the number of vertices obtained after
simplification, we note that this number is higher in
the case of FCM for the two models.

It is interesting to note that in the case where FCM
is used better results are produced in terms of speed.
In contrast, in the other case where KM is used the
speed is slow.

Table 3 and table 4 shows the numerical results ob-
tained by the implementation of the two algorithms
FCM and KM in the simplification method. The
main results are average error, maximal error and root
mean square error (RMS).

Figure 6 and 7 present differences between origi-
nal and simplified meshes using Hausdorff distance.
Note that it is a red-green-blue map, so red is min-
imal and blue is maximal, so in our case red means
zero error and blue high error.

a) b)

Figure 6: difference between original and simplified MaxPlanck
mesh

a) b)

Figure 7: difference between original and simplified Atene mesh

Table 3 presents the results relative to the eval-
uation of the approximation error concerning Max-
Planck model. Table 4 Also presents the same error
related to Atene model.

using FCM particularly in simplification does not
reach a high level of simplification. Moreover, it
records in general the worst result in terms of error
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Table 1: simplification results with s=0.001 using KM algorithm

Object

Number of points Number
of
cluster

KM com-
putation
time (s)

Percentage of trian-
gles with a compact-
ness ≥ 0.6 (%)

Original Simplified using KM Simplified using KM Original
Atene 6942 6289 18 1118.98 57.85 59.84

max planck 49089 44765 123 7752.49 58.54 59.45

Table 2: simplification results with s=0.001 using FCM algorithm

Object

Number of points Number
of
cluster

FCM
compu-
tation
time (s)

Percentage of trian-
gles with a compact-
ness ≥ 0.6 (%)

Original Simplified using FCM Simplified using FCM Original
Atene 6942 6289 18 775.75 60.19 59.84

max planck 49089 44812 123 7356.52 58.55 59.45

Table 3: Comparison of FCM and KM algorithm used in simplification method: MaxPlanck mesh (errors are measured as percentages
of the datasets bounding box diagonal (699.092499))

Methods Number of vertex Number of faces (triangles) Average Error Max Error RMS Error
Entropy-KM 44765 89355 0.000010 0.001799 0.000054

Entropy-FCM 44567 88960 0.000010 0.002241 0.000055

Table 4: Comparison of FCM and KM algorithm used in simplification method: Atene mesh (errors are measured as percentages of the
datasets bounding box diagonal (6437.052937))

Methods Number of vertex Number of faces (triangles) Average Error Max Error RMS Error
Entropy-KM 6289 11746 0.000153 0.016014 0.000697

Entropy-FCM 6446 9543 0.000331 0.016022 0.000930

shown figures 6.a et figure 7.a. By contrast, it is in-
teresting to note that this method produces the best
results when speed is needed (look at table 2).

As expected, KM algorithm in table 1 yields good
results in terms of average error, max error and RMS
error. Moreover, she recorded in general the worst re-
sult in terms of calculation speed.

We have implemented our simplification method
under MATLAB. The calculations are performed on a
machine with an i3 CPU, 3.4 Ghz, with 2GB of RAM.

7 Conclusion

This work presents a brief overview of two cluster-
ing algorithms, K-means and C-means. The results
of an empirical comparison are presented to make a
comparison between the use of the clustering algo-
rithms. These clustering algorithms are integrated in
our method of simplifying 3D point clouds. We have
compared the computation time and the precision of
the simplified meshes.

From the point of view of accuracy, the results
show that K-means gives the best results in terms of
error. As for claculation time, the use of Fuzzy C-
means algorithm makes simplification faster.
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