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 This paper proposes a method for estimating the spectral reflectance of Neugebauer 
primaries or eight basic colors when the spectral reflectance data of several colors are 
given. The proposed method is based on Neugebauer model, which expresses an arbitrary 
color as a weighted average of Neugebauer primaries, and its sparse version called sparse 
Neugebauer model. We also reproduce the colors from the estimated reflectance spectra, 
and show experimental results of spectral reflectance estimation and color reproduction 
from the estimated spectral data. It is experimentally demonstrated that the sparse 
Neugebauer model outperforms the conventional Neugebauer model in both spectral 
reflectance estimation and color reproduction.  
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1. Introduction 

The reflectance properties of object surfaces are determined by 
the spectral reflectance factors that are normally measured at 
regular intervals in the visible spectrum of radiation by reflectance 
spectrophotometers [1]. The integrals of the products of the 
spectral reflectance, the relative spectral power distribution of an 
illuminant and color matching functions produce the tristimulus 
values. On the other hand, the inverse computation from 
tristimulus values or colorimetric data to the spectral reflectance is 
a difficult problem because the computation of tristimulus values 
from spectral reflectance involves the dimensionality reduction of 
data, i.e., the spectral reflectance estimation is an ill-posed 
problem.  

Recently, Sharma and Wang proposed a neural network-based 
spectrum recovery method, and evaluated the accuracy of the 
spectrum recovery by the spectral mean-squared error [2]. Harifi 
et al. presented a principal component analysis (PCA)-based 
method which employed six principal components [3]. Amiri and 
Amirshahi proposed a step by step progressive method for 
recovery of spectral data from the corresponding colorimetric 
information, where the spatial dimensions are decreased from 6D 
to 3D in a step-by-step manner to decrease the number of samples 
used for color gamut interpolation [4]. Wu et al. presented an 
approach that uses a new sample selection criterion based on color 

feature match to select a series of suitable samples for creating the 
adapted transformation matrix to reconstruct spectral reflectance 
[5]. Inoue et al. proposed two methods for recovering the 
reflectance spectra of colorimetric data by using the non-negative 
constraints in reflectance spectra, where the problem of reflectance 
spectra recovery is formulated as a nonnegative least squares 
problem [6] into which the Neugebauer model [7] is incorporated 
[8]. These methods can be used to estimate the spectral reflectance 
from general colorimetric data including CIE tristimulus values 
and CMYK-printed samples.  

The Neugebauer model can be used to infer the gamut 
boundaries of printed colorants on paper [7] by printers such as 
conventional CMYK printers. If three inks, such as cyan, magenta 
and yellow, are utilized, then the paper may be covered by one ink, 
two inks, three inks, or may be left blank. As a result, eight 
combinations of overlap of inks can occur, and they correspond to 
eight basic colors, such as red, green, blue, black, cyan, magenta, 
yellow and white, which are referred to as the Neugebauer 
primaries [7]. Although the Neugebauer model was originally 
developed for modeling the printed colorants on paper, it can be 
used for general colorimetric data as we will prove in Subsection 
2.1 that the equation of the Neugebauer model holds for any color 
in RGB color space.  

In this paper, we propose sparse Neugebauer model for 
estimating spectral reflectance of Neugebauer primaries or basic 
eight colors when reflectance spectra of several colors are given. 
Experimental results show that the proposed method achieves 
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lower estimation error than the previous method with the 
conventional Neugebauer model. We also reproduce the 
Neugebauer primaries and the colors of given reflectance spectra 
from the estimated reflectance spectra. The effectiveness of the 
sparse Neugebauer model in color reproduction is also 
demonstrated in comparison with the conventional Neugebauer 
model.  

The rest of this paper is organized as follows. Section 2 
summarizes the Neugebauer model, and then proposes the sparse 
Neugebauer model. Section 3 proposes a method for estimating the 
spectral reflectance based on the Neugebauer models, and a 
convergence property of the proposed estimation algorithm is 
proved. Section 4 describes the procedure for reproducing the 
colors from the estimated spectral data. Section 5 shows 
experimental results. Finally, Section 6 concludes this paper. 

2. Neugebauer Models 

In this section, we first summarize the Neugebauer model, and 
then propose sparse Neugebauer model to improve the 
performance of spectral reflectance estimation and color 
reproduction.  

2.1. Neugebauer Model 

Let 𝒗𝒗 = [𝑟𝑟,𝑔𝑔, 𝑏𝑏] be a color vector in RGB color space (bold 
italic lowercase letters denote vectors), where 𝑟𝑟,𝑔𝑔 and 𝑏𝑏 denote 
the red, green and blue components of the color, and satisfy 0 ≤
𝑟𝑟 ≤ 1, 0 ≤ 𝑔𝑔 ≤ 1  and 0 ≤ 𝑏𝑏 ≤ 1 , respectively. Then 𝒗𝒗  have 
another expression as follows:   

𝒗𝒗 = 𝑎𝑎1𝒓𝒓 + 𝑎𝑎2𝒈𝒈 + 𝑎𝑎3𝒃𝒃 + 𝑎𝑎4𝒌𝒌 + 𝑎𝑎5𝒄𝒄 + 𝑎𝑎6𝒎𝒎 + 𝑎𝑎7𝒚𝒚 + 𝑎𝑎8𝒘𝒘, (1) 

where 𝒓𝒓 = [1,0,0],𝒈𝒈 = [0,1,0],𝒃𝒃 = [0,0,1],𝒌𝒌 = [0,0,0], 𝒄𝒄 =
𝒘𝒘− 𝒓𝒓,𝒎𝒎 = 𝒘𝒘 − 𝒈𝒈,𝒚𝒚 = 𝒘𝒘− 𝒃𝒃  and 𝒘𝒘 = [1,1,1]  denote the 
Neugebauer primaries [7]: red, green, blue, black, cyan, magenta, 
yellow and white, respectively. The coefficients in (1) are given by 

 𝑎𝑎1 = 𝑟𝑟(1 − 𝑔𝑔)(1 − 𝑏𝑏),   𝑎𝑎5 = (1 − 𝑟𝑟)𝑔𝑔𝑏𝑏,  

 𝑎𝑎2 = (1 − 𝑟𝑟)𝑔𝑔(1 − 𝑏𝑏),   𝑎𝑎6 = 𝑟𝑟(1 − 𝑔𝑔)𝑏𝑏,  

 𝑎𝑎3 = (1 − 𝑟𝑟)(1 − 𝑔𝑔)𝑏𝑏,   𝑎𝑎7 = 𝑟𝑟𝑔𝑔(1 − 𝑏𝑏),  

 𝑎𝑎4 = (1 − 𝑟𝑟)(1 − 𝑔𝑔)(1 − 𝑏𝑏),   𝑎𝑎8 = 𝑟𝑟𝑔𝑔𝑏𝑏, (2) 

which are called the Demichel equations, and (1) is called the 
Neugebauer equation [7]. The coefficients in (2) are nonnegative 
and satisfy ∑ 𝑎𝑎𝑘𝑘𝐾𝐾

𝑘𝑘=1 = 1 where 𝐾𝐾 = 8. The equality in (1) with the 
coefficients in (2) can be confirmed for each element as follows: 
for example, the first element in (1) satisfies 

  𝑟𝑟(1 − 𝑔𝑔)(1 − 𝑏𝑏) + 𝑟𝑟(1 − 𝑔𝑔)𝑏𝑏 + 𝑟𝑟𝑔𝑔(1 − 𝑏𝑏) + 𝑟𝑟𝑔𝑔𝑏𝑏  

 = 𝑟𝑟[(1 − 𝑔𝑔)(1 − 𝑏𝑏) + (1 − 𝑔𝑔)𝑏𝑏 + 𝑔𝑔(1 − 𝑏𝑏) + 𝑔𝑔𝑏𝑏]  

 = 𝑟𝑟[(1 − 𝑔𝑔){(1 − 𝑏𝑏) + 𝑏𝑏} + 𝑔𝑔{(1 − 𝑏𝑏) + 𝑏𝑏}]  

 = 𝑟𝑟[(1 − 𝑔𝑔) + 𝑔𝑔][(1 − 𝑏𝑏) + 𝑏𝑏] = 𝑟𝑟.  

The similar equations hold for the second and third elements in (1).  

 We simply call (1) with (2) the Neugebauer model, which is 
valid for both tristimulus values and spectral reflectance, and use 
it for spectral reflectance estimation.  

2.2. Sparse Neugebauer Model 

 Let 𝑆𝑆 = {𝒓𝒓,𝒈𝒈,𝒃𝒃,𝒌𝒌, 𝒄𝒄,𝒎𝒎,𝒚𝒚,𝒘𝒘}  be a set of the Neugebauer 
primaries. Then the Neugebauer equation in (1) states that an 
arbitrary color vector 𝒗𝒗 can be expressed as a weighted average of 
the eight color vectors in 𝑆𝑆. We can also express a color vector in 
RGB color space as a linear combination of four colors which are 
in general position in RGB color space because four points being 
in general position in a three-dimensional color span a three-
dimensional linear space, and form a tetrahedron. If a color is just 
on a plane spanned by three vertices of RGB color cube or a line 
connecting two vertices of RGB color cube, then the color is 
expressed as the linear combinations of three or two vertices, 
respectively. We describe the most general four-color case as 
follows (in the other degenerated cases, the description can be 
simplified): Let �̃�𝑆 = {𝒔𝒔1, 𝒔𝒔2, 𝒔𝒔3, 𝒔𝒔4} be a subset of 𝑆𝑆 the elements 
of which are in general position. Then, for a color vector 𝒗𝒗, we 
have 

 𝒗𝒗 − 𝒔𝒔1 = 𝛼𝛼2(𝒔𝒔2 − 𝒔𝒔1) + 𝛼𝛼3(𝒔𝒔3 − 𝒔𝒔1) + 𝛼𝛼4(𝒔𝒔4 − 𝒔𝒔1)  

 = [𝛼𝛼2,𝛼𝛼3,𝛼𝛼4] �
𝒔𝒔2 − 𝒔𝒔1
𝒔𝒔3 − 𝒔𝒔1
𝒔𝒔4 − 𝒔𝒔1

�,  

from which the coefficients 𝛼𝛼2,𝛼𝛼3,𝛼𝛼4 are given by 

 [𝛼𝛼2,𝛼𝛼3,𝛼𝛼4] = (𝒗𝒗 − 𝒔𝒔1) �
𝒔𝒔2 − 𝒔𝒔1
𝒔𝒔3 − 𝒔𝒔1
𝒔𝒔4 − 𝒔𝒔1

�
−1

,  

where 𝒔𝒔1 is selected as a basic point. As a result, we have  

 𝒗𝒗 = 𝛼𝛼1𝒔𝒔1 + 𝛼𝛼2𝒔𝒔2 + 𝛼𝛼3𝒔𝒔3 + 𝛼𝛼4𝒔𝒔4, (3) 

where 𝛼𝛼1 = 1 − 𝛼𝛼2 − 𝛼𝛼3 − 𝛼𝛼4 , and the four coefficients are 
nonnegative if 𝒗𝒗 is in the tetrahedron with the four vertices in �̃�𝑆. 
We call (3) the sparse Neugebauer model since four coefficients 
among eight ones in (1) are zero in (3).  

We adapt the minimal brightness variation criterion (MBVQ) 
proposed by Shaked et al. [9] for selecting four Neugebauer 
primaries 𝒔𝒔1, 𝒔𝒔2, 𝒔𝒔3, 𝒔𝒔4, which are called the minimal brightness 
variation quadruple (MBVQ) [9], and given by 
{𝒓𝒓,𝒈𝒈,𝒃𝒃,𝒌𝒌}, {𝒘𝒘, 𝒄𝒄,𝒎𝒎,𝒚𝒚}, {𝒎𝒎,𝒚𝒚,𝒈𝒈, 𝒄𝒄}, {𝒓𝒓,𝒈𝒈,𝒎𝒎,𝒚𝒚}, {𝒓𝒓,𝒈𝒈,𝒃𝒃,𝒎𝒎}  or 
{𝒄𝒄,𝒎𝒎,𝒈𝒈,𝒃𝒃}.  

3. Spectral Reflectance Estimation 

Assume that the reflectance spectra of 𝑚𝑚  colors 𝒗𝒗𝑖𝑖 =
[𝑟𝑟𝑖𝑖 ,𝑔𝑔𝑖𝑖 , 𝑏𝑏𝑖𝑖]  for 𝑖𝑖 = 1, … ,𝑚𝑚  are given and stored in 𝑄𝑄 = [𝑞𝑞𝑖𝑖𝑖𝑖] , 
where 𝑞𝑞𝑖𝑖𝑖𝑖  denotes the reflectance of the 𝑗𝑗th wavelength 𝜆𝜆𝑖𝑖 for 𝑗𝑗 =
1, … ,𝑛𝑛 in the 𝑖𝑖th color 𝒗𝒗𝑖𝑖. Then, by the above nonsparse or sparse 
Neugebauer model, we have 

 𝑄𝑄 ≈ 𝐴𝐴𝐴𝐴,  

where 𝐴𝐴 = [𝑎𝑎𝑖𝑖𝑘𝑘]  denotes an 𝑚𝑚 × 𝐾𝐾  coefficient matrix whose 
elements are given by 

http://www.astesj.com/
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 𝑎𝑎𝑖𝑖,1 = 𝑟𝑟𝑖𝑖(1 − 𝑔𝑔𝑖𝑖)(1 − 𝑏𝑏𝑖𝑖),   𝑎𝑎𝑖𝑖,5 = (1 − 𝑟𝑟𝑖𝑖)𝑔𝑔𝑖𝑖𝑏𝑏𝑖𝑖 ,  

 𝑎𝑎𝑖𝑖,2 = (1 − 𝑟𝑟𝑖𝑖)𝑔𝑔𝑖𝑖(1 − 𝑏𝑏𝑖𝑖),   𝑎𝑎𝑖𝑖,6 = 𝑟𝑟𝑖𝑖(1 − 𝑔𝑔𝑖𝑖)𝑏𝑏𝑖𝑖 ,  

 𝑎𝑎𝑖𝑖,3 = (1 − 𝑟𝑟𝑖𝑖)(1 − 𝑔𝑔𝑖𝑖)𝑏𝑏𝑖𝑖 ,   𝑎𝑎𝑖𝑖,7 = 𝑟𝑟𝑖𝑖𝑔𝑔𝑖𝑖(1 − 𝑏𝑏𝑖𝑖),  

 𝑎𝑎𝑖𝑖,4 = (1 − 𝑟𝑟𝑖𝑖)(1 − 𝑔𝑔𝑖𝑖)(1 − 𝑏𝑏𝑖𝑖),   𝑎𝑎𝑖𝑖,8 = 𝑟𝑟𝑖𝑖𝑔𝑔𝑖𝑖𝑏𝑏𝑖𝑖 , (4) 

when the Neugebauer model is used, and these are the Demichel 
equations [7] for the 𝑖𝑖th color 𝒗𝒗𝑖𝑖, and the number of columns in 𝐴𝐴 
is the number of the Neugebauer primaries, i.e., 𝐾𝐾 = 8. For the 
sparse Neugebauer model, four coefficients out of the eight ones 
in (4) become zero. 𝐴𝐴 = [𝑝𝑝𝑘𝑘𝑖𝑖]  denotes a 𝐾𝐾 × 𝑛𝑛  matrix whose 
(𝑘𝑘, 𝑗𝑗)  element 𝑝𝑝𝑘𝑘𝑖𝑖  is the reflectance of the 𝑘𝑘 th Neugebauer 
primary at the 𝑗𝑗th wavelength 𝜆𝜆𝑖𝑖. Then we formulate the problem 
for estimating the spectral reflectance of the Neugebauer primaries 
as follows:  

 min
𝑃𝑃
‖𝑄𝑄 − 𝐴𝐴𝐴𝐴‖𝐹𝐹2 , (5) 

 subj. to   𝑝𝑝𝑘𝑘𝑖𝑖 ≥ 0, (6) 

where ‖∙‖𝐹𝐹 denotes the Frobenius norm, and the constraint (6) is 
for 𝑘𝑘 = 1, … ,𝐾𝐾  and 𝑗𝑗 = 1, … ,𝑛𝑛 . Let 𝐸𝐸(𝐴𝐴)  be the objective 
function in (5), then we have 

 𝐸𝐸(𝐴𝐴) = ∑ ∑ �𝑞𝑞𝑖𝑖𝑖𝑖 − ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾
𝑘𝑘=1 �2𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1   

 = ∑ ∑ �𝑞𝑞𝑖𝑖𝑖𝑖2 − 2𝑞𝑞𝑖𝑖𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾
𝑘𝑘=1 + �∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾

𝑘𝑘=1 �2�𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1 .  

Since ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖2𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1  is a constant independent of 𝑝𝑝𝑘𝑘𝑖𝑖 , the 

minimization of 𝐸𝐸(𝐴𝐴) is equivalent to the maximization of 

 𝐹𝐹(𝐴𝐴) = ∑ ∑ �𝑞𝑞𝑖𝑖𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾
𝑘𝑘=1 − 1

2
�∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾

𝑘𝑘=1 �2�𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1 . (7) 

Applying Jensen’s inequality [10] to the second term of the right 
side in (7), we have 

  �∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾
𝑘𝑘=1 �2 = �∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘
𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖

𝐾𝐾
𝑘𝑘=1 �

2
   

 ≤ ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 �
𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘
𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖

�
2

=𝐾𝐾
𝑘𝑘=1 ∑ �𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘�

2

𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖
𝐾𝐾
𝑘𝑘=1 , (8) 

where 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘  are positive constants satisfying ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 1 . 

Substituting the rightmost term in (8) into (7), we have a lower 
bound of 𝐹𝐹(𝐴𝐴) as 

 𝐹𝐹𝐿𝐿𝐿𝐿(𝐴𝐴,𝑈𝑈) = ∑ ∑ �𝑞𝑞𝑖𝑖𝑖𝑖 ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾
𝑘𝑘=1 − 1

2
∑ �𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘�

2

𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖
𝐾𝐾
𝑘𝑘=1 �𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1 ,(9) 

where 𝑈𝑈 = [𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘] denotes a three-dimensional array having 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 
as its (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) element.  

 Replacing 𝐹𝐹  with 𝐹𝐹𝐿𝐿𝐿𝐿 , we formulate the problem of spectral 
reflectance estimation as follows: 

 max
𝑃𝑃,𝑈𝑈

𝐹𝐹𝐿𝐿𝐿𝐿(𝐴𝐴,𝑈𝑈) (10) 

 subj. to   ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 1,   𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 > 0,   𝑝𝑝𝑘𝑘𝑖𝑖 ≥ 0. (11) 

Let 𝐿𝐿 = 𝐹𝐹𝐿𝐿𝐿𝐿 − ∑ ∑ 𝜇𝜇𝑖𝑖𝑖𝑖(∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘𝐾𝐾
𝑘𝑘=1 − 1)𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1  be the Lagrange 

function for the constrained maximization problem (10) with (11), 
where 𝜇𝜇𝑖𝑖𝑖𝑖  for 𝑖𝑖 = 1, … ,𝑚𝑚  and 𝑗𝑗 = 1, … ,𝑛𝑛  are the Lagrange 
multipliers. Then we have the following condition for optimality: 

 𝜕𝜕𝐿𝐿
𝜕𝜕𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖

= 1
2

�𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘�
2

𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖
2 − 𝜇𝜇𝑖𝑖𝑖𝑖 = 0,  

from which we have 

 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 =
𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘
�2𝜇𝜇𝑖𝑖𝑘𝑘

, (12) 

which is substituted into 

 𝜕𝜕𝐿𝐿
𝜕𝜕𝜇𝜇𝑖𝑖𝑘𝑘

= ∑ 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘𝐾𝐾
𝑘𝑘=1 − 1 = 0  

to obtain 

 �2𝜇𝜇𝑖𝑖𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾
𝑘𝑘=1 . (13) 

Substitution of (13) into (12) gives  

 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 =
𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘𝐾𝐾
𝑖𝑖=1

. (14) 

 Next, we solve the following optimality condition for 𝑝𝑝𝑘𝑘𝑖𝑖: 

 𝜕𝜕𝐿𝐿
𝜕𝜕𝑝𝑝𝑖𝑖𝑘𝑘

= 𝜕𝜕𝐹𝐹𝐿𝐿𝐿𝐿
𝜕𝜕𝑝𝑝𝑖𝑖𝑘𝑘

= ∑ �𝑎𝑎𝑖𝑖𝑘𝑘𝑞𝑞𝑖𝑖𝑖𝑖 −
𝑎𝑎𝑖𝑖𝑖𝑖
2 𝑝𝑝𝑖𝑖𝑘𝑘
𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖

�𝑚𝑚
𝑖𝑖=1 = 0,  

and have 

 𝑝𝑝𝑘𝑘𝑖𝑖 =
∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑘𝑘
𝑚𝑚
𝑖𝑖=1

∑
𝑎𝑎𝑖𝑖𝑖𝑖
2

𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖
𝑚𝑚
𝑖𝑖=1

,  

into which we substitute (14) to have 

 𝑝𝑝𝑘𝑘𝑖𝑖 =
∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑘𝑘
𝑚𝑚
𝑖𝑖=1

∑ 𝑎𝑎𝑖𝑖𝑖𝑖
2 ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘

𝐾𝐾
𝑖𝑖=1
𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘

𝑚𝑚
𝑖𝑖=1

= 𝑝𝑝𝑘𝑘𝑖𝑖
∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑘𝑘
𝑚𝑚
𝑖𝑖=1

∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘𝐾𝐾
𝑖𝑖=1

𝑚𝑚
𝑖𝑖=1

,  

from which we have an iterative formula for 𝑝𝑝𝑘𝑘𝑖𝑖  as follows: 

 𝑝𝑝𝑘𝑘𝑖𝑖
(𝑡𝑡+1) = 𝑝𝑝𝑘𝑘𝑖𝑖

(𝑡𝑡) ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑘𝑘
𝑚𝑚
𝑖𝑖=1

∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖
(𝑡𝑡)𝐾𝐾

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1

, (15) 

where 𝑡𝑡 denotes the number of iterations for 𝑡𝑡 = 0,1, … ,𝑇𝑇 with the 
maximum iteration number 𝑇𝑇 . The above formula (15) can be 
written in a matrix form as 

 𝐴𝐴(𝑡𝑡+1) = 𝐴𝐴(𝑡𝑡) ⊙ (𝐴𝐴𝑇𝑇𝑄𝑄) ⊘ �𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡)�, (16) 
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where ⊙  and ⊘  denote the element-wise multiplication and 
division, respectively, because 𝑝𝑝𝑘𝑘𝑖𝑖

(𝑡𝑡),  ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑞𝑞𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1  and 

∑ ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘
(𝑡𝑡)𝐾𝐾

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1  in (15) are the (𝑘𝑘, 𝑗𝑗)  elements of matrices 

𝐴𝐴(𝑡𝑡),𝐴𝐴𝑇𝑇𝑄𝑄 and 𝐴𝐴𝑇𝑇𝐴𝐴𝐴𝐴(𝑡𝑡) in (16), respectively.  

Proposition 1 The sequence �𝐸𝐸�𝐴𝐴(𝑡𝑡)��
𝑡𝑡=0,1,…

 converges. 

Proof. Let  

 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘
(𝑡𝑡+1) =

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘
(𝑡𝑡)

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑘𝑘
(𝑡𝑡)𝐾𝐾

𝑖𝑖=1
 (17) 

be an instance of 𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘  substituted 𝑝𝑝𝑘𝑘𝑖𝑖
(𝑡𝑡) for 𝑝𝑝𝑘𝑘𝑖𝑖  in (14). Then (15) 

can be written as 

 𝑝𝑝𝑘𝑘𝑖𝑖
(𝑡𝑡+1) =

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑘𝑘
𝑚𝑚
𝑖𝑖=1

∑
𝑎𝑎𝑖𝑖𝑖𝑖
2

𝑢𝑢𝑖𝑖𝑘𝑘𝑖𝑖
(𝑡𝑡+1)

𝑚𝑚
𝑖𝑖=1

. (18) 

Since (17) is the solution to ∂𝐿𝐿/𝜕𝜕𝑢𝑢𝑖𝑖𝑖𝑖𝑘𝑘 = 0 and ∂𝐿𝐿/𝜕𝜕𝜇𝜇𝑖𝑖𝑖𝑖 = 0 with 
𝐴𝐴 = 𝐴𝐴(𝑡𝑡) , we find that 𝐹𝐹𝐿𝐿𝐿𝐿(𝐴𝐴(𝑡𝑡),𝑈𝑈(𝑡𝑡+1)) ≥ 𝐹𝐹𝐿𝐿𝐿𝐿(𝐴𝐴(𝑡𝑡),𝑈𝑈(𝑡𝑡)) . 
Similarly, since (18) is the solution to ∂𝐿𝐿/𝜕𝜕𝑝𝑝𝑘𝑘𝑖𝑖 = 0  with 𝑈𝑈 =
𝑈𝑈(𝑡𝑡+1), we find that 𝐹𝐹𝐿𝐿𝐿𝐿(𝐴𝐴(𝑡𝑡+1),𝑈𝑈(𝑡𝑡+1)) ≥ 𝐹𝐹𝐿𝐿𝐿𝐿(𝐴𝐴(𝑡𝑡),𝑈𝑈(𝑡𝑡+1)), i.e., 

 𝐹𝐹𝐿𝐿𝐿𝐿�𝐴𝐴(𝑡𝑡+1),𝑈𝑈(𝑡𝑡+1)� ≥ 𝐹𝐹𝐿𝐿𝐿𝐿�𝐴𝐴(𝑡𝑡),𝑈𝑈(𝑡𝑡)�. (19) 

 Next, substituting (14) into (9), we have 

  

𝐹𝐹𝐿𝐿𝐿𝐿(𝐴𝐴,𝑈𝑈) = ���𝑞𝑞𝑖𝑖𝑖𝑖 �𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖

𝐾𝐾

𝑘𝑘=1

−
1
2
�

�𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖�
2

𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖

𝐾𝐾

𝑘𝑘=1

�𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖

𝐾𝐾

𝑖𝑖=1

�
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 

 

= ���𝑞𝑞𝑖𝑖𝑖𝑖�𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖

𝐾𝐾

𝑘𝑘=1

−
1
2
��𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖

𝐾𝐾

𝑘𝑘=1

�

2

�
𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

= 𝐹𝐹(𝐴𝐴), 

from which and (19) we have 

 𝐹𝐹�𝐴𝐴(𝑡𝑡+1)� ≥ 𝐹𝐹�𝐴𝐴(𝑡𝑡)�. (20) 

Considering the relationship between 𝐸𝐸(𝐴𝐴)  and 𝐹𝐹(𝐴𝐴)  given by 
𝐸𝐸(𝐴𝐴) = ∑ ∑ 𝑞𝑞𝑖𝑖𝑖𝑖2𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1 − 2𝐹𝐹(𝐴𝐴), we have the following inequality 

from (20): 

 𝐸𝐸�𝐴𝐴(𝑡𝑡+1)� ≤ 𝐸𝐸�𝐴𝐴(𝑡𝑡)�,  

that is, the sequence �𝐸𝐸�𝐴𝐴(𝑡𝑡)��
𝑡𝑡=0,1,…

 is monotonically 

nonincreasing, and is also bounded below by 0, i.e., 𝐸𝐸(𝐴𝐴) ≥ 0 by 
definition. Consequently, the sequence �𝐸𝐸�𝐴𝐴(𝑡𝑡)��

𝑡𝑡=0,1,…
 converges 

to a number greater than or equal to 0.     ∎ 

4. Color Reproduction 

 Let �̅�𝑥(𝜆𝜆),  𝑦𝑦�(𝜆𝜆) and 𝑧𝑧̅(𝜆𝜆) be the color matching functions for 
the 1931 2°  CIE standard colorimetric observer [], where 𝜆𝜆 
denotes a wavelength, and let �̅�𝑠(𝜆𝜆) be the relative spectral power 
distribution of an illuminant. Then the CIE XYZ tristimulus values 
of a spectral reflectance �̅�𝑝(𝜆𝜆) are given by 

 𝑋𝑋� = 𝑘𝑘� ∫ �̅�𝑠(𝜆𝜆)�̅�𝑝(𝜆𝜆)�̅�𝑥(𝜆𝜆)𝑑𝑑𝜆𝜆, (21) 

 𝑌𝑌� = 𝑘𝑘� ∫ �̅�𝑠(𝜆𝜆)�̅�𝑝(𝜆𝜆)𝑦𝑦�(𝜆𝜆)𝑑𝑑𝜆𝜆, (22) 

 �̅�𝑍 = 𝑘𝑘� ∫ �̅�𝑠(𝜆𝜆)�̅�𝑝(𝜆𝜆)𝑧𝑧̅(𝜆𝜆)𝑑𝑑𝜆𝜆, (23) 

where 𝑘𝑘� is a normalizing factor given by 𝑘𝑘� = ∫ �̅�𝑠(𝜆𝜆)𝑦𝑦�(𝜆𝜆)𝑑𝑑𝜆𝜆. We 
use the trapezoidal rule for computing the above integrals. The 
transformation from the CIE XYZ tristimulus values into the 
standard RGB (sRGB) is as follows. First, we compute the linear 
transformation  

 �
𝑅𝑅
𝐺𝐺
𝐵𝐵
� = �

3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

� �
𝑋𝑋�
𝑌𝑌�
�̅�𝑍
�,  

where note that similar but slightly different transformation 
matrices are also proposed and used in practice.  

 Next, a nonlinear luminance encoding, which is also known as 
gamma encoding, is calculated to obtain sRGB values as follows: 

 𝑅𝑅sRGB = �1.055𝑅𝑅
1
2.4 − 0.055, if   𝑅𝑅 > 0.0031308,

12.92𝑅𝑅, if   𝑅𝑅 ≤ 0.0031308;
  

 𝐺𝐺sRGB = �1.055𝐺𝐺
1
2.4 − 0.055, if   𝐺𝐺 > 0.0031308,

12.92𝐺𝐺, if   𝐺𝐺 ≤ 0.0031308;
  

 𝐵𝐵sRGB = �1.055𝐵𝐵
1
2.4 − 0.055, if   𝐵𝐵 > 0.0031308,

12.92𝐵𝐵, if   𝐵𝐵 ≤ 0.0031308.
  

Consequently, we obtain the sRGB values (𝑅𝑅sRGB,𝐺𝐺sRGB,𝐵𝐵sRGB) 
transformed from the CIE XYZ tristimulus values (𝑋𝑋�,𝑌𝑌� , �̅�𝑍). 

5. Experimental Results 

 In this section, we show experimental results of spectral 
reflectance estimation and color reproduction. Figure 1 shows the 
Macbeth ColorChecker (MCC), of which the manufacturer’s 
sRGB D65 color values are also given on the Internet 
(ColorChecker, Wikipedia. URL: https://en.wikipedia.org/wiki/ 
ColorChecker). Although the 24 squares of painted samples in 
MCC are not materials but colorants, the proposed method can 
handle both of them equally because the Neugebauer model is 
valid for general colorimetric data as shown in Subsection 2.1.  
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Figure 1 Macbeth ColorChecker. 

The spectral reflectance data of the 24 colors in MCC are shown 
in Figure 2, where the line colors correspond to the MCC colors. 
These data are provided by the Munsell Color Science Laboratory 
(URL: http://www.cis.rit.edu/research/mcsl2/online/cie.php). 

 
Figure 2 Reflectance spectra of Macbeth ColorChecker colors. 

 In the following experiments, we store the above data in a 
matrix 𝑄𝑄 ∈ ℝ𝑚𝑚×𝑛𝑛 where 𝑚𝑚 denotes the number of colors in MCC, 
i.e., 𝑚𝑚 = 24, and 𝑛𝑛 denotes the number of spectral data in which 
the wavelengths between 380 nm (nanometer) and 780 nm are 
sampled at 5 nm intervals, i.e., 𝑛𝑛 = 81.  

 Figure 3 shows the change in the value of the objective function 
𝐸𝐸(𝐴𝐴)  of the proposed method with the Neugebauer model 
described in Section 2.1, where the vertical and horizontal axes 
denote the objective function value and the number of iterations 𝑡𝑡 
with the maximum iteration number 𝑇𝑇 = 50, respectively. The 
objective function value monotonically decreases with the increase 
in the number of iterations, that supports the claim in Proposition 
1 experimentally.  

 
Figure 3 Change in objective function value. 

 Figure 4 shows the estimated spectral reflectance of the 
Neugebauer primaries by the sequential coordinate-wise algorithm 
(SCA) [6,8], where the vertical and horizontal axes denote the 
reflectance and wavelength, respectively, and the colors of solid 
lines correspond to the primary colors, and the broken line denotes 
white color. On the other hand, Figure 5 shows the estimated 
spectral reflectance by the proposed method with the Neugebauer 
model, and is similar to Figure 4, although the algorithms are 
different from each other. We measured CPU time for estimating 
the spectral reflectance on an Intel Core-i3-equipped PC using 
Portable Python 2.7.6.1. Then SCA and the proposed method 
required 1.12 and 0.028 seconds, respectively, from which we 
conclude that the proposed method is computationally more 
efficient than SCA.  

 
Figure 4 Estimated spectral reflectance by SCA [6,8]. 

 
Figure 5 Estimated spectral reflectance by the proposed method with Neugebauer 

model.  

 Next, we compare sparse Neugebauer model with nonsparse or 
conventional Neugebauer model in the proposed method. Figure 6 
shows the coefficients in two Neugebauer models for the upper left 
color in MCC in Figure 1, where the vertical and horizontal axes 
denote the value of each coefficient and the Neugebauer primaries, 
respectively. the blue and red bars denote conventional (nonsparse) 
and sparse Neugebauer models, respectively. In the conventional 
model (blue bars), all Neugebauer primaries have positive values. 
On the other hand, in sparse one (red bars), only four colors (R, G, 
B and M) have positive values, and the other coefficients are 
strictly zero.  
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Figure 6 Coefficients in Neugebauer models.  

 Figure 7 shows the estimated spectral reflectance of the 
Neugebauer primaries by the proposed method with the sparse 
Neugebauer model. Each curve in Figure 7 has greater variance 
than that in Figure 5 or 4.  

 
Figure 7 Estimated spectral reflectance by the proposed method with sparse 

Neugebauer model.  

 From Figure 8 to Figure 11, we show the reflectance spectra of 
the colors in MCC from the first to fourth rows, respectively (here 
we divide the 24 MCC colors into 4 figures each of which includes 
the spectral reflectance curves of 6 colors for visibility), where 
solid lines show the original reflectance spectra, and broken lines 
show their estimated ones by the proposed method with the 
Neugebauer model.  

 
Figure 8 The original reflectance spectra of the colors in the first row of MCC 
(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines).  

 
Figure 9 The original reflectance spectra of the colors in the second row of MCC 
(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines). 

 
Figure 10 The original reflectance spectra of the colors in the third row of MCC 
(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines). 

 
Figure 11 The original reflectance spectra of the colors in the fourth row of MCC 
(solid lines) and their estimated ones by the proposed method with Neugebauer 

model (broken lines). 

 On the other hand, from Figure 12 to Figure 15, we show the 
estimated reflectance spectra by the proposed method with sparse 
Neugebauer model, as well as Figures 8-11 with the Neugebauer 
model.  
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Figure 12 The original reflectance spectra of the colors in the first row of MCC 

(solid lines) and their estimated ones by the proposed method with sparse 
Neugebauer model (broken lines). 

 
Figure 13 The original reflectance spectra of the colors in the second row of MCC 

(solid lines) and their estimated ones by the proposed method with sparse 
Neugebauer model (broken lines). 

 
Figure 14 The original reflectance spectra of the colors in the third row of MCC 

(solid lines) and their estimated ones by the proposed method with sparse 
Neugebauer model (broken lines). 

 
Figure 15 The original reflectance spectra of the colors in the fourth row of MCC 

(solid lines) and their estimated ones by the proposed method with sparse 
Neugebauer model (broken lines). 

 We evaluate the mean squared error between the original and 
estimated reflectance spectra given by 

 MSE𝑖𝑖 = 1
𝑛𝑛
∑ �𝑞𝑞𝑖𝑖𝑖𝑖 − ∑ 𝑎𝑎𝑖𝑖𝑘𝑘𝑝𝑝𝑘𝑘𝑖𝑖𝐾𝐾

𝑘𝑘=1 �2𝑛𝑛
𝑖𝑖=1   

for the 𝑖𝑖th color in MCC. Figure 16 shows the result where the 
vertical and horizontal axes denote the mean squared error and the 
identification number of MCC colors, respectively, and the blue 
and red bars denote the conventional nonsparse and the sparse 
Neugebauer models, respectively. In 18 colors among all 24 colors, 
the sparse Neugebauer model achieved smaller MSE𝑖𝑖  than the 
conventional one. The average of MSE𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑚𝑚 given by 

 MSE = 1
𝑚𝑚
∑ MSE𝑖𝑖𝑚𝑚
𝑖𝑖=1   

are 7.66 × 10−3  for the conventional Neugebauer model and 
6.83 × 10−3 for the sparse one.  

 
Figure 16 Mean squared error of estimated reflectance spectra. 

 Next, we also evaluate the same measure using the leave-one-
out cross-validation [11], where the spectral reflectance of the 𝑖𝑖th 
color in MCC is removed from 𝑄𝑄  to evaluate MSE𝑖𝑖 . Figure 17 
shows the result, where the sparse Neugebauer model (red bars) 
achieved smaller MSE𝑖𝑖 in 15 colors among all 24 colors than the 
conventional Neugebauer model (blue bars). The values of MSE 
are 1.37 × 10−2  for the conventional Neugebauer model and 
1.15 × 10−2 for the sparse one.  

 
Figure 17 Mean squared error of estimated reflectance spectra evaluated by the 

leave-one-out cross-validation. 
 Finally, we show the results of color reproduction from the 
estimated reflectance spectra. Figure 18 shows the original 
Neugebauer primaries: red, green, blue, black, cyan, magenta, 
yellow and white.  

http://www.astesj.com/


K. Inoue et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 958-966 (2017) 

www.astesj.com     965 

 
Figure 18 Neugebauer primaries. 

Figure 19 shows the reproduced Neugebauer primaries with the 
conventional Neugebauer model, in which blue is wrongly 
transformed into magenta.  

 
Figure 19 Reproduced Neugebauer primaries from the estimated reflectance 

spectra with Neugebauer model. 

On the other hand, the reproduced Neugebauer primaries with the 
sparse Neugebauer model is shown in Figure 20, where blue is 
correctly reproduced as well as the other colors.  

 
Figure 20 Reproduced Neugebauer primaries from the estimated reflectance 

spectra with sparse Neugebauer model. 
 Figures 21 and 22 show the reproduced MCC colors with the 
conventional and sparse Neugebauer models, respectively. The 
reproduced colors are similar to the original ones in Figure 1. 
Additionally, note that the proposed method can be applied to not 
only the CMYK-printed colors like MCC but also more general 
tristimulus values including material colors.  

 
Figure 21 Reproduced MCC colors with Neugebauer model. 

 
Figure 22 Reproduced MCC colors with sparse Neugebauer model. 

 We evaluate the mean absolute error between the original and 
reproduced MCC colors given by 

 MAE𝑖𝑖 = |𝑟𝑟𝑖𝑖−�̃�𝑟𝑖𝑖|+|𝑔𝑔𝑖𝑖−𝑔𝑔�𝑖𝑖|+�𝑏𝑏𝑖𝑖−𝑏𝑏�𝑖𝑖�
3

  

for the 𝑖𝑖th color in MCC, where �̃�𝑟𝑖𝑖 ,𝑔𝑔�𝑖𝑖 and 𝑏𝑏�𝑖𝑖denote the reproduced 
sRGB values from the estimated reflectance spectra. Figure 23 
shows the result, where the sparse Neugebauer model (red bars) 
achieved smaller MAE𝑖𝑖 in 20 colors among all 24 colors than the 

conventional Neugebauer model. The average of MAE𝑖𝑖  for 𝑖𝑖 =
1, … ,𝑚𝑚 given by 

 MAE = 1
𝑚𝑚
∑ MAE𝑖𝑖𝑚𝑚
𝑖𝑖=1   

are 17.65 for the conventional Neugebauer model and 13.81 for the 
sparse one.  

 
Figure 23 Mean absolute error of reproduced MCC colors. 

 Consequently, the sparse Neugebauer model improved the 
performance of both spectral reflectance estimation and color 
reproduction from the estimated spectral reflectance compared 
with the conventional Neugebauer model.  

6. Conclusion 

 In this paper, we proposed a method for estimating spectral 
reflectance based on the Neugebauer model and its sparse version. 
The sparse Neugebauer model improved the estimation 
performance compared with the conventional Neugebauer model. 
We also proved the convergence property of the proposed 
algorithm for spectral reflectance estimation. Additionally, we 
reproduced the colors from the estimated spectral reflectance, in 
which the sparse Neugebauer model also improved the 
performance compared with the conventional one.  

 For future work we would like to improve the performance of 
both spectral reflectance estimation and color reproduction by 
robustifying the proposed method, and compare the proposed 
method with other related methods including learning-based 
methods. We are also planning an application of the proposed 
method to the design of spectral reflectance for controlled color 
reproduction under various illuminations.  
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