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 In many countries, irrigation water is one of the major contributors to water scarcity. In 
the present study, a novel optimized irrigation system which minimizes water consumption 
in irrigation is presented. The system is based on a predictive control algorithm, which 
foresees the water need of the crop, and regulates the time and amount of irrigation to 
maintain the soil moisture around an optimal level, while taking into account system 
constraints. The predictive feature of the algorithm requires a model of the soil moisture, 
which is obtained from the actual meteorological data of the Kingdom of Bahrain. The 
optimization problem is formulated as an Economic Model Predictive Control (EMPC) 
problem and implemented using MATLAB. The simulation experiments show that the novel 
system yields a reduction of water consumption around 8% and 16% compared with the 
PID and On-off controllers, respectively, while maintaining an optimal soil moisture level. 

Keywords:  
Soil Moisture 
System Modelling 
Optimization  
 

 

 

1. Introduction  

Reducing water consumption is a fundamental constituent of 
water management, particularly in water-scarce areas. In many 
countries, irrigation water is one of the major contributors to water 
scarcity, and reducing irrigation water while increasing water 
efficiency is a way to overcome this issue. This work, which is an 
extension of the paper originally presented in 2019 8th 
International Conference on Modeling Simulation and Applied 
Optimization (ICMSAO) [1], looks at different practices used to 
reduce the use of irrigation water and proposes the use of an 
advanced optimization technique as possible solution to the 
problem. 

Different mulching practices, irrigation techniques and 
irrigation strategies can reduce water consumption in irrigation. 
Mulching refers to the practice of covering the soil with protective 
material to reduce evapotranspiration. Irrigation techniques 
(dripping, furrow, sprinkler etc.) refer to the way irrigation water 
is applied, which also affects evapotranspiration. Irrigation 
strategies refer to the timing and the amount to irrigation water 
provided to the crop. Irrigation scheduling, which refers to when 
and how much to irrigate, is a fundamental concept associated with 
irrigation strategies [2], [3]. Although mulching practices, 
irrigation techniques and irrigation strategies are all important 
tools, in [2] it is found that for optimal results, the irrigation 
strategy should be improved first, followed by mulching practices 

and the irrigation technique. Therefore, in the present study we will 
focus on irrigation strategies and, in particular, on water-efficient 
irrigation technology.  

Technological developments include automated irrigation 
systems, that irrigate at set times and for a certain amount of time. 
Although these automated techniques present advantages in terms 
of increased water efficiency and reduced farmers’intervention, 
the performances of these open loop control systems in terms of 
water consumption are not yet optimal. The main reason of their 
unsatisfactory performance is that they can cause under- or over-
watering, since weather and crop conditions are not taken into 
account. This of course can lead to spoiled crop and water wastage. 

Greater expectation is placed on technologies which include 
sensors and closed-loop watering systems [4]-[6]. The simplest 
approach uses sensors in an on/off control scheme, where 
irrigation is turned on or off depending on the reading of a moisture 
sensor above or below set values. 

More complex control strategies, which often are model-based, 
have been described in different papers [7]-[10]. In general, model-
based control strategies require models of the soil moisture 
dynamics including variables such as climatological data, crop 
water needs, water saturation etc. [7], [8]. Among such advanced 
control strategies is Model Predictive Control (MPC), as proposed 
in the research described in [9] and [10]. The models presented in 
[9] and [10] are based on the water balance equation, which 
requires measuring or estimating the initial soil moisture, rainfall, 
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water capacity of the soil and evapotranspiration (ET). From these 
measurements, the water balance equation gives an estimation of 
the soil moisture. In these papers, the MPC algorithm is formulated 
as an optimization problem, which reduces set point tracking 
errors. 

Similarly to the work presented in [9] and [10], our work 
describes the development of a soil moisture dynamic model and 
its application in a predictive control setting. However, the 
predictive control strategy here proposed is based on Economic 
Model Predictive Control (EMPC), which aims at maximizing the 
economic performance of the irrigation system rather than 
reducing tracking errors. Constraints in the optimization problem 
are used to guarantee that optimal soil moisture is obtained. 
Moreover, in the present study the soil moisture model is based on 
atmospheric conditions of the Kingdom of Bahrain [11]. 

The remainder of this paper is organized as follows. Section 2 
describes the derivation of the soil moisture model based on the 
water balance equation and the measurement of meteorological 
data of the Kingdom of Bahrain. Section 3 describe the principles 
of MPC and presents EMPC as a special case of the MPC policy. 
In Section 4 the outcomes of employing the EMCP are shown and 
comparisons are drawn with On-off and PID automated irrigation 
systems. Finally, conclusion and recommendations are included in 
Section 5. 

2. System Identification 

This section presents the grey-box modeling of the soil 
moisture dynamics using difference equations. Grey-box modeling 
is a method for identifying the system’s dynamics that uses 
measurement obtained from experimental data combined with 
physical knowledge of the system. For parameters estimation, state 
space models are often used, where the state, input and output of 
the system are related by difference equations. 

2.1. Physical Modelling 
2.1.1. Water-balance equation 

The model developed here is based on the water-balance 
equation represented graphically in Figure 1 [9], [10]: 

)()()()()()()()1( kROkDPkETkCRkRAINkIRkMkM c −−−+++=+  (1)  

where k is the sampling time, M is the moisture of the soil, IR is 
the irrigation water, RAIN is the precipitation, CR is the capillary 
rise, ETc is the crop evapotranspiration, DP is the deep percolation 
and RO is the water runoff. 

Equation (1) expresses the variation in soil moisture as the 
difference between the water influx (capillary rise, precipitation 
and irrigation) and the water losses (evaporation, transpiration, 
water runoff and deep percolation) [10]. 

Geomorphological and meteorological data of the Kingdom of 
Bahrain show a generally flat land and very scarce precipitations. 
Therefore, it is reasonable to assume that water runoff, 
precipitation, and capillary rise are negligible. Under these 
assumptions, (1) can be reduced to: 

 )()()()()1( kDPkETkIRkMkM c −−+=+  (2) 

Equation (2) reduces the dependency of soil moisture to three 
variables: irrigation, evapotranspiration and deep percolation. 

 
Figure 1: Water Balance Model 

2.2. Evapotranspiration Estimation 

Evapotranspiration is defined as the movement of water from 
the soil and the crop into the atmosphere. Many factors influence 
evapotranspiration rate, such as crop type and growth stage, 
weather factors (air temperature, wind, humidity etc.), 
environmental conditions (e.g. soil salinity) and land management 
(use of fertilizers and pesticides, etc.) [12].  

Different approaches exist to estimate evapotranspiration [13]. 
In the present study, the FAO Blaney-Criddle estimation approach 
has been used. Despite being a simpler method compared to others, 
it has been proven to be satisfactory under a variety of weather 
conditions [14], [15]. 

Using this method, the actual evapotranspiration ETc is 
estimated for a particular type of crop C as: 

  occ ETKET ⋅=    (3) 

In (3), the crop coefficient Kc depends on the crop type and the 
growth stage of the crop. ETo is the estimation of the 
evapotranspiration from the reference crop with hypothetical 
qualities (actively growing green grass of 8–15 cm height). In the 
present study, ETo is assumed to be affected by climatic 
parameters, according to the following empirical FAO Blaney –
Criddle equation: 

  ( )128.8457.0 +⋅⋅= meano TpET  (4) 

where Tmean is the average daily temperature [°C] and p is the 
average annual percentage of daytime. 

2.3. Deep Percolation 

Deep percolation (DP) is a hydrologic process, where water 
penetrates below the roots of the crop. The quantity of percolation 
during irrigation depends on the characteristics of the soil as well 
as the soil humidity.  

In the present study, DP is assumed to be directly proportional 
to M with proportionality constant Kp: when M increases, DP 
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increases due to differential pressure [16]. This is expressed by the 
following equation: 

  )()( kMKkDP p ⋅=   (5) 

In (5), Kp is a constant that depends on the type of soil (sandy, clay, 
silt, loamy, etc) 

Substituting (3) and (5) in (2) we get a difference equation 
which leads to a model of the water balance dynamic in the form: 

 )()()()1( kETKkIRkMKkM ocs −+⋅=+   (6) 

where Ks=1-Kp. 

2.4. Model Structure 

Equation (6) gives a mathematical model which contains two 
parameters, Ks and Kc. In our work, these parameters are unknown, 
meaning that the value of crop coefficient and the type of soil used 
in our experiment are unknown. Therefore, a gray-box system 
identification process, which uses a the first principles model of 
the system and data coming from direct system measurements, was 
used to estimate the values of the unknown parameters.  

The linear difference equation (6) can be re-written in the form 
of a discrete state space model as:  

[ ] [ ] )(][)(1)()1( 0 kETKkIRkMKkM cs −++=+  (7) 

)(]1[)( kMkM =     (8) 

where M(k), IR(k), ET0(k) are the state vector, the input signal, and 
the disturbance of the system. 

The state-space model (7) and (8) presents two parameters, Ks 
and Kc, that need to be estimated from measured data. 

2.5. Parameters Estimation 

Parameter estimation was carried out using Matlab System 
Identification Toolbox R2018a, which provides a tool for deriving 
mathematical models of dynamic systems given measured input-
output data. The toolbox was used to estimate the values of Ks and 
Kc, through a gray-box model estimation process. 

Figure 2 shows the process of model identification.  

A set of measurements (see Figure 3), called identification data, 
was collected using a data acquisition system implemented on an 
Arduino Uno microcontroller board.  

The experimental setup consists of a temperature sensor LM35, 
and a soil moisture sensor FC-28. The temperature sensor outputs 
a voltage which is directly proportional to the instantaneous 

temperature. The soil moisture sensor measures the volumetric soil 
moisture as a function of electric conductivity in the soil. In our 
experiment, the position of the soil moisture sensor was fixed at 10 
cm depth. The sensor was calibrated by taking two measures; one 
with the soil entirely wet and one with the soil entirely dry. The 
moisture was expressed in percentage, with the values of the 
measurements mapped from 0 (dry soil) to 100 (soaked soil).  

For our experiments, the soil moisture M and the temperature 
T near the moisture sensor were synchronously measured every 
hour over a period of two days. The irrigation IR was modeled as 
a pulse signal, since it provides a great amount of water but for a 
limited time [10]. 

The Blaney-Cradle equation block in Figure 2 estimates ETo 
using (4). In our experiment, the value of the variable p in (4) was 
substituted by the actual percentage of daytime for the time of the 
year in which the experiment was conducted. In the same way, the 
variable Tmean was substituted by the actual temperature T 
measured at time k. 

2.6. Model Validation 

To validate the model obtained in the previous section the 
output of the simulated model was compared with measured data. 

For this purpose, another set of input data was measured and 
then inputted to the derived model of the system. The input data 
set used in the validation is shown in Figure 4. 

 
Figure 4: Validation Data 

Figure 5 shows the difference between the output of the model 
and the measured soil moisture. The plots show a good agreement 
between simulated and measured outputs, with negligible time 
delay between the irrigation event and the change in soil moisture 
dynamics.  

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
20

40

60

80

So
il 

M
oi

st
ur

e(
%

)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

100

200

300

Irr
ig

at
io

n 
(m

l)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

30

35

40

45

Te
m

pe
ra

tu
re

(C
)

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00
30

32

34

36

38

40

42

Te
m

pe
ra

tu
re

(C
)

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Time

0

50

100

150

200

250

300

Irr
ig

at
io

n 
(m

l)

http://www.astesj.com/


L. Balbis / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 781-787 (2020) 

www.astesj.com     784 

A further comparison between simulated and measured outputs 
to verify the reliability of the identified model was done calculating 
the Mean Absolute Error (MAE) as follows:  

  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑀𝑀�𝑘𝑘−𝑀𝑀𝑘𝑘|𝑇𝑇
𝑘𝑘=1

𝑇𝑇
   (9) 

where 𝑀𝑀�𝑘𝑘 − 𝑀𝑀𝑘𝑘  is the difference between the predicted and the 
measured output value and T=48 is the total number of samples. 
The obtained MAE value of 2% is considered an indication of a 
valid model. 

Measured and Simulated Soil Moisture 

3. Economic MPC 

3.1. EMPC Basic Concepts 

The term Predictive Control refers to a control design method 
characterized by [17]: 

• use of a model to forecast the system output at future time 
instants (prediction horizon); 

• computation of an input control sequence that optimizes 
a given objective function; 

• receding horizon strategy, where the input control 
sequence is computed by taking into account the predicted outputs, 
but only the first control signal of the sequence is applied to the 
system.  

The different algorithms which belongs to the Predictive 
Control group present differences in terms of the chosen system 
models (impulse, step, state-space, CARIMA, fuzzy models, etc.), 
disturbance (constant, decaying, filtered white noise etc.) and in 
the cost-function to be minimised.  

A general MPC mathematical formulation is given by the 
following optimization problem [18]: 

 𝐽𝐽 = 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑓𝑓�𝑥𝑥𝑘𝑘+𝑖𝑖|𝑘𝑘 ,𝑢𝑢𝑘𝑘+𝑖𝑖|𝑘𝑘�
𝐻𝐻𝑐𝑐−1
𝑖𝑖=0   (10) 

where the variables x ∈ Rn and u ∈ Rm denote the state and control 
action at the instant k and Hc denotes the control horizon. The 
notation 𝑘𝑘 + 𝑚𝑚|𝑘𝑘, with k ∈ Z, indicates the estimation of the future 
variables based on the measurements at current time instant k. 

Traditional MPC controllers minimize a quadratic cost 
function which tracks output and manipulated variable references. 

The general prediction model can be expressed by the discrete 
equation: 

 𝑥𝑥𝑘𝑘+𝑖𝑖+1|𝑘𝑘 = 𝑔𝑔(𝑥𝑥𝑘𝑘+𝑖𝑖|𝑘𝑘,𝑢𝑢𝑘𝑘+𝑖𝑖|𝑘𝑘)  (11) 

where the predicted states depend on the future states and control 
actions from instant k to instant k+Hp. 

The minimization problem is usually subject to a set of 
constraints which have to be satisfied over the predictive horizon. 
These constraints are due to physical or operational limitations of 
the real system and they take the general form: 

  ℎ(𝑥𝑥𝑘𝑘+𝑖𝑖|𝑘𝑘 ,𝑢𝑢𝑘𝑘+𝑖𝑖|𝑘𝑘) ≤ 0  (12) 

At each time instant, MPC measures or estimates current state 
xk and predicts the system state evolution over the prediction 
horizon Hp using the current state and the model of the system.  

The optimal control sequence over the control horizon Hc is 
found solving the minimization problem (10). Only the first 
control action is applied to the system, and the remaining results 
are discarded. 

In absence of disturbances and plant-model mismatch, the 
optimization problem could be solved as an open-loop problem, 
and the input sequence found at k=0 could be applied to the system 
for all k≥0. In a more realistic scenario, the behavior of the real 
system differs from the predicted model output. To cater for this 
mismatch, the optimal control problem is solved again at the next 
sampling time. Using the state measurement/estimation at time 
k+1, the cycle of prediction and optimization is repeated, moving 
the horizon forward (Figure 6). 

 Receding Horizon 

In recent years, the EMPC approach has been proposed with 
successful applications in various fields [19].  

Contrary to traditional MPC, EMPC is employed to maximize 
profitability, rather than minimize tracking errors. This can be 
done by defining a cost function that, directly or indirectly, 
measures the process economics [20]. The formulation of cost 
function depends on the particular applications, such as the 
operating profit, production rates, product selectivity, and product 
yield. In EMPC the cost function, as well as the plant dynamics 
and the constraints can be linear or nonlinear. Therefore, generic 
performance cost functions and nonlinear optimization algorithms 
are used to solve the minimization problem. The structure of the 
basic EMPC algorithm is shown in Figure 7. 

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time

20

30

40

50

60

70

80

90

So
il 

M
oi

st
ur

e(
%

)

Model output

Measured output

http://www.astesj.com/


L. Balbis / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 6, 781-787 (2020) 

www.astesj.com     785 

 
Figure 7: Basic EMPC Structure 

3.2. EMPC Problem Formulation 

In our work, we utilize an EMPC approach to minimize water 
consumption while maintaining the soil moisture close to an 
optimum value. We consider a linear economic stage cost function; 
additionally, both plant dynamics and constraints are linear. 
Because of this, our formulation of the EMPC problem is linear. 
The fundamental steps of the devised EMPC algorithm are the 
following: 

• At the time k, measure M(k) and compute the optimal control 
sequence 𝐼𝐼𝐼𝐼(𝑘𝑘) by solving a stochastic optimization problem 
over the control horizon Nc. 

• Apply only the first computed value IR(k/k) as input to the 
system. 

• At the time k+1, measure M(k+1) and repeat the optimization. 

At each time instant k, a vector 𝑀𝑀(𝑘𝑘) of the moisture predicted 
values is computed, using the model given by (7) and (8): 

 )]/()/1([)( kNkMkkMkM p++=   (13) 

The stochastic optimization problem becomes deterministic if 
we assume that ETo does not change over the prediction horizon 
Np., i.e.:  

 )]()([)( 000 kETkETkET =   (14) 

where ETo(k) is calculated using (4) and the current measured 
temperature T(k). 

Let’s define the future control signals as the vector: 

𝐼𝐼𝐼𝐼(𝑘𝑘) = [𝐼𝐼𝐼𝐼(𝑘𝑘/𝑘𝑘) … 𝐼𝐼𝐼𝐼(𝑘𝑘 + 𝑁𝑁𝑐𝑐 − 1/𝑘𝑘)] (15) 

Combining (13), (14) and (15) with the model (7) and (8) we 
obtain: 

 ))()()()( 0 kETkIRkMkM Ψ+Φ+Θ=   (16) 

where: 
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The purpose of the designed control system is to obtain optimal 
economic performance. The following stage cost is assumed to 
reflect the nominal economic cost of irrigating the system over one 
sampling period, that is: 

  𝐿𝐿(𝑘𝑘) = 𝐼𝐼𝐼𝐼(𝑘𝑘)   (20) 

The cost function does not consider the cost of operating the 
valves or the cost of pumping water, since their minimization is 
not considered an objective in the present study. 

The resulting optimization problem adopted in our EMPC 
controller formulation is:  

min
𝐼𝐼𝐼𝐼(𝑘𝑘),𝑣𝑣(𝑘𝑘)

∑ 𝐼𝐼𝐼𝐼(𝑘𝑘 + 𝑚𝑚 𝑘𝑘⁄ )𝑁𝑁𝑐𝑐−1
𝑖𝑖=0 + ∑ 𝜌𝜌𝜌𝜌(𝑘𝑘 + 𝑚𝑚)𝑁𝑁𝑝𝑝

𝑖𝑖=0   (21) 

In addition to the stage cost, the objective function contains the 
terms 𝜌𝜌𝜌𝜌(𝑘𝑘 + 𝑚𝑚) which represent soft economic constraints. 

The minimization problem (21) is subject to: 

 ))()()()( 0 kETkIRkMkM Ψ+Φ+Θ=   (22) 

 𝑀𝑀�(𝑘𝑘) ≤ 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘) + 𝑉𝑉�(𝑘𝑘)   (23) 

 𝑀𝑀�(𝑘𝑘) ≥ 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘) − 𝑉𝑉�(𝑘𝑘)   (24) 

where 𝑀𝑀�𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘),𝑉𝑉�(𝑘𝑘) are vectors of size Np defined as follows: 

 𝑀𝑀�𝑜𝑜𝑜𝑜𝑜𝑜(𝑘𝑘) = [𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜 … 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜]  (25) 

 𝑉𝑉�(𝑘𝑘) = [𝜌𝜌(𝑘𝑘/𝑘𝑘) … 𝜌𝜌(𝑘𝑘 + 𝑁𝑁𝑜𝑜/𝑘𝑘)] (26) 

The value Mopt represents the soil moisture that should be kept 
constant for optimal operating conditions. The variable v(k) is a 
slack variable that is introduced to allow for small variation of the 
soil moisture M(k) around the optimal value. That is, we nominally 
want to satisfy M(k)=Mopt, and when these constraints are violated, 
an additional cost 𝜌𝜌𝜌𝜌(𝑘𝑘 + 𝑚𝑚)  is paid, weighted by the penalty 
parameter ρ. The choice of the parameter ρ is critical; when it is 
chosen too small, the value of the soil moisture might be far from 
the optimal one; when it is chosen too big, we might incur into 
infeasibility issues. 

4. Simulation Results 

The performances of PID controller, On-off controller and the 
proposed EMPC are compared. Not surprisingly, the behavior of 
the three control techniques is very different, as it can be observed 
in Figure 8 and Figure 9. 

The On-off controller uses the measurement from a moisture 
sensor to switch the irrigation pump on or off based on whether the 
measurement is below or above maximum and minimum limits. 
The output from the device is either 100% on or off, with no middle 
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state. Figure 8 shows the outcome using the On-off controller. In 
this example, the soil moisture minimum and maximum levels are 
fixed at 50% and 70%. As expected, the output presents a variation 
of the moisture level (overshoot) around the optimal value of 65%. 
Reducing the thresholds could help improving the underwatering 
issue, but it would imply a higher switching of the actuators and a 
persistent overwatering problem.  

 
Figure 8: Soil Moisture with On-Off Controller 

In Figure 9 the outcomes of the PID and EMPC approaches are 
shown. It can be noticed that the EMPC maintains the value of the 
soil moisture around the optimal value better that the PID 
controller in presence of disturbances, since it considers the effect 
of ETo(k) on the moisture level over the prediction horizon.  

 

Figure 9: Soil Moisture Dynamics with EMP and PID Controllers 

The three irrigation systems are also compared in terms of 
accumulated error, defined as:  

 𝐶𝐶𝑀𝑀 = ∑ �𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
− 𝑀𝑀𝑘𝑘�𝑇𝑇

𝑘𝑘=1   (27) 

where the error is the difference between the optimal soil moisture 
and the simulated soil moisture. The cumulative error gives an 
indication of the ability of the controller to keep the soil moisture 
close to the optimal value. As it can be seen in Figure 10, the 
EMPC has smaller cumulative error compared to the other 
irrigation methods.  

The total water consumption over the 48 hours period is around 
2400 ml for the On-off controller, 2160 ml for the PID based 
system and 2000 for the EMPC. Therefore, the EMPC yields a 
reduction of water consumption around 8% and 16% compared 
with the PID and On-off controllers, respectively, while keeping 
the soil moisture within optimal values. 

The simulations demonstrate that the EMPC scheme applied to 
an irrigation system provides benefits compared to conventional 

irrigation methods, since it maintains the moisture level near the 
nominal optimum, while providing economic benefit.  

 
Figure 10: Cumulative Error for On-Off Controller, PID and EMPC 

5. Conclusions 

This work presents the process of developing an optimal 
controller regulating the time and amount of irrigation to maintain 
the soil moisture around an optimal level, while taking into account 
system constraints. The proposed control strategy, based on EMPC 
techniques, was implemented in MATLAB and results were 
compared with traditional irrigation methods based on PID and 
On-Off controllers. The results suggest that EMPC applied to 
irrigation systems can lead to increased efficiency and reduced 
water consumption. 

Further improvement of this work would require a more 
accurate model of the system. A current limitation is given by the 
model developed, which can be improved by collecting sensors 
measurements over a sparse area and under different operating 
conditions, and using more complicated approaches to estimate 
ETo such as the FAO Penman Montheith technique. 

Furthermore, developments on this work could explore the 
implementation of the proposed EMPC algorithm on hardware and 
evaluate the feasibility of such strategy in real time.  
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