
 

www.astesj.com     1266 

 

 

 

 

Agricultural Data Fusion for SmartAgro Telemetry System  

Ioana Marcu1,*, Ana-Maria Drăgulinescu1, Carmen Florea1, Cristina Bălăceanu2, Marius Alexandru Dobrea2, George Suciu2 

1Telecommunication Department, University Politehnica of Bucharest, 010082, Romania 

2R&D Department, Beia Consult International, Bucharest, 010082, Romania 

A R T I C L E   I N F O  A B S T R A C T 
Article history: 
Received: 16 July, 2020 
Accepted: 15 October, 2020 
Online: 24 October, 2020 

 Smart agriculture concept uses innovative solutions including IoT and Cloud storage 
features, dedicated sensors for monitoring basic agricultural parameters, new 
communications protocols, etc. SmartAgro architecture comprises a telemetry system for 
Key Performance Indicators (KPIs) such as air & soil temperature, air & soil relative 
humidity, leaf wetness, etc. The current paper outlines the reliability of the implemented 
system by comparing and analyzing data collected in spring 2019 and spring 2020. The 
relevance of this season consists in great air variations due to the transition from winter to 
summer. Being monitored in a vine area near Bucharest, these data may be useful for 
different statistics related to grapes culture in this season and can be used by interested 
parties for future predictions related to vine crops. Moreover, in this paper, data fusion will 
allow advanced data management and coherence achievement among collected data.  
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1. Introduction  

This paper is an extension of work originally presented in 
SIITME’19 conference [1]. In [1] the authors presented the 
telemetry system with its main advantages consisting in solar panel 
supply and data reliability. The current work extends the 
demonstration of the system’s reliability by processing data from 
Spring 2019 and Spring 2020. In addition to the previous work, 
data fusion will be used to fill the gaps between the recorded data 
and to ensure a proper system’s management. 

Considering all climate changes, the evolution of the 
agriculture plays an important role in the lives and well-being of 
people, since it represents a source of food for population and, 
respectively for domestic animals. Climate change influences 
agriculture in different ways. Changes in temperature and 
precipitation are already affecting crop yields [2]. Consequently, 
people must adapt to and implicitly adjust the solutions used to 
ensure food or water quality, for irrigation and daily use [3]. The 
health of soils and crop, also, is very important, as it affects the 
quality and quantity of agricultural crops [4, 5]. 

When required to evaluate successful analysed crops, the key 
performance indicators (KPIs) must be considered since they are 
quantitative, practical, directional, and actionable. Depending on 
the analysed corps, KPIs differ. For example, based on KPIs crop 

usage can be tracked to evaluate the production and to monitor the 
overall costs. The most significant impacts of KPIs on agriculture 
are increased productivity, profit and time save [6]. 

An important role in the precision agriculture is played by IoT 
platforms. Using them, the quality of the crops can be enhanced by 
real time data acquisition, processing and decision making. These 
data are converted, thus, in useful information for farmers, and, 
also, in a facile understandable manner [7]. Capturing, 
transmitting, storing and processing the volume of information 
collected by sensors connected on the IoT platform, show a 
number of challenges, in particular, regarding integration 
technologies, communications, databases and computing. A 
middleware platform which alleviates these issues is FIWARE. 
FIWARE is a technology supported by the European Commission 
to make possible the IoT in the context of the Future Internet [8]. 

SmartFarmNet is an IoT platform that automatically collects 
data from soil, as fertilization and irrigation. The data is then 
automatically correlated, and the invalid data is filtered-out from 
the perspective of assessing crop performance. Also, with the help 
of the platform the crop forecasts can be computed, and the farmers 
receive personalized crop recommendations for any farm [9].  

There are also platforms which are specialised on only one 
aspect such as SWAMP. Within SWAMP project there was 
developed and assessed an IoT-based smart water management 
platform for precision irrigation in agriculture. The platform was 
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built in such manner that it can be configured and deployed in 
different ways. Thus, the platform can deal with the requirements 
and limitations of different countries, climate, soils, and crops, 
which require flexibility to adapt to a range of deployment 
configurations involving mixed technologies [10]. 

Data fusion techniques applied on data collected by different 
sensors used in agricultural area allow a better understanding of 
parameters’ evolution and advanced data management, especially 
in cases where the data volume is huge [11], [12]. Yet, the 
applicability domain is not limited only to agriculture, but it can 
comprise different applications that are sensor-based and that 
imply multiple data sources. 

The current paper aims to emphasize the role of the 
implemented SmartAgro telemetry system in ensuring reliable 
data for further use in statistics and specialized predictions. Data 
fusion methods will allow additional processing that will offer a 
global perspective of the monitored parameters. The paper is 
organized as follows: Section 2 presents the related work on data 
fusion solution for key parameters monitored in precision 
agriculture; Section 3 contains the description of SmartAgro 
telemetry system and in Section 4 system’s setup and relevant 
monitoring results are presented. Data fusion implications are 
outlined in Section 5 and Section 6 comprises Conclusions. 

2. Data Fusion for Agricultural Area 

According to [13], when acquirred data present high and 
diverse information, data fusion considers the juxtaposition of 
large set of data to ensure reliable, homogeneously and fair 
overview of the collected information. The advantage of data 
fusion of data received from multiple different sensors relies in “an 
improved estimate of physical phenomenon via redundant 
observations” [14]. The efficiency of data fusion was previously 
demonstrated in precision agriculture domain [15-18]. In [15], 
authors present the benefits on crop monitoring of 2D and 3D data 
fusion for a vineyard monitoring and use the results in order to 
classify vines in serveral classes by processing data from multiple 
sources (different sensors, Unmanned Aerial Vehicle (UAVs), 
etc). In 2012, in [16] different data fusion methods were used (e.g. 
multiple linear regression (SMLR), partial least squares regression 
(PLSR) and principal components analysis combined with 
stepwise multiple linear regression (PCA+SMLR) techniques) to 
predict multiple soil properties. Authors’ conclusions indicate that 
data fusion techniques are more relevant in clayey field and worse 
in sandy field and, in addition, these methods can improve the 
quality of soil sensing in precision agriculture if appropriate 
sensors are selected. Later, in 2017, sensor data fusion for soil 
health assessment was applied in [17] and, as a result, faster 
determination of soil health was achieved by merging data 
gathered from all sensors. In a more advanced manner, in [18] 
sensing data fusion methods are involved in crop detection. 
Authors use an efficient  method  of fusing multi-source remote 
sensing images with a convolution neural networks (CNN) for  
semantic  segmentation to identify crops (93% succesful rate) in 
detecting and identifying crops. 

In this paper we use data fusion technique on agricultural KPIs 
to fill the gaps and to create a complete picture of their variation 
even in the absence of their recording by the telemetry system. 

3. ADCON-based Architecture of Telemetry System 

Monitoring of KPIs (such as air and soil temperature, crop 
state, air and soil relative humidity) for a vine located in a 
residential area close to Bucharest was performed using an 
ADCON-based telemetry system (called SmartAgro). The selected 
season was spring since it is a season in which high variations may 
be observed because of the transition from winter to summer (two 
seasons with extreme temperatures). Figure 1 illustrates the new 
concept of SmartAgro telemetry system in which different 
dedicated agricultural sensors are interconnected for main 
parameter’s monitoring.  

Figure 1: SmartAgro innovative architecture [19] 

The data acquired from the agricultural sensors were 
centralized into a database and were used to highlight the impact 
of measured parameters on crops [19]. The architecture differs 
from the traditional ones by introducing two new levels consisting 
in: The Edge level: at this level telemetry data are passed through 
a decision-making system based on artificial intelligence 
techniques for data analysis and detection of abnormal values. 
Also, at this level, the data are classified as belonging to alert 
scenarios or simple monitoring. This determines the optimization 
of communication, in terms of traffic and energy consumption. 
LoRa technology is proposed for monitoring data, a technology 
known for extremely low energy consumption and for the field 
very extensive coverage. For scenarios involving alerts and critical 
change of parameters, Wi-Fi (short range) or 4G technology can 
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still be used for a large coverage area. Further, the Local Storage 
level has a role in storing relevant, processed, analysed, and 
labelled data to reduce latencies in alert scenarios and for 
applications. on-field, off-line. Additional functionalities of the 
proposed telemetry system are given in [19]. 

4. Extended monitoring results 

To demonstrate the reliability of the system, extended 
monitoring results are presented. The measurements were 
performed in 2019 and 2020 and the data were acquired each 6 
hours per day, starting with 8 a.m. 

4.1. Air temperature monitoring  

 Figure 2 illustrates the variation of air temperature during 
Spring of 2019 and 2020. 

 

 
Figure 2: Air temperature variation in Spring 2019 (up), Spring 2020 (down) 

 Based on results in Figure 2, it can be seen the patterns of the 
day-night air temperature variation, also called Day/Night 
Differential (DIF). Higher temperature peaks can be observed in 
Figure 3. DIF value has multiple significances: firstly, DIF values 
were related to plant growth. Moreover, values of DIF around 8°C 
were proved to provide the best plant growth, whereas DIF values 
between 12°C and 22°C showed a low correlation to the predicted 
results in [20] for Chrysanthemum.  
 From the air temperature data provided by SmartAgro platform 
in the two seasons (Spring 2019 and Spring 2020), we can state 
that in Spring 2019 the plant growing should have been more 
pronounced, as the DIF was lower than 12°C. 

 

 
Figure 3: Soil temperature variation in Spring 2019 (up), Spring 2020 (down) 

4.2. Soil temperature monitoring  

 From Figure 3, which outline the variation of soil temperature 
for Spring 2019 and Spring 2020, there can be observed that the 
patterns are identical with their correspondent air temperature data 
in Spring 2019 and, respectively, in Spring 2020, with the 
exception of a temperature offset of -5°C for both Spring 2019 and 
for Spring 2020.  

4.3. Relative air humidity monitoring  

 From Figure 4, which depicts the variation of relative air 
humidity for Spring 2019 and Spring 2020, it can be observed that 
the supersaturation phenomenon was similarly frequent in both 
years. This is related to the prediction of the rainfall and appears 
when the air humidity reaches 100%.  

 

 
Figure 4: Relative air humidity variation in Spring 2019 (up), Spring 2020 (down) 

4.4. Relative soil humidity monitoring  
 Figure 5 emphasizes the variation of relative soil humidity for 
Spring 2019 and 2020. 

 

 
Figure 5: Relative soil humidity variation in Spring 2019 (up), Spring 2020 

(down) 

From Figure 5, it can be noticed that, similar to the soil and ambient 
temperature, the soil and ambient humidity follows the same 
pattern, with an offset of -15% both in Spring 2019 and in Spring 
2020. 

4.5. Leaf wetness monitoring  

 Figure 6 presents the leaf wetness variation for Spring 2019 
and 2020. It can be observed that several peaks occur especially 
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after 21:00 p.m. From the analysed data, there is no evidence of 
correlation between the air humidity and the leaf wetness, nor 
between air temperature and leaf wetness. 

 

 
Figure 6: Leaf wetness variation in Spring 2019 (up), Spring 2020 (down) 

5. Agricultural Data Analysis 

The previous graphical representations did not reveal the 
absence of some data or the heterogeneity of the data. For example, 
from the previous graphs there cannot be noticed the absence of 
the samples for certain moments of the day or even the fact that 
the samples were not acquired at the same moment every day. 
Moreover, the data were not acquired each day. 

The time intervals for data collection are March 4th, 2019 and 
May 31st, 2019 (Spring 2019) and March 1st, 2020 and May 28th, 
2020 (Spring 2020), respectively. Analysing data of a real 
acquisition, it can be remarked that the samples were collected at 
the time moments given in Table 1. 

Table 1: Classification of the samples based on the moment of acquisition 

Hours (0-
24) 

No. of 
Days 
(ND) 

ND 
(2019) 

ND 
(2020) 

Total 
Samples 

3, 9, 15, 21 98 57 41 392 
2, 8, 14, 20 48 23 25 192 

3, 9 1 0 1 2 
9, 15, 21 3 2 1 9 

2 1 0 1 1 
 Total  596 
 
Unfortunately, missing data determine different issues 

concerning the predictions and forecasts or the decisions taken by 
the support decision systems integrated in the overall architecture. 
Nevertheless, sensor data fusion techniques can bring many 
benefits such that the faults triggered by the data gaps can be 
mitigated. For exemplification, two variables are considered: air 
temperature and soil temperature. They were chosen after the 
analysis of the samples acquired because the vectors storing their 
values comprise NaN values, that is, there are missing samples in 
air temperature and soil temperature data because of system 
failures. 

In Figure 7, it is illustrated the graphical representation of the 
air temperature variation at 3 a.m. and 2 a.m. for each of the days 
in which the data were collected, more precisely, in the intervals 
March 4th, 2019 and May 31st, 2019 (88 days) and March 1st, 2020 

and May 28th, 2020 (88 days). Figure 7 highlights small, but 
important, data gaps. 

 
Figure 7: Air temperature measured at 2am and 3am in Spring 2019  

and Spring 2020 

In Figure 8, it is highlighted the soil temperature variation 
during the same seasons, and it can be noticed that also soil 
temperature data is missing. In addition, as previously mentioned, 
the soil temperature follows the same variation pattern as in the 
case of air temperature and, by computing the difference between 
air and soil temperature, a constant value of 5°C is determined. 
Therefore, finding a method to determine an approximate value 
for air temperature will also succeed in determining the 
approximate value for soil temperature, too, and vice versa. 

 
Figure 8: Soil temperature measured at 2am and 3am in Spring 2019 

and Spring 2020 

Further, the choice of soil temperature and air temperature 
variables will be justified with respect to the variation of the other 
parameters. Analyzing the graphical representation of air relative 
humidity (Figure 9), soil humidity (Figure 10) and leaf wetness 
(Figure 11) variations, missing data can be also observed (samples 
missing before and after March 13, 2019), but the data gaps are 
affecting all variables. The only variables that experience isolated 
data gaps when all the other parameters are represented are soil 
temperature and air temperature. 

In Figure 9, air relative humidity variation for the same moment 
of day for Spring 2019 and Spring 2020 is represented. It can be 
observed that the minimum air relative humidity recorded in 
Spring 2019, at 2 a.m., is 37.78 % and it was recorded on March 
24th, 2019, while the maximum value of 100% was reached 7 
times (March 11-12, 2019; March 15, 2019; April 11th-12,2019; 
May 11th-12,2019).   

Regarding the air relative humidity measured at 3 a.m., in 
Spring 2019, the minimum value was 55.74% on March 9th, 2019, 
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while the maximum value (100%) was reached 10 times (10% in 
March, 40% in April, 50% in May). 

 
Figure 9: Air relative humidity measured at 2am and 3am in Spring 2019 and 

Spring 2020 

In Spring 2020, the minimum value of the air relative humidity 
measured at 2 am was 47.45% on March 16, 2020, whereas the 
maximum value (100%) recorded at 2 a.m. was reached 10 times 
(40% in March, 30% in April and 30% in May). 

Concerning the samples acquired at 3 a.m. in Spring 2020, the 
minimum value of air relative humidity was recorded on 
13.04.2020 (48.57%), whereas the maximum value of 100% was 
reached 9 times (22.2 % in March, 11.1% in April and 66.7% in 
May). 

Computing the difference between soil humidity and air 
humidity, a constant difference of 15% is achieved and it can be 
seen that the variations patterns are identical (Figure 10). This can 
be proven also by computing the standard deviation (SD) for each 
season for the two possible time moments of acquisition (2 a.m. 
and 3 a.m.) for both variables. For both soil and air humidity 
variables, the values of the standard deviation coincide and are 
given in Table 2. 
Table 2:  Standard deviation of soil and air humidity for Spring 2019 and Spring 

2020 (at 2am and 3 am) 

Season SD (2am) SD (3am) 
Spring 2019 19.49 10.92 
Spring 2020 15.76 16.85 

Therefore, by finding the approximate value of the air relative 
humidity, the approximate value of the soil humidity can also be 
determined. 

 
Figure 10: Soil humidity measured at 2am and 3am in Spring 2019  

and Spring 2020 

Finally, in Figure 11, the variation of the leaf wetness is 
depicted. The standard deviation (STD) of the leaf wetness 
parameter was computed.  

 
Figure 11: Leaf wetness measured at 2am and 3am in Spring 2019  

and Spring 2020 

The lowest values of SD were obtained for Spring 2020 3 a.m. 
(a small value with respect to Spring 2019 was also obtained for 
2 a.m.), while the highest one is obtained for Spring 2019 (2 a.m.). 
The small variation of leaf wetness values in Spring 2020 is 
highlighted in the graphical representation, too. All values of the 
standard deviation are given in Table . 

Table 3: Standard deviation of leaf wetness for Spring 2019 and Spring 2020  
(at 2am and 3 am) 

Season SD (2am) SD (3am) 
Spring 2019 11.66 10.00 
Spring 2020 8.64 6.04 

6. Proposed data fusion algorithm 

Next, based on the data analysis performed in Section 5, we 
proposed a data fusion algorithm based on a hybrid decision tree. 
Here, the hybrid attribute is given due to the fact that, with respect 
to the traditional binary tree approach, in the proposed algorithm 
three cases may arise: the value of the parameter is in range (1), 
the value of the parameter is out of range (2), the value of the 
parameter is not available (3). When a sample of a parameter is 
not available at the querying moment (case 3), the algorithm 
commands the estimation block that computes an estimated value 
of the parameter based on current samples of the other parameters 
and based on previous samples of the required parameter. In 
Figure 12, the proposed algorithm was depicted. In Table 4, the 
parameters acronyms and their meanings are given.  

Table 4: Parameters acronyms and significance 

Acronym Significance 
t_air Normal air temperature range 

 t_soil Normal soil temperature range 
rh_air Normal air relative humidity range 
rh_soil Normal soil relative humidity range 

leaf_wet Normal leaf wetness range 
T_air Current air temperature sample 
T_soil Current soil temperature sample 
RH_air Current air relative humidity sample 
RH_soil Current soil relative humidity sample 
Leaf_w Current leaf wetness sample 
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Figure 12: Hybrid decision tree for data fusion-based decision making 

The correlation between the parameters is depicted in Figure 13-
18. 

 
Figure 13: Scattering diagram of air humidity and soil humidity 

 
Figure 14: Scattering diagram of air temperature and leaf wetness 

 
Figure 15: Scattering diagram of leaf wetness and air humidity 

 
Figure 16: Scattering diagram of leaf wetness and soil humidity 

 
Figure 17: Scattering diagram of soil temperature and air temperature 

 
Figure 18: Scattering diagram of soil temperature and leaf wetness 
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7. Conclusions 

Agriculture is an on-going evolving domain since worldwide 
survival depends in on it a great manner. Telemetry systems 
developed for crop and field monitoring (such as SmartAgro) play 
important roles in providing crucial KPIs related to air & soil 
temperature and/or air & soil humidity, as well as crop diseases 
detection. The architecture of the implemented SmartAgro system 
is highlighted by two relevant levels: The Edge level and the 
Local Storage level. They enable data classification and use 
parameters improvement in various cases such as alert scenarios 
and for applications. on-field, off-line. 

 Being equipped with multiple different, SmartAgro provides 
massive quantity of data for the monitored parameters. In this 
paper, the reliability of the recorded data provided by the 
telemetry system is outlined by performing measurements in 2 
consecutive years (2019 and 2020) with a frequency of 6h/ day. 

Based on the collected data related to the air temperature in 
Spring 2019 and Spring 2020, it can be noticed that Spring 2019 
was a more favourable season for plant growing since the DIF was 
lower than 12°C. The variation of soil temperature led to the 
observation that the patterns are identical with their correspondent 
air temperature data in both seasons (Spring 2019 and Spring 
2020). Further, by recording data on relative soil humidity and 
leaf wetness there was observed that there is no evidence of 
correlation between the monitored parameters. Yet, the 
similarities in variations during Spring 2019 and Spring 2020 
demonstrates the reliability of the data recorded using SmartAgro 
telemetry system. 

Since it was noticed that the monitored parameters have not 
been collected at the same moment in time with regularity, data 
fusion technique was used to fill the gaps and to provide a global 
overview on the behaviour of the system. Two KPIs have been 
considered: air temperature and soil temperature. Using data 
fusion, it was proven that: 
- By finding a method to determine an approximate value for 

air temperature will also succeed in determining the 
approximate value for soil temperature, too, and vice versa. 

- By finding the approximate value of the air relative humidity, 
the approximate value of the soil humidity can also be 
determined. 

As conclusion, the goals of data fusion referring to advanced 
data management and coherence achievement among collected 
data were achieved within this research. 
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