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1. Introduction  

     PQ problems occur due to frequency, voltage swells, voltage 
sags, light flicker, voltage transients, harmonics, unbalanced 3-
phase signal. All equipments influence the grid by the 
reproduction harmonics, voltage variations. Also the performance 
of transformers and generators are affected by the power quality 
on the distribution network. Unanticipated alteration of the 
voltage and current signal from healthy conditions can devastate 
or stoppage the critical electrical machineries created for various 
aim [1-5].   

1.1. Voltage sag  

    Voltage sags are short-duration (less than 1 second) reductions 
in voltage magnitude. The sag is mostly related with the short 
circuit faults single-line to ground, line to line, and for three-phase 
to ground faults. This type of disturbance is nowadays one of the 
main PQ disturbances. Momentary increase of current has many 
origins in power systems such as energizing of transformers, short 
circuits, earth faults and starting of induction motors. Voltage sags 
are the most typical disturbances that affect power quality in smart 
grids. Moreover, they are the most costly. When voltage sag 

happens, the power supply inside electronic devices uses some of 
its stored energy to make up for the failure of input voltage. If 
enough energy is lost owing to the sag, then the power supply may 
fail its task to maintain adequate  

DC voltage to components. Even for nanoseconds such integrated 
circuits, inside the device are affected by. This is very short 
moment to destroy data in microprocessor based electronics and 
to bring about malfunctions of digital equipment especially PCs. 
Malfunction of PCs integrated. in a real-time system is linked with 
conceivably bigger results, because there are losses correlate with 
the controlled process. The sensitivity of PCs to voltage sags is 
mostly expressed only in terms of the magnitude and duration of 
the voltage sag [25, 26, 30, 31, 40]. Considering previous studies 
about PQ disturbances analysis, Short-Time Fourier Transform 
(STFT) have been applied for stationary and periodic signals in 
frequency domains. But when handling non-stationary signals, it 
is problematic to analyze with STFT [47, 48, 49]. It was 
experimentally verified and demonstrated the WT is better than 
STFT [47]. Wavelets are employed in PQ when the time 
information is crucial however, it is not crucial to perceive the 
specific frequency of a fault in waveforms. Using WT, high time 
resolution is arranged for high- frequency components and low 
time resolution is attained for low-frequency components of the 
disturbance. Another method, ST is acquired by multiplying WT 
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 In recent years pattern recognition of power quality (PQ) disturbances in smart grids has 
developed into crucial topic for system equipments and end-users. Undoubtedly analyzing 
the PQ disturbances develop and maintain smart grids effectiveness. Voltage sags are the 
most common events that affect power quality. These faults are also the most costly. This 
paper represents performance comparisons of different computer intelligence methods for 
voltage sag identification. PQube Analyzer which is installed in Ondokuz Mayis University 
Computer Laboratory for collecting real time disturbances data for each three phases in 
order to test for proposed algorithms. Firstly, we used Hilbert Huang Transform to 
genarate Instantaneous Amplitude (IA) feature signal. Then Characteristic features are 
attained from IA. The 4 features, mean, standard deviation, skewness, kurtosis of IA are 
calculated.  Support Vector Machines (SVMs) and C4.5 Decision Tree methods are 
conducted for classification of the disturbance. Secondly we used Fishers Discriminant 
Ratio for selecting statistical features such as mean, standard deviation, skewness and 
kurtosis of the normal and voltage sag signals for this part K Means Clustering Method 
were performed for classification of the disturbance.  Consecuently, SVMs, C4.5 Decision 
Tree and K Means Clustering Methods were performed also their achievements were 
matched for error rates and CPU timing.  
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with a phase correction factor. This method’s disadvantage is 
having large computation time.  Since ST is a Fourier-based 
technique, it also deteriorates from the handicaps of Fast Fourier 
Transform (FFT) [18, 20, 47, 48, 49]. On the other hand, the 
Hilbert Huang Transform (HHT), signals are extracted for 
different oscillation modes called intrinsic mode functions 
(IMFs). These functions are related to different time scales. 
Application of Hilbert transform to these IMFs can indicate the 
instantaneous amplitudes (IA) and the instantaneous frequencies 
(IF). Therefore, HHT can give a reasonably better time-frequency 
pattern representations for non-stationary signals [6, 11, 12, 13, 
18, 19, 21]. In the light of this information, we used the HHT for 
generating IA signals from the voltage sag signal Firstly, for 3 
phases (L1-N, L2-N, L3-N) real time processing the first intrinsic 
mode function is removed with the addition (superposition) of 
remain components to reconstruct the analyzed signal. Secondly, 
we generate features with the help of statistical functions such as 
mean, Standard deviation, skewness and kurtosis. For Diagnosis 
part we utilized Support Vector Machines, Decision Tree, and K 
Means Clustering Methods. These methods have performed also 
their achievements were matched for error rates and CPU timing. 

2. Material and Methods 

2.1. Signal Processing Methods for Feature Generation 

     Unlike the traditional methods such as STFT (Short time 
fourier Transform), Wavelet Transform (WT) and Stockwell 
Transform (ST), Hilbert Huang Transform (HHT), especially for 
noise assisted PQ disturbances signals, provides better and useful 
representation in order to detect the disturbance. Disadvantages 
and advantages of signal processing methods for feature 
generation procedure summarized in Table I. 
 
Table I. Comparison of feature extraction methods for PQ disturbances 

[11, 18, 21] 

 Disadvantages Advantages 
STFT  Basis: Non-adaptive 

Completely Theoretical 
 

 Not acceptable for non-stationary 
signal as it does not follow signal 
oscillation accurately because of 
limitation of fixed window width 

 
 

Profitably handle for stationary 
signals where properties of signals 
do not derive in time. Quite simple 

in application. 

WT Basis: Non-adaptive 
Completely Theoretical 

 
Fully affected by noise present in 
the signal, adversity from spectral 

leakage effects 

 
Gives local illustration in both time 
and frequency. Thus, suitable good 

time– frequency resolution is 
appropriate. 

ST Basis: Non-adaptive 
Completely Theoretical 

 
Does not accomplish real-time 

requirement based on block 
processing, false harmonics 

measurement owing to dependency 
of frequency window width 

 
 

Maintain time and frequency 
representation. Good time-frequency 

resolution. 
 

HHT  
 
 
 

Limited for narrow band conditions   
Mode mixing and end effect 

problems 

Basis: Adaptive 
Empirical 

 
Conveniently applicable to non-

linear and non-stationary processes.  
Generates perpendicular IMFs  

whereby instantaneous amplitude 
and phase can be easily assessed be 

easily evaluated 

2.2. Stockwell transform (S- transform)  

       The S-transform is a time–frequency plane gadget produced 
by the mixture of wavelet and short time fourier transform It 

generates a time– frequency plane of a time series. It individually 
merges a frequency dependent resolution that contains the real 
and imaginary part of spectrum. Gaussian modulated co-sinusoids 
are the primary function for the S-transform [6, 7]. The Short 
Time Fourier Transform (STFT) of signal x(t) is explained in 
equation 1. 

∫
∞
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τ and f stand for the time of spectral localization and Fourier 
frequency,  g(t) shows a window function. The S transform could 
stem from (1) by putting into g(t) with the Gaussian function, 
explained in equation 2. 
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If the window of S transform is wider in time, it gives better 
frequency resolution for lower frequency. Whereas the window is 
narrower, it gives superior time resolution for higher frequency, 
namely trade-off between time and frequency resolution [18, 20].  

 
Figure 1.  STransform Contours of Normal – Voltage Sag Cases 

   S-Transform is not capable of detecting noise as much as HHT 
in real time measurements [8, 32] (Figure 1). However, it is 
clearly shown that ST can produce valid features for detecting 
voltage sag.   
2.3. Proposed Method:  Hilbert Huang transform  

    HHT, a self-adaptive signal-processing method, which has 
been applied in non-stationary signal-processing successfully, 
was developed by Huang. EMD method is a sifting iteration, to 
decompose one Intrinsic Mode Function (IMF) component needs 
many times sifting till obtaining last IMF, residual monotonic 
function [9, 10]. Main steps of HHT shown in figure 2. 
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The EMD [11, 12, 13] algorithm the steps:  

Beginning of Sifting Process 

1. Find all maximas and minimas of the signal x(t). 
2. Attain the upper and lower envelope by the cubic spline 

interpolation. 
3. Find  the mean function of the upper and lower envelope 

mean(t). 
4. Calculate the difference signal f(t) = x(t)−mean(t). 
5.  When f(t) becomes a zero-mean process, then the 

iteration stops and f(t) is an Intrinsic Mode Function 
IMF1, c1(t);  otherwise, go first step and replace x(t) with 
f(t). 

6. Calculate the residue signal   res(t) = x(t)−c1(t). 
Iterate the procedure from steps (i) to (vi) to obtain IMF2, 
named c2(t).  To attain cn(t), continue steps (1) till step 
(6) after n iterations.  

 

End of the Sifting Process 
7. The algorithm stops when the final residual signal res(t) 

becomes  a monotonic function. 
 

2.3.1. Ensemble EMD (EEMD) Algorithm 
    The major challenge of the EMD algorithm is the appearance 
of mode mixing. Therefore the EEMD algorithm was performed 
for overcoming the problem in this study [12, 13].  

     Analyzed signal is decomposed using the ensemble empirical 
mode decomposition (EEMD) into intrinsic mode function (IMF) 
that includes instantaneous frequencies (IF) and instantaneous 
amplitudes (IA). When the signal is turn into IMFs, the Hilbert 
transform can formerly be carried out to each IMF giving the IA 
and IF versus time plot. This merging of EEMD process and 
Hilbert transform is known as the HHT [6, 11, 12, 13, 18, 19, 21].  

 

Figure 2.   Main steps of the feature generation routine with HHT 

 
Figure 3a.  Feature vectors (IMF1 (noise) to IMF3) for a voltage sag signal with 

EEMD 

 

Figure 3b.  Feature vectors (IMF4 to Residual (IMF12)) for a voltage sag signal 
with EEMD 

     For 3 phases (L1-N, L2-N, L3-N) real time processing the first 
intrinsic mode function is removed with the addition 
(superposition) of remain components to reconstruct the analyzed 
signal. Fig 3 illustrates first component IMF1 the noise (lowest 
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magnitude highest frequency signal) on the line (L1-N) to the 
lowest frequency component residual, last IMF12. 

 
Figure 4.   IA corresponding to remove first IMF voltage sag condition of signal 

Figure 5.  IF corresponding to remove first IMFs voltage sag condition of signal 

      IF signal can be used for separation for two cases but there is 
end effect problem that has to be solved. When cubic spline fitting 

is computationally demanding, it generates distortions near the 
end points. This is a technical problem that causes data failures 
and peaks at the beginning and at the end of the signal. This fault 
will be investigated on Hilbert-Huang transform (Figure 5). 

3. PQ Disturbances Computational Intelligence Methods  

3.1. Support vector machine (SVM) 

     SVM methods, is developed by Vapnik, whereby statistical 
learning technique being the basis contributes a novel machine 
learning method. SVMs are linked supervised learning methods 
used for classification and regression. SVMs target obtaining 
optimal hyper-planes different classes of input data in a high 
dimensional feature space, thus new test data can be classified by 
acquired the hyper-planes Support vectors lie closest to the 
optimal hyper-plane [7, 14, 18, 21, 28, 34]. 

 Let {xi,yi}, i = 1,2,…,M  be M training data vectors xi with class 
label yi. Given an input vector x, an SVM constructs a classifier 
of the form: 

  )),(()(
1

bxxKyasignxf
M

i
iii += ∑

=

                              

ia  denotes non-negative Lagrange multipliers each of which 
corresponds to a training data, b denotes bias, K(. , .) is a kernel 
fullfilling the conditions of Mercer's theorem [11, 34]. In this 
study we performed two kernel functions are the polynomial 
kernel d

jiji xxxxK )1.(),( += we tested for d=2, 3.  Gaussian 

Radial Basis Function (RBF) 2

2

2),( σ
ji xx

ji exxK
−

−
= we tested 

sigma 0.01 and 1 in this study. 

3.2. Decision Trees  

       Decision trees are methods that utilize divide-and-conquer 
approaches as structure learning by induction [15, 16]. The C4.5 
algorithm was developed by Qinlan, contains the generation of a 
tree whereby a training set, finding the information gain criterion 
with the help of Shannon Entropy in order to find the finest 
attribute/feature to be used at each node.  

3.2.1. Shannon Entropy 

It is given a probability distribution D = (d1, d2,…, dm) the 
Information carried by this distribution entropy of  D is explained 
in equation 5. 

)(log)(
1

i

m
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3.2.2. The Information Gain  

The Information defines the gain for a test t and a position d 
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that values (dj) is the set of all possible values for attribute t. 
Equation 5 can calculate highest ranking attributes and build the 
decision tree where at each node is located the attribute with the 
highest information gain. Furthermore, the algorithm applies the 
post pruning approach to diminish the size of the tree and prohibit 
over fitting. C4.5 is a technique for approximating discrete-valued 
functions that is powerful tool to noisy data and suitable for 
learning distinctive statements [16, 17, 18, 19, 20, 21, 28, 29].  

3.3. K-Means Clustering 

     K-means clustering algorithm is a significant unsupervised 
classification technique to separation of set of dissimilar patterns.  
Same featured patterns are arranged into same clusters, different 
features are replaced in different sets [22, 23].The steps of the 
algorithm: 

 
1. Apply K points into the space illustrated by objects being 

clustered. These points symbolize first group centroids. 
Determine each object to the nearest centroid group.  

2. As objects have been completed, recalculate the 
localizations of the K centroids.  

3. Iterate Steps 1 and 2 until the centroids do not change 
anymore. This creates a separation of the objects into 
groups from which the metric with squared Euclidean 
distance objective function which is defined in equation 
6, can be calculated.  

The objective of this algorithm is to make an objective 
function, minimize the squared error function [35, 36, 37].  

∑∑
= ∈

−=
K

i Sx
ii

ij

xxObj
1

2)( µ
 

K denotes clusters Si, i = 1, 2,..., k, and iµ  is the mean points 
of centroids. 

3.3.1. Fisher’s discriminant ratio (FDR) 

      FDR or SNR (in machine learning) is commonly 
performed to compute the inequitable way of specific features 
between two clusters. Linked with the values of a feature in 
two classes, µ

1
 and µ

2
 be the respective mean values and 

2
1σ  and 2

2σ  the respective variances defined in equation 7 
[38, 39].
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2
2
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4. Experimental Set up and Discussions 

     For experimental studies, we installed PQube Analyzer in 
Ondokuz Mayis University Computer Laboratory for collecting 
real time disturbances data for each three phases in order to test 

for proposed algorithms. 3 phases connected with totally 28 
numbers of PC loads. PQube power meter installation properties 
explained in appendix of the paper. This paper includes 
computational intelligence methods in order to classify voltage 
sag disturbance.  Figure 6 shows 3 phase voltage sag condition 
PQube sample measurements from Computer Laboratory in 
Ondokuz Mayis University including July 2016 to December 
2016.   

 

Figure 6.  Computer laboratory power quality monitor with PQube voltage sag  

 In this study, we apply two methods for identification of voltage 
sag. Selecting appropriate features of voltage sag events are 
highly crucial for diagnosing of the fault properly. Classification 
process of real-time voltage sag disturbances are shown in Figure 
7.  

 
Figure 7. Schematic model of Voltage Sag Classification  
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     First Method, firstly extracted features are produced from 
ensemble empirical mode decomposition (EEMD) method so as 
to classify the voltage sags in grid. After reconstruction signal 
without noisy part, removing first intrinsic mode function (IMF). 
Then instantaneous amplitude (IA) is generated by means of HHT. 
The following features were extracted: mean, standard deviation, 
skewness function results of IA.  

     Second Method, we generated the statistical features from 
PQube 3 phase line voltages. In order to select the best feature 
from the functions, we performed Fisher Discriminant Ratio 
criteria. Selected features which give high ratio for Phase A and 
B are standart deviation and kurtosis, for phase C are mean and 
skewness. Then we used generated features for K Means 
Clustering Methods.  Figure 8 shows selected  features space and 
cluster assignments and centroids of normal and voltage sag 
condition sets. 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Feature Space and Clusters for Phase A  

     To figure out the performance of the proposed power quality 
classification algorithm, a total number of 30 PQube Analyzer real 
time disturbances data were used 15 for normal conditions 15 for 

voltage sag conditions. The PQ signals are divided into two 
categories; 20 of them were used for training and 10 of them were 
used for testing the proposed algorithm with shuffling the data.  
      We analyzed for each three phases separately owing to main 
source connected with different loads (number of computers). 
This study is the first step of our work, second step will be 
searching relations with number of computers for each phases and 
fault percentage. 
 

• In the light of Table II., for phase A, it is concluded that 
for radial basis kernel function sigma 1, gives more proper 
result precision of 100% and CPU time (5.254 sec) in non 
linear SVM. Kernel function for SVM is 

2

2
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ji exxK
−

−
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• For phase B, it is deduced that for radial basis kernel 

function sigma 0.01, gives more accurate result precision 
of 100% and CPU time (3.064 sec) in non linear SVM. 

 

Kernel function for SVM is 2

2

)01.0(2),(
ji xx

ji exxK
−

−

=  
 

• For phase C, it is deduced that for K-Means clustering 
(Euclidean distance function (di,j)), gives better result 
precision of 86.7% and CPU time (0.480 sec).  

))((
1

2
, ∑

=

−=
n

k
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• It is clearly shown in Table II when examining each phases 

K- means clustering algorithm is the fastest algorithm.  
 

• For phase A and B, SVM with RBF sigma=1 gives better 
results for detection voltage sag. 

 
• For three phases, C4.5 decision tree gives same 80% 

recognition rate. 
 
(Note: the most proper and robust classifiers for each phase are 
showed by Red font in Table II). 
 
5. Conclusion 

In this study, we aimed to generate non-time consuming features 
for detection voltage sag in smart grid. We also process and 
classify real time 3 phase voltage sag signals.  In contrast to 
literature studies we do not normalize the features. Thus we can 
relate load types and fault magnitude and duration. Also it is 
processed real-time noise- assisted data. For this reason this study 
gives effective ideas about real time disturbance detection. As a 
result, SVMs, C4.5 Decision Tree and K Means Clustering 
Methods were performed also their achievements were matched 
for error rates and CPU timing. Simulations indicate that K- 
means clustering algorithm is the fastest algorithm. For phase A 
and B, SVM with RBF sigma=1 gives better result for detection 
voltage sag. Simulation results will be using for relation with 
loads types and the magnitude and duration of the voltage sag. 
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Table II.  Performances of disturbance diagnose algorithms 
 

 

Phase A (L1-N) Phase B (L2-N) Phase C (L3-N) 
Error 
rate 
(ER)(%) 

Execution 
time(ET) 
(sec) ER ET ER ET 

SVM-poly  d=2 10 4.088 0 3.321 20 5.883 
SVM-poly  d=3 10 3.929 0 3.636 20 5.489 
SVM-RBF 
sigma =0.01 50 0.738 0 3.064 20 5.805 
SVM-RBF 
sigma =1 0 5.254 0 5.368 50 0.674 
DecisionTree 
C4.5 20 6.20 20 6.835 20 3.514 
K-Means 
(Euclidean 
distance) 6.66 0.693 16.6 0.510 13.3 0.480 
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Table III provides discussions about related signal processing 
methods such as WT, ST HT and for decision part SVM, DT, k-
nearest neighbor (k-nn), Probability Neural Network (PNN). It 
also gives percentages error rates literature studies and the 
proposed methods. It is clearly shown in Table III most of the 
studies reported the results on synthetic normalized an done phase 
data which are absolutely far from real PQ disturbances. Apart 
from the previous studies, detection capability validates the 
potential of the proposed algorithm. To analyze the real time 
power signals and classification techniques were employed with 
Matlab ™ Toolboxes. 
 

Table III.  Performances of disturbance diagnose algorithms 
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Table IV. PQUBE MAINS VOLTAGE MEASURING CHANNELS [33] 
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