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 In this paper we design a large scale reconfigurable digital bio-inspired computing model. 

We consider the reconfigurable and event driven parameters in the developed field-

programmable neuromorphic computing system. The various Intellectual Property (IP) 

cores are developed for the modules such as Block RAM, Differential Clock, Floating Point, 

and First In First Out (FIFO) for the design of the neuron model in Xilinx ISE, with 

exploration of register transfer logic (RTL) and hardware synthesis using Verilog code. The 

architecture for design at device level offers the best possible design tradeoff for specific 

processor architectures and development choices. In this paper we perform algorithmic 

design of a large scale reconfigurable logical bio-inspired computing model. The proposed 

algorithm is implemented on Field Programmable Gate Array (FPGA) to develop a neuron 

model to be utilized in neuromorphic computing system.  
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1. Introduction  
 

This research manuscript is an extension of work originally 

presented in International Conference on Artificial Intelligence 

and Signal Processing [1]. The bio-inspired computing is 

achieved with core building blocks of neuromorphic engineering 

which mainly constitute circuits and systems and is proposed as 

structures of spin devices [2].  

The above direction opens a new path and induces a key approach 

for developing bio-inspired algorithms for implementations of 

bio-inspired algorithm based computing systems [3]. In nature the 

crucial role of learning and memory is achieved with help of 

synapses. The synapses which are plastic in nature, is formed with 

inter cellular connections of neurons, and the combination of these 

biological structures form the basic building blocks of neural 

networks [4]. Synapses can change their state based on the neural 

activity of coupled neurons. The functionality of neurons and 

synapses is mimicked in hardware by utilizing very large scale 

integration technology, plays a key role in design of neuromorphic 

computing systems [5]. The pathway to efficient neuromorphic 

systems is encoding the neural and synaptic functionalities in an 

electronic spin. It shows the potentials to exploit energy efficiency, 

performance, reliability, and magnetization using electric fields, 

and enhanced memory density of spintronic memory devices [6]. 

The bio-inspired computing systems is presented, with an aim to 

establish interaction framework, between two directions of 

natural system computation and artificial system computation [7]. 

In the in-memory computing for emerging memory devices, there 

is no separation between memory and logic, to overcome Von-

Neumann bottleneck and also in-memory computing devices are 

designed with zero-off state power and due to this, they have a 

distinct advantage of the non-volatile state [8]. The in-memory 

computing is combined with a high gate or synapse density which 

enables forming of cross-bar array in the device, which can be 

easily integrated with CMOS with high density, operating with 

high current and voltage consuming high dynamic power, with In-

memory computing device contains long switching time hence 

they operate with limited speed and have limited endurance, again 

the cross-bar in-memory computing is highly parallel, operate 

with low-power, low cost [9]. The verticals of Cross-bar in-

memory computing are bio-inspired computing, deep learning, in-

memory logic, chip/data security, architecture, device modeling 

[10]. The static random access memory latches and capacitors are 

utilized in a very large scale integrated devices, an architecture to 

implement strewed memory elements is embodied in this in-

memory computing device as depicted in Figure 1 is aimed 

towards supporting the use of memristive devices as digital and 

synapse-like memory elements. The key contributions of the 

research manuscript are: 

• Algorithmic design of a large scale reconfigurable logical 

bio-inspired computing model. 

• Implementation of bio-inspired model on FPGA. 
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Figure 1: Block Diagram of FPGA based Bio-Inspired Computing System 

2. Background 

The emerging research architectures which support memory-

based computing, exponential performance scaling, which 

enables mixed mode technology solutions. The problem of 

establishing the bridge between natural and artificial computation 

is one of motivation which illuminates the bio-inspired 

computation in artificial systems [11]. The paradox of 

programming a bio-inspired computer is the need to figure out the 

new class of algorithms, we are also missing out some very 

important basic concepts. The intelligent computational system 

are initially built with a Boolean logic or functions, next through 

logical  phase, and  into semiconductor technology phase, further 

into computational complexity phase and ends at an experimental 

computation phase [12]. The lesson learnt here is while dealing 

with intelligence the first stage is to probe into evolution, 

complexity, and also thermodynamics which is not an equivalent 

of a Boolean logic or functions, during the second stage new and 

novel electronics technology is required which is not an 

equivalent of electronics technology, which was defined during 

the computation phase, in the further stage the implementation 

complexity is not an equivalent to computational complexity, and 

the final stage is the practical intelligence stage which is also not 

an equivalent practical computation stage, defined during process 

of computation [13]. The factor synaptic plasticity, which 

accounts for the determination of the magnitude of the synaptic 

weights. The plasticity is also called as the learning of the synaptic 

junctions which probes the cognitive abilities to the bio-inspired 

architectures [14]. For analysis, if an experiment is performed 

considering the circuit with four access transistors to decouple 

read and write current paths, with the peripheral circuits for timing 

window, and aimed towards the spike-timing-dependent plasticity 

(STDP) implementation. Apart from these four transistors, one 

more transistor named as MSTDP is also connected to pre-charge 

line in the circuit, which is responsible to implement the STDP 

and this transistor is biased in the sub threshold saturation regime. 

The gate voltage of MSTDP transistor is called as PRE voltage, 

which starts increasing linearly as the pre neuron spikes [15]. As 

the post neuron is triggered, the POST signal is activated with the 

current flows through the device. The current is also known as the 

programming current , which is the 1 ns duration write current and 

is exponentially related with the magnitude to the delay factor of 

pre-neuron and post-neuron spikes. As the STDP measurements 

are taken between the % changes in the synaptic weights with 

respect to spike timing difference in (ms) , the synaptic weight is 

updated which depends on difference in the timing of post and pre 

neuron spikes[16].   

3. Algorithm Design 

In this section the design of algorithm is enumerated for a FPGA 

based large scale logical reconfigurable neuron model.  

Algorithm 1: Algorithm for FPGA Top Level Module 

Result: Top Level module of IP Block 

Model initialization; 

while Apply Clock Signal do 

   Instantiate Clock Signal;   

   if FSM Instantiation then   

  Select RAM; 

Select MATMUL 

   

      

  Else    

  Compute: 

Communication Unit; 

Initialize UART; 

Initialize FIFO; 

   

  End 

Emulate layer of  network; 

Read Weight RAM; 

Load input RAM; 

Process data as perceptron; 

   

End    

To realize the spiking neural functionalities by utilizing the leaky-

integrate magnetization dynamics [17]. To enable the abstraction 

of the magnetic functions as stochastic spiking neurons, the 

parameter required is the thermal noise which is prevalent in 

nano-magnets at certain temperatures which are not equal to zero 

[18]. The reconfigurable neuron model consists of two units such 

as finite state machine unit (FSM) unit and communication unit. 

The Algorithm 1 illustrates the abstract view of the top level 

model hierarchy. The IP core module as described in Figure 2(a) 

emulates the layer of the network and loads data (weight or input) 

and then process the data to obtain the synapse weight output as 

depicted in Figure 2(b). Further the flag signal is controlled in  
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Figure 2: (a) IP-core module (b) Details of synapse weight information 

 

Figure 3: RTL schematic of Top Layer with sub-module Read/Write Memory 

order to make the FSM to halt while the other sub programs are 

running [19]. The layer of the network is mimicked with reading 

the weight information from weight RAM, along with load input 

data from input RAM and processing the data as a simple neuron 

model [20]. The 8 bit parameter data width is applied as input to 

FPGA from data floating unit of USB module and from FPGA the 

parameter data is passed to FIFO block. The input data is further 

connected to din of input RAM, along with connecting row index 

to address of input RAM, and connection of read data to input of 

outgoing FIFO [21]. The outputs of last add operation is directly 

wired to the resultant RAM. The data packets are segmented at 

this stage and the information of data packets are available at the 

next stage. In the next stage the packet data is segmented into 

respective component registers. Write the input and weight data 

to padded variables when flag is high. The Figure 3 illustrates the 

above design process as sub-module read and write memory with 

FSM unit (with block RAM, Transmit FIFO, Receive FIFO) and 

universal asynchronous receiver and transmitter (UART) unit. 

Further also describes the communication link between FSM unit 

and the UART unit. Here the data sent from universal serial bus 

(USB) transforms to parallel data and is then sent to the FIFO for 

processing [22]. The Figure 3 can be considered as register 

transfer logic (RTL) schematic of the top layer module. 

4. Implementation 

In this section the implementation details of large scale 

reconfigurable digital bio-inspired computing model is described. 

The algorithm described is implemented on the hardware FPGA 

environment satisfying the requirement of hardware combined 

with the software co-design concept. The hardware used is FPGA 

ALTERA DE2 with a cyclone chip.  

 

The Figure 4 represents the topology of the FSM of a RAM 

read/write process with FIFO pop data in sequence. The complete 

architecture of the bio-inspired computing system consists of 

system controller based on an advanced reduced instruction set 

computing (RISC) machine (ARM) processor, core-array of two 

dimensions, and a UART Controller. The interpretation of data is 

dependent of the order of popping the data. Sub-module 

MATMUL contains two dot product operations in parallel, which 

consists of floating point IPs as shown in Figure 5 in the form of  
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Figure 4: FSM Topology of Read/Write Process 

 

 
 

Figure 5: Submodule Dot Product Module/Process 

 

 
 

Figure 6: Information Transfer Packet 
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Figure 7: Implementation of a single core consists of 16 inputs and 4 outputs, implying that the weight RAM is 64 rows in depth. 

 

 
Figure 8: (a) The bio-inspired computing system setup (b) FPGA ALTERA DE2 Board setup with Xilinx JTAG adapter

The implementation of a single core consists of 16 inputs and 4 

outputs, implying that the weight RAM is 64 rows in depth as 

described in Figure 7. The implementation of bio-inspired 

computing system is done on Altera Cyclone IV FPGA contained 

as a part of ALTERA DE2 Board. The VERILOG language was 

used to program the bio-inspired framework and compiled in 

Xilinx ISE platform with x86 64 bit CPU executing on Linux 

Ubuntu 16.04 operating system. 
 

5. Results Obtained 

In this section the results obtained with various Intellectual 

Property (IP) cores which are developed for the modules such as 

Block RAM, Differential Clock, Floating Point, and First In First 

Out (FIFO) for the design of the neuron model in Xilinx ISE, with 

exploration of register transfer logic (RTL) and hardware 

synthesis using Verilog code are presented.  

The Figure 8(a) depicts the complete setup of bio-inspired 

computing system implementation and the Figure 8(b) represents 

JTAG adapter connection with FPGA ALTERA DE2 Board. The 

Figure 9 illustrates the behavioral simulation of developed 

reconfigurable bio-inspired computing is obtained in Xilinx ISE 

environment. We can look at output ram data out signal to double 

check if the data is correct in simulation. The execution is based 

on vector less activity propagation with peak memory and 

execution is carried out in Vivado-v-2014.2 FPGA has 

considerable static power consumption, but normally efficient 

power is measured as difference in idle state and real-time data 

processing for the machine.  

The equation for obtaining the parameters is described in 

Equation (1). 

% Synaptic Pruning = (Number of Neurons pruned) / (Size of 

Network x Accuracy x Energy)                (1)
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Figure 9: Behavioral simulation of the developed reconfigurable bio-inspired computing architecture 

Table 1: Design Trade-off Parameters  

Parameters  

[23], [24], [25] 

Existing Neuron 

Model  

Proposed 

Neuron Model 

Efficiency 

Improvement 

Performance 

Improvement 

1. Computational 

Efficiency 

2.3 x Enhanced 2 x Enhanced 0.36 % 89 % 

2. Energy efficiency 2.8 x Enhanced 3.2x Enhanced - High 

3. Throughput High High - - 

4. Accuracy 90.02% 90.4% 1.69 % 90 % 

5. Entropy 10% - 25% for 

800 Neurons 

12 % for 100 

Neurons 

- 2 % 

On the other hand, a poor input output reflects the system glitch 

at which glue logic in FPGA DE2 board is affected in worst case, 

as the system changes the incoming events dynamically. The 

Table 1 depicts the architecture considerations for design at 

device level and offers the best possible design tradeoff for 

specific processor architectures and development choices. The 

parameters are described in Table 1 such as Computational 

Efficiency, Energy Consumption, Throughput, Accuracy, 

Entropy are compared with previous work with existing neuron 

model with the proposed neuron model. It is noteworthy that in 

the proposed design except LUT all other parameters have the 

same value for logic utilization post synthesis and post 

implementation, the reason behind this is the designed system is 

more of device specific. During Idle mode, the device does not 

process events and therefore there is no computation. The 

ADC14DS065/080/095/105 converts the analog data into 14 bit 

words, but it outputs the data on 1 or 2 serial data lines per channel. 

The digital output operates at LVCMOS voltage levels except for 

the serial signals and clock outputs LVDS signals.  

These devices operate up to 65 million samples per second (MSPS) 

in a single lane mode while the higher data rates operate in a dual 

lane mode, each lane operates at half the data rate to keep the 

required clock frequencies from being excessive. Using this 

technique, the FPGA interface can support the highest data rate of 

105 (MSPS) with a high throughput as shown in Table 1. The 

FPGA then will combine the two data streams appropriately to 

create the correct signals.  

The serial data bus uses less board space for the signals, is easier 

to route and achieves similar data rates to a parallel interface with 

less wires for data bus. The parallel data bus from the ADC14155 

can be connected to the FPGA using an I/O bank configured for 

1.8 LVCMOS inputs. The data rate of this bus is 5-155 MHz, 

which is well within the I/O capabilities of the FPGA.  

The designed FPGA module further consists of the blocks 

required for interfacing an ADC with the FPGA with 3.2x 

enhanced energy efficiency and 2x enhanced computational 

efficiency as described in Table 1. 
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Figure 10: Flow diagram of the FPGA Response mechanism of developed reconfigurable bio-inspired computing architecture 

The signals such as RESET and SEN indicate the reset state and 

serial enable state respectively of FPGA device selected.  The 

serial register reset pulse is greater than 10 ns. If RESET=1; SEN=1 

then the FPGA is in the reset state, if the signals RESET=0; SEN=1 

then the FPGA is RESET_T_LOW_STATE, and if RESET = 0; 

SEN= 0, then the FPGA is in serial enable state. The Figure 10 

illustrates the flow diagram which forms the basis for algorithm 

designed to implement a bio-inspired computing system. The 

A_COUNT is the address count for generating the address and 

D_COUNT is the data count to generate configuration data.  To 

enable the serial interface of analog to digital converter (ADC), 

the serial registers were first reset to the default values and the 

RESET pin was kept low.  

Serial enable (SEN), serial data (SDATA), and serial clock (SCLOCK) 

function as serial interface pins in this mode were used to access 

the internal registers of the ADC. The registers were reset either 

by applying a pulse on the RESET pin or by setting RESET bit 

high.  

             (RESET_STATE) 

             RESET=1; SEN=1 

 

           (RESET_T_LOW_STATE) 

             RESET = 0; SEN = 1 

 

        

(SERIAL_ENABLE_STATE) 

             RESET = 0; SEN = 0 

 

  (SERIAL_ADDRESS_IN_STATE) 

             

 

If A_Count =7 

           
(SERIAL_DATA_IN_STATE) 

                  

 

If D_Count =7 

Stop 

COUNT 

ADDRESS/DATA 

Start 
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Figure 11: Spike Cross Correlation mechanism of developed reconfigurable bio-inspired computing architecture 

 
Figure 12: Rate of Change of BRAM generation in Cyclone-V FPGA Block Latency 

 

For the increased flexibility, a combination of serial interface 

registers and parallel pin controls (CTRL1 to CTRL3) were used 

to configure the device. To enable this option, RESET pin was 

configured low. The parallel interface control pins CTRL1 to 

CTRL3 were available. After power up, the device is 

automatically configured according to the voltage settings on 

these pins. In the bus of ADC test for the CYCLONE-V FPGA 

device, the selected component bus is the 12 channel ADC_RAM 

component. The data captured through the single clock, the 

signals included are clock signals such as clk_p, clk_m, the reset 

signal and the 14 bit input and output data vector signals along 

with a data type register which is 14 bit vector. The timings of the 

spikes are analyzed, in a cross correlation of the spikes timings 

over the FPGA implementation. It is observed that 93% and 92% 

of the spikes are correlated in the 32 and 16-bits implementation 

respectively with the implementation with a zero lag delay. On 

the other hand, 8-bit implementation is slightly different, with 87% 

of the spike shifted between 0 and 3ms and centered in a 1.5ms 

shift average with entropy of ~12 % for 100 Neurons with ~2% of 

performance improvement as described in the Table 1. The analog 

to digital converter configuration through the serial mode with the 

signals as seen in spike cross correlation simulation result 

depicted in the Figure 11. The signals are clock, reset, serial clock, 

adc_ reset, serial data enable, serial data, and state of the system, 

the address data consists of a 16 bit vector and these parameters 

are calculated in terms of rate of change of Block-RAM 

generation in Cyclone-V FPGA as depicted in Figure 12 and with 

differential clock simulation time in FPGA based bio-inspired 

computing module is illustrated in Figure 13.
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Figure 13: Differential Clock simulation time (in ms) for 1 ms real step in Cyclone-V 

6. Conclusions 

In this paper the FPGA based algorithmic design of a large scale 

reconfigurable logical bio-inspired computing model is carried 

out. The proposed algorithm is implemented on Field 

Programmable Gate Array to develop a neuron model to be 

utilized in neuromorphic computing system. The reconfigurable 

and event driven parameters are considered with the various 

Intellectual Property (IP) cores are developed for the modules 

such as Block RAM, Differential Clock, Floating Point, and First 

in First out (FIFO) for the design of the neuron model in Xilinx 

ISE, with exploration of register transfer logic (RTL) and 

hardware synthesis using Verilog code. The architecture for 

design at device level offers the best possible design tradeoff for 

specific processor architectures and development choices are 

summarized. This research paves a way for design of architecture 

that can be compatible for convolution neural network Artificial 

Neural Network (ANN).  
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