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This study investigates the synchronization issue of multiple robot 
manipulators in the presence of time delay. Since several previous 
works based on synchronization task neglect the communication delay, 
in this paper we develop a finite time stability based on a Lyaponov 
functional for synchronization of a networked robotic system where 
time delay exists during the communication between robots. To this 
effect, we consider a second order sliding mode control (SMC) combined 
with the cross coupling concept in order to ensure the position 
synchronization of networked robot manipulators. Furthermore, the 
stability of the proposed controller with communication’s delay has 
been proved. Simulation results illustrate satisfactory performances
which prove the efficiency of the proposed approach.
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1 Introduction

Over the past few decades, an increasing interest has
been noticed on the interconnected systems in several
fields of research [1, 2]. In fact, cooperative and coor-
dinated control have attracted several research com-
munities such as: biology [3]; artificial intelligence
[4]; wireless sensor networks[ 5, 6]; control of mobile
robot[7, 8]; spacecraft [9, 10]. The synchronized con-
trol of robot manipulators has been firstly presented
in [11, 12]. Subsequently, further research results on
the synchronization of robot manipulators have been
published [13, 14]. It is recognized that the existing
synchronization works as aforementioned are all for
motion control. In this context, motion synchroniza-
tion of multi agent systems has attracted much atten-
tion in various applications including the industrial
assembling, automatic control of multi agent systems
such as the control of robot manipulators [15, 16].

As an illustration, in [17] position synchronization
of multiple motion axes has been studied. Motion
synchronization has also been used in more complex
mechanical systems especially the nonlinear robot
systems. Furthermore, where flexibility and maneu-
verability are highly recommended [13, 18, 19], with
the increasing complexity of evolved and specific ap-
plications, manipulability can’t be fulfilled by a sim-
ple robot. For this reason, the use of cooperative

schemes for multiple robots can present a better so-
lution to realize more robust multi agent system con-
trols, where each robots operates cooperatively, and
receives feedbacks from each others to achieve a con-
solidated goal [11, 20].

Furthermore, most of the real systems are known
by nonlinearities such as robotic field. For this reason,
the formulation for robust control laws is required,in
the sense that it is able to ensure the system stability
and the robustness via external disturbances and pa-
rameters variations [21, 22]. Otherwise, several con-
trol methods have been used to synchronize various
complex systems such as: adaptative control [23, 24];
sliding mode control(SMC) [25, 26, 27]; neural net-
works [28] etc.

Among several dynamic behaviors, the synchro-
nized motion control and the stability of complex
nonlinear systems are considered between the most
important research topics during several years [29,
30]. The mutual synchronization of robotic systems
without time delay has been absolutely studied by
several communities [11, 13]. Nevertheless, and due
to the importance of cooperative research using multi-
ple agents and within its wide range applications, the
control algorithm suffers from some disturbing fac-
tors that can’t be neglected such as time delays com-
munication, communication interruption, packet col-
lisions etc. Time delay communication is commonly
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known in biological and physical networks, owing to
the finite velocity of communication as well as traffic
congestions [31, 32, 33]. In multi−agent robotic sys-
tems, the time delay is only considered at the level of
the information arriving to a robot and coming from
sensors of its neighbors, while information from its
own sensors is processed immediately.

The presence of this communication constraint
makes the dynamical behaviours more complicated,
can lead to undesirable transient response, reduces
the performances of the networked systems or even
the instability of the system [33, 34, 35]. Referring to
the cross-coupling technique, several works have been
suggested to improve the performances of the syn-
chronization of multi axis motions [36, 37]. Later on,
[38] proposed a control algorithm in order to synchro-
nize networked systems in the presence of time delays
[39, 40]. In the light of what was said, we present
in this paper a synchronizing SMC algorithm for the
control of a time delayed multi agent system in order
to prove the effectiveness and the stability of the pro-
posed approach.

1.1 Contribution

The subject of this paper is to realize the motion
control of complex networked robotic systems in the
presence of time delays.
Since the robot requires an interaction with its envi-
ronment to achieve its goal, and in the absence of a
suitable sensor, the robot remains blind. For this rea-
son, and in order to reproduce human capacities for
perception and action in robotic systems, researchers
adopt the integration of data from a surveillance cam-
era.
This camera is a great way to provide security to
the target location. Nowadays, the surveillance cam-
eras can also be set to be motion activated, recording
footage when motion triggers them. Many range of
cameras also includes outdoor security cameras and
wifi cameras in order to effectively control the moni-
toring task.
Therefore, a second order sliding mode strategy has
been considered and exhibited on a 3 degrees of
freedom(3DOF) surveillance camera system, where
we focus on the manipulative arm managing the cam-
era movements.
Then, to guarantee the overall vision of the proposed
framework, we combine a muli robot manipulators,
where each robot must synchronize its movement
with other teammates using the cross-coupling ap-
proach .
The main goal of this work is to realize a common and
performant motion control task of multi-agent robot
manipulators based on the cross coupled second or-
der sliding mode approach design, by reducing the
chattering impact, and achieving robust communica-
tion between agents which make the system stronger
against disturbances, uncertainties, breakdowns and
also able to compensate the existence of communica-
tion delay.

2 Second Order Sliding mode con-
troller

2.1 Preliminaries

Sliding mode control is a robust nonlinear strategy
[41, 46, 47]. Such Variable Structure Control (VSC)
is considered as a discontinuous feedback approach
where its design is divided into two parts: the reach-
ing phase (system trajectories are forced to reach a
specific surface in the state space then to remain on
it) and the sliding phase (Figure 1).
The Sliding Mode approach is developed using the
Lyaponov Theory in order to ensure the convergence
to the sliding surface (s(x) = 0):

ST Ṡ < 0 (1)

where the sliding surface S is chosen as:

S(x) = Y (x − xd) (2)

in which: xd is the desired trajectory and Y is a matrix
chosen such away x acheives xd .
The structure of the proposed controller is composed
of two terms:

u = ueq +∆u (3)

where ueq is the equivalent control which ensure the
”reaching phase” and ∆u is the corrective term used
to avoid all deviations from the sliding surface.
The expression of the equivalent term can be deduced
from the following equation:

Ṡ = F(x) +G(x)u = 0 7→ ueq = −[G(x)]−1F(x) (4)

where F(x) and G(x) are defined by the affine state
equation of a nonlinear system (ẋ = f (x) + g(x)u).
Moreover, the corrective term can be described as fol-
lows:

∆u = −[G(x)]−1W sign(S) (5)

where W is a definite positive matrix.

2.2 Second Order Sliding Mode Control

As it is mentioned above, this robust approach suf-
fers from the undesirable chattering phenomenon [14,
34] induced by the corrective term ∆u, whose im-
pact is manifested by the existence of perturbing high
switching frequencies in the control inputs [21, 42].
More precisely, this problem involves fast and sudden
changing control signals which lead to low accuracy
and even damage the mechanical parts. Therefore,
several methods have been developed in order to over-
come this annoying phenomenon [22].
In this context, the second order sliding mode ap-
proach presents an enhancement of the classical SMC
by the introduction of a filtering action in the con-
troller.
Such an action greatly reduces the major drawback of
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Figure 1: Phases of Sliding Mode Control

the simple SMC which is the chattering phenomenon.
Hence, the second order SMC has been considered as
the most useful among the high order SMC thanks to
its relative simplicity of application, compared to the
higher order controls [43, 44, 45].
Then, the sliding surface derivative of the second or-
der SMC approach has been modified as follows :

ṡi = σi 7→ ∆ui = [Wg(x)]−1σi (6)

The new description of the dynamic control behavior
can be written as follows: ṡi = σi

σ̇i = −a0 si − a1 σi + vi
(7)

where a0, a1 are positive scalars and vi is a vari-
able control of SMC. This study presents multi-input-
multi-output systems. Furthermore, the expression of
σ̇i can be deduced from the equality A(p) = 0 of the
following Hurwitz polynomial (which its roots have
negative real parts) :

A(p) = (p+µ)2 (8)

where µ is a positive scalar.
In order to ensure the stability, the representation (7)
can be reformulated as the condensed form:

Żi = φZi + Γ vi (9)

in which:(
ṡi
σ̇i

)
︸︷︷︸
Żi

=
(

0 I
−µ2I −2µI

)
︸            ︷︷            ︸

φ

(
Si
σi

)
+

(
0
1

)
︸︷︷︸

Γ

vi (10)

where 0 is the null matrix, I is the identity matrix and
the discontinuous term vi is given by .

vi = −Q sign (Γ T LSi) (11)

whereQ = [q1,q2, ...,qn] and L are positive definite ma-
trix.

3 Mutual SMC synchronization al-
gorithm

3.1 Mathematical model

A robotic manipulator arm designed to be equipped
with a surveillance camera system presents the
adopted dynamic model of this study (Figure 2).

Using the Lagrangian formulation, the motion equa-
tion of a manipulator robot ”i” can be written as: [46]

Mi(qi)q̈i +Ci(qi , q̇i)q̇i +Gi(qi) = τi (12)

where:

• qi(t) ∈ Rn is the measured articulation vector of
the manipulator (joint position),

• q̇i ∈Rn is the velocity vector,

• q̈i ∈Rn is the joint acceleration vector,

• Mi(qi) ∈ R
n×n is the symmetric uniformly

bounded and positive definite inertia matrix,

• Ci(qi , q̇i)q̇i ∈Rn represents the vector expressing
Coriolis and centrifugal forces,

• Gi(qi) ∈Rn is the vector of gravitational torques,

• u = τi ∈Rn denotes the control torque.

3.2 Cross Coupling technique

In this work, we take into consideration the syn-
chronization of multiple robot manipulators. In this
context, we propose decentralized control laws for n
robots manipulators for which each robot synchro-
nizes its position with the other neighbor agents and
track the same desired trajectory. Specifically, using
the synchronization approach, manipulators are con-
trolled in a synchronous manner so that the track-
ing errors and the synchronization errors converge
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Figure 2: Example of 3DOF robot manipulator

to zero where the synchronization error is consid-
ered to be a differential position between coordinated
agents. In order to achieve a coordinated control
motion, an effective synchronization method namely
the Cross Coupling concept is carried out where the
whole multi-robot manipulators is used as a unique
generalized system [47, 48, 49].
The cross coupling design was firstly introduced by
[2], then its concept has been used mainly for ma-
chine tools [50, 51]. Later on, it has been applied in
the robotic fields by [52]. The main idea of such a
procedure is to create a global error of the model [36,
53].
In the light of what was said, the tracking error can be
written as follows:

ηi(t) = qi(t)− qd(t) (13)

where qd(t) ∈Rn denotes the desired position.
The vector ηi will give insight on the joint positions
convergence to the desired trajectory. The proposed
cross coupling concept suggests a suitable synchro-
nization error which is defined as follows:

ξi(t) =
∑p
j,iΛij [qi(t)− qj (t − τ)]

=
∑
Λij (qi(t)− qd(t))−

∑
Λij (qj (t − τ)− qd(t − τ))

+
∑
Λij (qd(t)− qd(t − τ))

=
∑
Λijηi −

∑
Λijηj (t − τ) +

∑
Λij [qd(t)− qd(t − τ)]

(14)
where Λij is a symetric positive definite matrix which
reveals an idea about the communication quality be-
tween the ith and jth agents.
Thus, in order to attain a robust controller for multi
robot systems, and to ensure a synchronous trajectory
tracking in the presence of communication data de-
lay, we define the following global error expression
(for robot i):

εi = ηi +
∫ t

t0

ξi(α)dα (15)

where we note that this error expression includes both
synchronization error and trajectory tracking error

defined above.
Then, its derivative can be considered as follows:

ε̇i = η̇i + ξi (16)

Let’s define the sliding mode surface :

si = ε̇i +λiεi (17)

where λi > 0 . Then, we obtain:

η̇i = −ξi −λiεi + si (18)

Having in mind the expression of (14), we obtain the
following expression:

η̇i = −
∑
Λijηi +

∑
Λijηi(t − τ)

−
∑
Λij [qd(t)− qd(t − τ)]−λiεi + si

(19)

In order to simplify the previous expression, we de-
fine:
di =

∑
Λij [qd(t)− qd(t − τ)].

Thus:
η̇ = Aη +Bη(t − τ) + d −Λε+ S (20)

where:

A =


−
∑
Λ1j · · · 0
...

. . .
...

0 · · · −
∑
Λnj

 , η =


η1
η2
...
ηn



B =


0

∑
Λ12 · · ·

∑
Λ1n∑

Λ21
∑
Λ23 · · ·

∑
Λ2n

...
. . .

...∑
Λn1 · · · 0

, S =


s1
s2
...
sn



d =


d1
d2
...
dn

, Λ =


λ1I · · · 0
...

. . .
...

0 · · · λnI


The equivalent control expression can be deduced

from the equality ṡi = 0 then, we obtain:

ueqi =Mi[q̈d − ξ̇i +λi(ξi + η̇i)]+Ci(qi , q̇i)q̇i +gi(qi) (21)
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3.3 Theorem

The control law:

u = ueqi +∆u (22)

where: ueqi is expressed in equation (21) and ∆u is
given by:

∆u =NR−1[Nε − P η −ΛS −KsignS] (23)

with N is a diagonal, symmetric definite positive ma-
trix which stabilities the proposed system composed
by n manipulators.
Remembering that for the Second Order Sliding Mode
Control, the sliding surface becomes ṡi = σi and taken
into consideration equation (17), we obtain:

q̈i − q̈d +
∑

Λij (q̇i − q̇j )+λi[q̇i − q̇d +
∑

Λij (qi −qj )] = σi
(24)

Retaking the mathematical model equation (12) and
substituting it in the previous equation gives:

σi =M−1
i [τi −Ci(qi , q̇i)q̇i −Gi(qi)]

+
∑
Λij (q̇i − q̇j ) +λi[q̇i − q̇d +

∑
Λij (qi − qj )]− q̈d

And consequently,:

τi = Ci(qi , q̇i)q̇i +Gi(qi) +Mi[q̈d −
∑
Λij (q̇i − q̇j )

−λi[(q̇i − q̇d) +
∑
Λij (qi − qj )] + σi]

(25)

4 Proof of the Stability Analysis

In order to prove the stability of the considered multi
agent system, a first Lyaponov function is chosen as
follows:

V1 = ηT P η (26)

Its derivative yields:

V̇1 = ηT (PA+AT P )η+2ηT P (Bη(t−τ)+d−Λε+S) (27)

The second function is expressed as:

V2 =
∫ t

t−τ
ηTHηdα (28)

where:

V̇2 = ηTHη − η(t − τ)THη(t − τ) (29)

Then and in order to simplify the expression of V̇1+V̇2,
we firstly compute the sub −equation:
2ηT P Bη(t − τ)− η(t − τ)THη(t − τ).

So, we denote that ζ1 = ρ1η(t − τ) − 1
ρ1
D−1BT P η(t)

Consequently:

V̇1 + V̇2 = ηT (PA+AT P )η + 2ηT P (d −Λε+ S)

+ηTHη − ζ1Dζ1 + ρ2
1η

T P BD−1BT P η

+ 1
ρ2

1
η(t − τ)TDη(t − τ)− η(t − τ)THη(t − τ)

(30)
After that, we regroup all terms of the previous equa-
tion:

V̇1 + V̇2 = ηT (PA+AT P +H + ρ2
1P BD

−1BT P )η

−ζT1 Dζ1 − η(t − τ)T (H − 1
ρ2

1
D)

where H and D are positive definite matrix while P ,
N are symetric positive matrix.
It’s obvious from the previous equation that there are
three terms relative to d, ε and S which should been
developed. Consequently:

2ηT P d = −ζT2 ζ2 + ρ2
2η

T η +
1

ρ2
2

dT P 2d

in which:

 ζ2 = ρ2η − 1
ρ2
P d

−2ηTΛε = −ζT3 ζ3 + ρ2
3η

T η 1
ρ2

3
εTΛTΛε

where ζ3 = ρ3η − 1
ρ3
Λε.

In the sequel, we introduce new terms V3 and V4
to complete the stability verification of the proposed
synchronized control schemes such that: V3 = εTNε

V4 = STRS
(31)

The differentiation with respect of time gives:
V̇3 = 2εTN (s −Λε) = −εT (NΛ+ΛTN )ε
−2εTNs

V̇4 = 2ṠTRS
(32)

Therefore, we develop the following terms:
2ηT P S = −ζT4 ζ4 + ρ2

4η
T η + 1

ρ2
4
ST P 2S

−2εTNS = −ζT5 ζ5 + ρ2
5ε
T ε+ 1

ρ2
5
STN2S

(33)

in which ζ4 = ρ4η − 1
ρ4
P S and ζ5 = ρ5ε+ 1

ρ5
NS.

Finally, the derivative of the global Lyaponov func-
tion
V = V1 +V2 +V3 +V4 yields:

V̇ = ηT (PA+AT P +H + ρ2
1P BD

−1BT P + ρ2
2I + ρ2

3I

+ρ2
4I)η − ζ

T
1 Dζ1 − ζT2 ζ2 − ζT3 ζ3 − ζT4 ζ4 − ζT5 ζ5

−η(t − τ)T (H − 1
ρ2

1
D)η(t − τ)− εT (NΛ+ΛTN

+ρ2
5I −

1
ρ2

3
ΛTΛ)ε+ 2ST (RṠ −Nε+ P η) + 1

ρ2
2
dT P 2d
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Figure 3: Simulation in the presence of external disturbances: (a) Positions evolutions in the presence of low
measurement noises, (b) Velovities evolutions in the presence of low measurement noises

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

J
o

in
t 1

[N
.m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

J
o

in
t 2

[N
.m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

Time [s]

J
o

in
t 3

[N
.m

]

 

 

Joints torques

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

J
o

in
t 1

[N
.m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

J
o

in
t 2

[N
.m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.4

0.5

0.6

0.7

Time [s]

J
o

in
t 3

[N
.m

]

 

 

Joints torques

(b)

Figure 4: Simulation in the presence of external disturbances: (a) Torques evolutions of the SOSMC, (b) Mea-
sured torques evolutions of the SOSMC

Assume that Ṡ is defined as follows:

Ṡ = R−1[−Nε − P η −ΛS −KsignS] (34)

Hence, remember that N , P , Λ, K are positive definite
matrices, and assume that they verify the following
conditions:



H > 1
ρ2D � I

P A+AT P +H + ρ2
1P BD

−1BT P + (ρ2
2 + ρ2

3 + ρ2
4)I

NΛ+ΛTN > 1
ρ2

3
ΛTΛ

2ST (RṠ −Nε+ P η) + 1
ρ2

2
dT P 2d = −2STΛS < 0

−2K | S | + 1
ρ2

2
dT P 2d < 0

The stability is confirmed if:
ρ2

1P BD
−1BT P � PA + AT P and the term 1

ρ2
2
dT P 2d is

considered as small bounded so that it can be ne-
glected.
Consequently, we obtain:

V̇i ≤ 0

Finally, this confirms the stability of the overall
system.

5 robustness via measurement
noises effect

In order to test the robustness of the proposed con-
troller via uncertainties, an additive measurement er-
rors have been introduced.
Then the measured state can be expressed as follows:

xm(t) = x(t)(1 + b1(t)) = x(t) +∆x(t)

where b1 is an additive bounded measure noise such
that:
‖b1(t)‖ ≤ d1 , and d1 is a positive constant.
The level of the error effect has been varied from the
lower impact to be gradually more intense, aiming
to verify the controller’s capacity to withstand such
disturbances. At the beginning, low noise has been
yield (we fluctuate the perturbation from 5 percent
to 20 percent), we notice that the positions and the
velocities evolutions still remain on the sliding sur-
face which prove the robustness and the insensibility
of the second order sliding mode control via distur-
bances (Figure 3). Then, the level has been increased
(almost 30 percent), and in this case, the noise start to
affect the tracking evolution of the system(Figure 5b
and Figure 6b).
It is obvious from Figure 4 that there is a similarity
between the real torques and the measured ones, this
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Table 1: Joints parameters
Articulation Mass Length Initial position

q1 2.7132(kg) 0.2(m) π/6(rad)
q2 1.1446(kg) 0.15(m) π/4(rad)
q3 0.3392(kg) 0.1(m) 0.2(rad)

Table 2: Control parameters
Control Parameters Values

Λij 0.8
ω 20

timedelay 0.2
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Figure 5: Simulations in the presence of external disturbances: (a) Positions evolutions in the presence of high
measurement noises, (b) Measured Position evolutions in the presence of high measurement noises

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0

2

4

J
o

in
t 1

[r
a

d
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2

J
o

in
t 2

[r
a

d
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

Time [s]

J
o

in
t 3

[r
a

d
/s

]

 

 
Joints velocities

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

J
o

in
t 1

[r
a

d
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2

J
o

in
t 2

[r
a

d
/s

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

Time [s]

J
o

in
t 3

[r
a

d
/s

]

 

 
Joints velocities

(b)

Figure 6: Simulations in the presence of external disturbances: (a) Velocities evolutions in the presence of high
measurement noises, (b) Measured Velocities evolutions in the presence of high measurement noises

means that although the system suffers from external
disturbances, the evolution of the applied torques do
not record any notable increase, subsequently, no ad-
ditional power consumption needed.
The aim of the comparison between real and mea-
sured simulations (Figure 5 and Figure 6) is to prove
that the proposed controller exerts a satisfactory com-
pensation action affecting the trajectory tracking and
the velocity. This compensation becomes lower while
increasing the disturbance effect, and it becomes un-
able to manage high imposed disruptions, i.e. starting

from the presence of 30 present of errors applied to
the system. Nevertheless, at this level the proposed
controller has still resist to perturbations, and seen
that the level of this disruption is relatively high, it
can be then considered as a sufficient control, and
proves its robustness via external disturbances.
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Figure 7: (a) The classical SMC torques evolutions, (b) The second order SMC torques evolutions
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6 Simulation Results

In this work, a second order SMC is applied to a net-
worked multi−agent robotic system for a trajectory
tracking control task. Indeed, the use of several cam-
eras managed by manipulator robots and controlled
by the proposed decentralized control law, allows the
interaction of each robot with other agents in the net-
worked system in order to make an overall vision
about its environment. Thanks to the cross coupling
concept, each agent is able to communicate and ex-

change information with its neighbors. The desired
trajectory is expressed by:

qd(t) =

 qd1(t)
qd2(t)
qd3(t)

 =



π
6

sin(1.5πt)

π
4

sinπt

π
2

sin4πt
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Figure 10: Velocity evolution of the synchronized robots

Parameters of the proposed system model used in
simulation are illsutrated in Table 1 and control pa-
rameters values are given in Table 2.

Concerning the parameters µi and λi , they are de-
fined as follows:

λi = 2

1.125 0
1.45

0 1.12


µi =

3 0
4

0 5


Simulation results show the robust synchroniza-

tion and the smooth evolution in the trajectory track-
ing based on the second order SMC. The original SMC
torques evolutions and the second order SMC ones are
shown in Figure 7a and Figure 7b respectively.

It is obvious from the Figure 7a that the classi-
cal sliding mode control suffers from the chattering
phenomenon whose impact is reflected by the appear-
ance of disrupting high switching frequencies (oscil-
lations). Specifically, the problem consists of rapid
and sudden changing control signals which lead to
a low control accuracy. On the other side, Figure
7b demonstrates that the second order SMC seems
to be smooth and able to reduce the chattering phe-
nomenon.

Besides, the presence of time delay between the co-
operative robots is slightly reflected during the sim-
ulation as shown in Figure 8 and Figure 10 respec-
tively. It may be said otherwise that the communica-
tion time delay between robots is clearly compensated
and the position synchronization based on the cross
coupling concept is obvious, predominately in the
(Figure 8). The presence of undesirable phenomenon
namely chattering in control torques of each agent is
avoided in Figure 9.

7 Conclusion

In this paper, the stability analysis of multi robot ma-
nipulator systems with a constant communication de-

lay has been demonstrated. The main goal of this
study is to compensate the delayed communication
impact and to realize the synchronization between
different robots of the system. So the proposed con-
trolled system has succeeded to achieve a performing
motion control task in the presence of loss of informa-
tion during robot’s communication, perturbations and
also in the presence of delayed communication data.
Simulation results show that the multi robots system
can achieve the desired motion control task even with
presence of a constant time delay.
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