
Advances in Science, Technology and Engineering Systems Journal
Vol. 5, No. 2, 13-18 (2020)

www.astesj.com
Special Issue on Advancement in Engineering and Computer Science

ASTES Journal
ISSN: 2415-6698

Productify News Article Classification Model with Sagemaker
Johannes Lindén*, Xutao Wang, Stefan Forsström, Tingting Zhang

Mid. Sweden University, Department of Information Systems and Technology (IST), 851 70, Sweden

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 29 May, 2019
Accepted: 09 July, 2019
Online: 09 March, 2020

Keywords:
Machine learning
Data mining
Big data
News events
Journalists
Editors
Text analysis
Natural language processing
NLP
Paragraph vectors

News companies have a need to automate and make the process of writing about popular
and new events more effective. Current technologies involve robotic programs that fill
in values in templates and website listeners that notify editors when changes are made
so that the editor can read up on the source change on the actual website. Editors can
provide news faster and better if directly provided with abstracts of the external sources
and categorical meta-data that supports what the text is about. To make categorical
meta-data a reality an auto-categorization model was created and optimized for Swedish
articles written by local news journalists. The problem was that it was not scale-able
enough to use out of the box. Instead of having this local model that could make good
predictions of the text documents, the model is to be deployed in the cloud and an API
interface is created. The API can be accessed from the tools where the articles is being
written and therefore these services can automatically assign categories to the articles
once the journalist is done writing it. To allow scale-ability to several thousands of
simultaneously categorized articles and at the same time improving the workflow of
deploying new models easier the API is uploaded to Sagemaker where several models are
trained and once an improved model is found that model will be used in production in
such a way that the system organically adapts to new written articles. An evaluation of
Sagemaker API was done and it was concluded that the complexity of this solution was
polynomial.

1 Introuction

Modelling data with machine learning algorithms has shown
to give promising results in various of areas, for example
image processing and robotics. The areas are growing and
machine learning becomes more advanced for every day. Nat-
ural language processing is one area that is difficult and re-
quires larger and deeper networks to perform. The larger
a network is the more computational power is required to
compute a prediction. For a system in production the speed
and memory usage could be fatal to the incoming requests
of the application. This article addresses the difficulties to
take such a system from the model produced by the algo-
rithm to a productified version utilized by a product or users
in real time. The response time, memory consumption and
computational power are of importance when these types of
models will be available with minimal waiting- and down-
time. This article addresses one way to scale the application
to handle all requests from the user base of a media company
distributed over 22 regions in Sweden and reasons behind

possibilities to scale up to the entire Sweden user base of local
news production line.

In a longer run the focus is also to use the categories
metadata point in other products such as improving article
personalization algorithms, data analytic of supply and de-
mand of article categories. This article is an extension from
Linden et al presented at Fedcsis conference 2018 [1]. The
auto-categorization prediction accuracy are improved by pa-
rameter optimization since the last article and are now at 80
% and that is the underlying reason why the system is ready
for an production environment. The classification model will
categorize articles into different news topics and reply with a
given confidence for each category. The while the journalists
writes their articles in they would like to have categories in
or close to real time.

2 Related Work

The novelty of this research, that concerns productification,
is the idea to take the auto-categorization neural network

*Johannes Lindén, Holmgatan 10 Sundsall Sweden, 010-142 80 69 & johannes.linden@miun.se

www.astesj.com
https://dx.doi.org/10.25046/aj050202

13

http://www.astesj.com
https://www.astesj.com
https://dx.doi.org/10.25046/aj050202

J. Lindn et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 13-18 (2020)

model from its experimental phases all the way to a use case
where it brings value. Several research projects has been
done for managing and supporting big data pipelines, where
live data needs to be processed by several organizations (for
example analysis and business intelligence) [2]-[3]. The auto-
categorization model perdictions needs a similar automatic
data pipeline to uphold the load of each prediction and at the
same time allow analysis of the result that will be brought
back to the model in a feedback loop. Blaiszik et al made
a scalable service that manages machine learning models
through a structured API [4]. Blaiszik is using docker con-
tainers to wrap the model logic into an environment with
controlled variables. This research approach is similar to
Blaiszik but instead of using containers for only the models
the idea is to have one container for the service as well. Cloud
based services such as AWS Sagemaker or IBM’s Watson has
benefits as well as flaws explained in detail by Hummer et
al that builds their own cloud service for training machine
learning models [5]. According to Hummer’s research it is
essential for the AI expert to focus on the model itself and
care less about the pipeline and how to set it up properly but
Hummer also mentions the importance of having the settings
available to tweak the service for special needs. For simplicity
this research are using Sagemaker to deploy models in pro-
duction since there is knowledge about other AWS services
available and having all systems in the same cloud has other
benefits of latency and authorization flexibility. An evalua-
tion investigation in signal processing was issued that was
written by Massimo Ravasi and Marco Mattavelli where they
motivated the importance of the system complexity and the
partitioning of hardware and software evaluation [6].

As for the auto-categorization model itself Payne et al
have made an evaluation of their SVM classification algo-
rithm which yields promising results in performance [7]. The
model used in this research utilizes a bigger neural network
to comprehend a larger problem domain. Rather than only
focusing on a domain concerning digital archives it is focused
on local news which could be very specific to each region of
the country but could also be very general where regions have
common information needs of local news.

3 Approach and Model

The proposed four step model in previous research that pre-
dicts categories of arbitrary text paragraphs are going to be
the main model in this research that will conduct scalability
experiments and propose a system structure of this machine
learning model. See Figure 1 for an overview of previous
implementation.

Figure 1: An overview of the model

The input is the algorithm parameters θ and a single

document D, which is interpreted as a sequence of words
w1,w2, · · · ,wn. The output of the model is a set of category
probabilities c1, c2, · · · , ci , · · · , cm computed by 1.

ci = P (ith category|D,θ) ≈ P (ith category|D) (1)

In this research the model are used for example as shown
in Figure 2, the article shown to the left in a web-browser
will request a category from the trained auto-categorization
model and retrieve a list of probable categories.

Figure 2: Auto-categorization in a real case scenario. While a user navigates
to a article page the category of that particular article is determined based
on the body/text within it.

The algorithm takes an unstructured sequence of words
forming a text paragraph as input. Language of this model
is Swedish and even though the text length could be of any
length the articles that has been evaluated has the length
between 5 to 600 words in the first step of Figure 1. Text para-
graphs are filtered before training to not include articles with
only links or empty texts since these articles are not describ-
ing what the article is about. Within an text paragraph some
additional modifications is done which is step two in Figure 1.
Non-alphabetic characters, exclamation and question marks
are replaced by full stops. XML tags and its attributes are
removed. Some additional optional modifications are left in
the settings file to be turned on or off while using the system.
Such modifications include Named Entity Recognition (NER)
substitution of locations, organizations, names and time units,
another modification are Part-of-speech (POS) tagger and De-
pendency parser which will filter out certain types of tagged
words and leaf nodes [8]. POS and Dependency parser chosen
in this research where Google SyntaxNet [9, 10]. Out of the
resources mentioned in Nilson et al, we selected a treebank
made by Jan Einarsson’s project, which is well documented
[11]-[12]. The other steps in Figure 1 are described in the
following sections.

3.1 Paragraph Vectors

The third step in Figure 1 is a constructed one layered neu-
ral network model that will transform the filtered text para-
graphs from previous step into vectors. The paragraph vec-
tors are unique vectors that mapps the paragraph to a high
dimensional vector space. A softmax activation function

www.astesj.com 14

http://www.astesj.com

J. Lindn et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 13-18 (2020)

makes sure that the elements are within the interval -1 to
1. The vectors are constructed in such a way that it is possi-
ble to relate a paragraph from the distance between another
paragraph. The relation of two paragraphs can be obtained
by computing the cosine similarity which will give a positive
value when the documents are sharing similar contexts, a
value close to zero when no relatedness could be found, and a
negative number when the paragraphs appears in in opposite
contexts [13]. The vectors can also use common subtraction
and additions operations in case other related context will be
retrieved, as shown in 2.

king −man+woman = queen (2)

The paragraph vectors context awareness contains infor-
mation about what makes a document category as shown in
previous research [1]. The paragraph vectors are as before
computed using the PV-DM algorithm which is an extension
of the known word2vec algorithm bag of words (WV-BOW)
[1, 14].

Experiments previously conducted showed that the PV-
DBOW paragraph algorithm is reliable when implemented
by the distributed memory vector concatenated with the dis-
tributed bag of words vector described by Mikolov et al [13].

3.2 Text Model

The paragraph representation vectors is input to the fourth
step where the auto-categorization takes place. The cate-
gorization algorithms we proposed in previous research ex-
periments where decision trees, random forest, multi layer
perception and long-short term memory (LSTM). The one
outperformed the others where the LSTM model which are
used in this extended paper with the possibility to exchange
to another model at any time through a settings parameter in
the system. The output is the category belonging probabili-
ties for each considered category described in 1. The LSTM
model has a time parameter that each time sequence are used
for a vector transformed sentence in the paragraph. Figure 3
shows the LSTM input format, each colored line is a sentence
which are fed in per time-slot in the model for training .

Figure 3: The input vector of the LSTM algorithm is shown above. It first
applies the filter layer conditions, then divides the document into sentences
to be used as input data for the CBOW algorithm that produces the document
vectors.

LSTM models are based on the principles of recurrent
neural networks (RNN). A RNN is constructed like a neu-
ral network with an input, hidden layers and a output layer.
The RNN-cell can be visualised as shown in Figure 4. The
activation function of an RNN is usually the tanh function.

For each iteration, the model is trained by backpropagation
through the network. The purpose of RNN is to have a short-
term memory that remembers previous neurons. One of the
first and simple constructions of RNN is the recurrent neural
network language Model (RNN-LM). The hidden layer of an
RNN-LM algorithm remembers the neurons one time-step
back in the training history [15].

For different use-cases there are different variations of
RNNs. Andrej Karpathy summarises the different networks
that are used into different mappings [16]. One-to-one map-
ping is the original algorithm, for example the RNN-LM algo-
rithm. One-to-many mapping when there is one input and
several RNNs connecting to several outputs. This mapping
can, for example be, used for image prediction with one im-
age and several words that predict the image. Many-to-one
mapping is where there are several inputs mapping to one
output, this mapping can for example be used for classifica-
tion. Many-to-many mapping is what Karpathy describes as
two different mappings: one mapping that maps to an equal
number of input and output RNNs (N-N), and another map-
ping that maps to a different number of inputs and outputs
(N-M). The N-N mapping can, for example, be used to predict
video sequences over time, while N-M mapping can be used
for translation problems.

LSTM networks are a special case of RNN that tends to
solve a problem in the original RNN. The long-term memory
in RNN (the gradient descent) exponentially diverges to infin-
ity or converges to zero in many cases and LSTM introduces
an additional memory cell and forget parts of the informa-
tion and therefore avoiding more cases of vanishing gradients.
LSTM networks introduce three sigmoid layers and certain
gates that only let parts of the information through to com-
pensate for the vanishing gradient. The first sigmoid layer
determines what information that is important from the pre-
vious LSTM-cell, the second sigmoid layer determines what
information is important from the tanh layer in the current
cell and the third sigmoid layer determines what information
will be passed to the next LSTM-cell. The gates that open or
close based on the input from the previous LSTM-cell either
remove or add information to a cell state that is also passed
through to the next LSTM-cell. The third sigmoid layer ex-
tracts a piece of information from the cell state to the output
value [17, 18].

3.3 Output Category

Output category is the last, fifth, step of the model which
determines the output categories. This step interprets the
output of the categorization model and limits the categories
to suggest via a threshold of the category probability. If the
probability is higher than the average probability of seen
paragraphs the category are recommended and sent to output
of the model. Before the categories that will be replied is re-
turned from the auto-categorization model the probabilities
are normalized according to 3.

value −min(value)
max(value)−min(value)

(3)

www.astesj.com 15

http://www.astesj.com

J. Lindn et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 13-18 (2020)

Figure 4: A recurrent neural network cell. The cell to the left is the general notation of the hidden layer in an RNN model. The right unfolded version is the
representative of the RNN with a short-term length of t.

4 Architecture
The architectural approach consists of the system, the data
pipeline and the neural network model. For making the
auto-categorization available to use on texts written by the
journalists all three pieces has to be in place. The procedure
should be close to real time and this was accomplished by
a system that could easily be scaled up to bigger machines
with load distributed support for the user prediction requests.
Figure 5 shows an overview of the system.

Figure 5: Architectural overview of production environment.

Aracua is the name of the system the journalists are writ-
ing their articles in, this system will request categories given
the text of the article. Each categorization request is stored
together with the previous category for further live evaluation
purposes. The requests are stored in a AWS Redshift cluster
to compare the final categories of each article with the sug-
gested ones along the way while the journalists are writing
the article [19]. In Redshift other services will have access
to the auto-categorized categories to be used for example in
personalization purposes. This section will further describe
the deployment process of the model.

4.1 System

A Ngnix server was used for the system that can handle re-
quests and reply the the model prediction of categories. The

server instantiates python flask applications on demand when
the load is high and one instance cannot keep up the clients
requests as illustrated in Figure 6.

Figure 6: Architecture of the server system.

All runs inside a docker container to make it easy to in-
crease the memory and processing power on an AWS EC2
instance if needed [20]. Each time a client requests categories
for an article the user also sends the current categories on
the article so that in a later step it is possible to evaluate an
article over time as it is being worked on.

The predictions and articles are temporarily stored in
memory to speed up the replies for the same article. A sched-
uled task is triggered every 10 minute or when number of
articles in memory are larger than 1000 documents. The
scheduler dumps these articles in memory to a persistent
database where evaluation will be performed. The model
is parameterized so that depending on the settings different
models are being used for the prediction see Section 4.3.

www.astesj.com 16

http://www.astesj.com

J. Lindn et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 13-18 (2020)

4.2 Data pipeline

The system gets article contents that are being written by
journalists from Aracua and stores them in a database. The ar-
ticles are distributed on various of different places depending
on the product that will use them. The auto-categorization
product retrieves all articles and trains its models on these
articles as described in Section 3. Each model that is trained
is stored separately so that it is easy to switch models in
production. A retraining process is started in production to
dynamically improve the model for the articles. There are not
only models for each environment (developement, staging
and production) but also models for different versions and
improved models as the time progresses.

4.3 Neural network model

The parameters that is used to train the model are stored
in a configuration file. The configuration file contains what
model structures that are going to be used, how long the
training will take in terms of number of epochs, layer sizes
pre-processing steps to be done, where the data is taken from
and model stored to. Currently the following setup shown
in Table 1 is used since it was shown to be the best one in
previous experiments.

Table 1: Neural network model parameters

Param Value
Layer size 3
LSTM timestep size 200
Document vector size 1000
Pre-processing steps NER, StripHTML,

Filter stop words,
Part-of-speech

4.4 Hardware specifics

The evaluation conducted in this research is performed on an
AWS Graviton Processor with two 64-bit Arm cores. The pro-
cessor is caped at 2.3 GHz clock frequency, the memory is 16
GB and high network speed according to AWS specifications
[21]. The computer used corresponds to the specification of
”ml.m4.xlarge” in Amazon Instance specifications[21].

5 Results

Figure 5 and 6 shows the resulting production system and
how it works. The main result is that this system is used by
thousands of journalists all over Sweden. Additional results
of this extended article is to provide evaluation metrics of the
system in terms of responsiveness to the journalists. Figure
7 shows how long the response time is in average given the
number of clients trying to access the system at the same
time.

Figure 7: Process time of concurrent requests with standard deviation.

By analysing the number of characters an article body
consists of when categorizing it is possible to say how much
implications long articles have on the system, the resulting
analysis can be seen in Figure 8.

Figure 8: Process time of document lengths with standard deviation.

The training process is the process that initially takes the
longest time of all in this research. Training a model with
all articles of the categories in question takes up to 2.2 hours
using a document vector embedding size of 600 elements as
shown in Figure 9.

Figure 9: Process time of training with standard deviation.

www.astesj.com 17

http://www.astesj.com

J. Lindn et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 5, No. 2, 13-18 (2020)

6 Conclusion
In this article a proposition for a productification of a catego-
rization algorithm that through a web API serves journalists
with automatically categorized texts in their writing tool. The
main question was if the performance of such model could
be serving a large amount of users in their daily work and in
that case how many users can it handle. It can be concluded
that the number of concurrent requests have somewhat a
linear time complexity but could potentially be exponential
of higher orders for larger number of clients. Analysing the
article length it can be interpreted to have an impact of the
process time but would not be a problem for journalists since
it is rare that they write long articles. Around 15 000 char-
acters seem to be a good number of characters to have in an
article. Training performance is growing with polynomial
complexity and could be a risk as more categories are intro-
duced and larger vector embedding needs to be considered.
Future work for this project will be to include more categories
with more complex algorithms which will use a wisdom of
the many approach.

References
[1] Johannes Lindén, Stefan Forsström, and Tingting Zhang. Evaluating

combinations of classification algorithms and paragraph vectors for
news article classification, 2018.

[2] Ryan Chard, Kyle Chard, Jason Alt, Dilworth Y Parkinson, Steve Tuecke,
and Ian Foster. Ripple: Home automation for research data manage-
ment. In 2017 IEEE 37th International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), pages 389–394. IEEE, 2017.

[3] Jack Deslippe, Abdelilah Essiari, Simon J Patton, Taghrid Samak,
Craig E Tull, Alexander Hexemer, Dinesh Kumar, Dilworth Parkin-
son, and Polite Stewart. Workflow management for real-time analysis
of lightsource experiments. In 2014 9th Workshop on Workflows in
Support of Large-Scale Science, pages 31–40. IEEE, 2014.

[4] Ben Blaiszik, Kyle Chard, Ryan Chard, Ian Foster, and Logan Ward.
Data automation at light sources. In AIP Conference Proceedings, volume
2054, page 020003. AIP Publishing, 2019.

[5] Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube,
and Kaoutar El Maghraoui. Modelops: Cloud-based lifecycle manage-
ment for reliable and trusted ai.

[6] Massimo Ravasi and Marco Mattavelli. High-level algorithmic com-
plexity evaluation for system design. Journal of Systems Architecture,
48(13-15):403–427, 2003.

[7] Nathaniel Payne and Jason R Baron. Auto-categorization methods for
digital archives. In 2017 IEEE International Conference on Big Data (Big
Data), pages 2288–2298. IEEE, 2017.

[8] Atro Voutilainen. Part-of-speech tagging. The Oxford handbook of com-
putational linguistics, pages 219–232, 2003.

[9] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro
Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Glob-
ally normalized transition-based neural networks. arXiv preprint
arXiv:1603.06042, 2016.

[10] Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael Collins, Dan Gillick,
Lingpeng Kong, Terry Koo, Ji Ma, Mark Omernick, Slav Petrov, et al.
Syntaxnet models for the conll 2017 shared task. arXiv preprint
arXiv:1703.04929, 2017.

[11] Jens Nilsson and Johan Hall. Reconstruction of the Swedish Treebank
Talbanken. Matematiska och systemtekniska institutionen, 2005.

[12] Jan Einarsson. Talbankens talsprkskonkordans. 1976.

[13] Quoc V Le and Tomas Mikolov. Distributed Representations of Sen-
tences and Documents. In ICML, volume 14, pages 1188–1196, 2014.

[14] Johannes Lindén. Understand and Utilise Unformatted Text Documents
by Natural Language Processing algorithm. 46(0), 2017.

[15] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černocky, and
Sanjeev Khudanpur. Extensions of recurrent neural network language
model. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pages 5528–5531. IEEE, 2011.

[16] Andrej Karpathy. The unreasonable effectiveness of recurrent neural
networks. Andrej Karpathy blog, 2015.

[17] Christopher Olah. Understanding lstm networks. GITHUB blog, posted
on August, 27:2015, 2015.

[18] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM Neural
Networks for Language Modeling. In Interspeech, pages 194–197, 2012.

[19] Joseph Baron and Sanjay Kotecha. Storage options in the aws cloud.
Amazon Web Services, Washington DC, Tech. Rep, 2013.

[20] Gideon Juve, Ewa Deelman, Karan Vahi, Gaurang Mehta, Bruce Ber-
riman, Benjamin P Berman, and Phil Maechling. Scientific workflow
applications on amazon ec2. In 2009 5th IEEE international conference
on e-science workshops, pages 59–66. IEEE, 2009.

[21] Amazon Co. Amazon SageMaker Instance Types - Amazon Web Services
(AWS). https://aws.amazon.com/sagemaker/pricing/instance-types/.

www.astesj.com 18

http://www.astesj.com

	Introuction
	Related Work
	Approach and Model
	Paragraph Vectors
	Text Model
	Output Category

	Architecture
	System
	Data pipeline
	Neural network model
	Hardware specifics

	Results
	Conclusion

