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 A method to construct a stochastic differential equation describing a non-Gaussian process 
in a stationary state and to obtain a static potential function in terms of the temporal average 
is proposed. However, it has been suggested that the potential function changes temporally 
through some analysis of climatic change. In this paper, a mathematical model of body sway 
is theoretically constructed during galvanic vestibular stimulation. The mathematical model 
is not regarded as stationary due to perturbation. We discuss a new expression for the 
temporal variations of the model with the use of a motion process in a dual space composed 
of coefficients of the temporally averaged potential function and the possibility to estimate the 
number of unobservable variables. 
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1. Introduction  
There are several methods to derive a mathematical model for a 

motion process from time series data. In mathematical models 
directly derived from observed data, the relation among only time 
series data describes a state value Z; the other state variables are not 
essential to describe the motion process. The auto-regression (AR) 
model is well known as a mathematical model to describe Gaussian 
time series with distributions that are regarded as normal. This 
mathematical model has succeeded in describing various stationary 
processes. However, there are currently no established methods to 
derive a mathematical model directly from non-Gaussian time 
series data for the sway of the center of gravity of a human body 
[1], meteorological elements [2], or exchange rates of JP¥ to 
US$ [3]. Moreover, it is difficult to extract hidden variations in the 
state variables that are not directly observable. We propose a 
method to construct stochastic differential equations (SDEs) 
describing the non-Gaussian processes in stationary states and to 
obtain a static potential function in the meaning of the temporal 
average. 

In recent years, it has been suggested that the potential function 
changes temporally through some analysis of climatic change. Air 
temperature has shown an upward tendency in statistical tests in 
previous research [4]. These tests were reasonable to show a 
general tendency; however, these were insufficient to analyze 
details of the temporal variations. Shimizu and Takada [2] found 

temporal variations in the form of histograms on which a new 
peak appears at higher temperature and variations in form of the 
potential function in the meaning of the temporal average, which 
is derived from the form of the histogram in agreement with 
Takada et al. [1]. The authors have proposed that variations in the 
form of the potential function are assumed to follow a delay 
convention of one-dimensional cut off of the wedge catastrophe 
[5]. If the same type of conventions were introduced into the 
temporally averaged potential, we could build up the following 
hypothesis involved in the physical system describing a climatic 
change as seen in air temperature. 

Hypothesis A stationary point of the temporally averaged 
potential moves in agreement with a delay convention (Figure 1a) 
in catastrophe theory. 

Assuming that these assumptions are satisfied, we can give a 
physical explanation of time series; for example, a downward 
arrow in Figure 1b indicates the appearance of a stable 
equilibrium point of high temperature in the 1990s. Moreover, this 
hypothesis gave us an opportunity to find a transition of the 
temporally averaged potential function. It was suggested that 
there are transition and temporal variations in the temporally 
averaged potential function caused by breaches of stationary 
states. There may be dynamic potentials depending on time in 
contrast to the static potential functions that we have constructed. 
The author believes that it is often the complexity seen in these 
systems that controls the biomaterial and living bodies. In this 
study, we focus on the system that controls the upright posture in 
the human body.  
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(a) 

 
 

(b) 

 

Figure 1: A description of the climate change, using the potential function (a) 
for year-averaged temperature at Nagoya in 20th century (b) 

 
(a) 

 

(b) 

 
Figure 2: Typical stabilograms recorded during the resting state, with a young 
subject’s eyes open (a) and closed (b) 

  
The center of pressure (COP) on the Euclid space E2 ∋ (x, y) 

is measured as a time series that comprises the stabilograms 
(Figures 2 and 3). The time series of sways in stabilograms in the 

lateral (x) and anterior–posterior (y) directions can be assessed 
independently [6, 7]. The SDEs 

( ) ( )x x
x U x w t
t x
∂ ∂

= − +
∂ ∂

 

( ) ( )y y
y U y w t
t y

∂ ∂
= − +

∂ ∂
 

are used as mathematical models to describe sways of the COP [1, 
8-10]. Here, wx(t), wy(t) are white noise terms and Ux and Uy 
express their temporally averaged potential functions. In a 
previous study, the body sway was described by the Brownian 
motion in which Ux and Uy are expressed by parabolic functions 
[8-10]. In the last two decades, the limitations of this stochastic 
process have been realized by [1, 11, 12]. In the following section, 
we state a methodology to construct the temporally averaged 
potential functions based on the time series data. 

2. Theory  

In general, various stochastic processes are expressed by 
nonlinear SDEs for a random variable z(t): 

(a) 

 
(b) 

 
Figure 3: Typical stabilograms recorded during the galvanic vestibular 
stimulation, with a young subject’s eyes open (a) and closed (b) 
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where ( )w t  indicates white noise and ( )f z  is a nonlinear 
function. This SDE has already been applied to describe some 
time series data mentioned above. In particular, we suggest a 
method to construct an SDE as a mathematical model for these 
non-Gaussian time series data as follows. 

Assumption 1. We assume that )(tz  is one of the Markov 
processes that is determined by )( 0tt >  and )( 0tz . 

Assumption 2. We assume that )(tz is not an anomalous process 
that extends far rapidly in a short time. 

Based on these assumptions, a stochastic process can be described 
by a Fokker–Planck equation (FPE). The FPE is rewritten as 
follows for the distribution of the random variable 0( | , )g z z t : 

2
0

0 02

( | , ) 1{ ( ) ( | , )} ( | , )
2

g z z t
f z g z z t g z z t

t z z
∂ ∂ ∂

= +
∂ ∂ ∂

    (2) 

by a change of variables to normalize the second term of the FPE 
[13], called FPE normalization. Here, 0( | , )g z z t  indicates a 
conditional probability at time t  in the initial condition of 0z . As 
Eq. (2) is a FPE, it does not have a coefficient function depending 
on the random variable )(tz  in the second term. This FPE 
uniquely corresponds to the SDE by calculating the moment of 
the transition probability for degree n (n = 1,2,3,…). Taking the 
average of both sides of Eq. (1) for any stationary interval K, one 
can obtain the following integro-differential equation:  

( ) 0
K

dzdt f z
dt

 + =  ∫                  (3) 

In the meaning of the time average, the ordinary differential 
equation (ODE) ( )dz dt f z=  is satisfied. Thus, there is a good 
possibility that the mean values are controlled by the ODE. The 
curved surface ( ) 0f z =  is regarded as an equilibrium space for 
the SDE in the meaning of the temporal average (a temporally 
averaged equilibrium space), and the space integral of the function 

( )f z  

( ) ( )
K

U z f z dz= −∫                                    (4) 

is defined mathematically as a temporally averaged potential 
function. In fact, the potential function in the SDE seems to 
fluctuate; the potential function cannot strictly be obtained in a 
certain time. The authors thus considered the potential function to 
be a fluctuating potential.      

A stationary solution ( )g z  to the FPE (2) has been found 
under a natural boundary condition [14]. Under Assumptions 1 
and 2, the author pointed out that it was important to analyze the 
forms of the histograms corresponding to the temporally averaged 
potential functions as 

1 ( )( ) log
2

g zU z
C

= −                    (5) 

because the stationary solution could be regarded as a density 
distribution through a long observation. We then regarded the 
stationary solution (a probability density function) as a density 
distribution, which is the normalized histogram of the time series 
data. That is, one can estimate the SDE as a mathematical model 

for time series data using Eq. (5). However, it is necessary to 
estimate a formula as a temporally averaged potential function 
from the standpoint of the numerical analysis. To approximate the 
temporally averaged potential function, we fit polynomials of 
degree n  to the logarithmic density distribution under the 
following demands. 

• Demand on statistics: The coefficients of determination 
2R  for the optimal polynomial fitting to the logarithmic 

density distribution must be greater than 0.9. 

• Demand on geometry: The potential function should be 
structurally stable taking into consideration the 
perturbation exerted on the control system. 

3. Materials and Methods 

Thirty-two healthy subjects voluntarily participated in the 
study; all of them were Japanese and lived in Nagoya and its 
environs. They were divided into two groups: a group of young 
people aged less than 22 years (20 ± 1 year) and a group of elderly 
people aged more than 65 years (70 ± 4 years). Each group 
included the same number of subjects. The following were the 
exclusion criteria for subjects: subjects working in a night shift, 
subjects with dependence on alcohol, subjects who consumed 
alcohol and caffeine-containing beverages after waking up and 
meals within two hours, subjects who may have had any 
otorhinolaryngologic or neurological disease in the past, except 
for conductive hearing impairment, which is commonly found in 
the elderly. The subjects were not prescribed drugs for any disease 
by doctors. The local ethics committee of the Nagoya University 
School of Health Science approved this study (approval number 
7-129), and the subjects gave their informed consent prior to 
participation. 

In the subsequent stabilometric analysis, we recorded the COP 
at rest and during GVS. We ensured that the body sway was not 
affected by environmental conditions; using an air conditioner, we 
adjusted the temperature to 25 °C in the exercise room, which was 
large, quiet, and bright. All subjects were tested from 10 am to 5 
pm in the room of Nagoya University; they were positioned facing 
a wall on which a visual target was placed; the distance between 
the wall and subjects was 2 m. 

Before the sway was recorded, the subjects stood still for 1 
min in the Romberg posture with their feet together on the 
detection stand of a stabilometer (G5500, Anima Co., Ltd.). The 
COP sway was recorded (sampling frequency: 20 Hz) when the 
subjects stood with their eyes open (1 min) and looked at a visual 
target placed at a distance of 2 m or when their eyes were closed 
(subsequent 1 min). The stabilograms were simultaneously 
recorded using the stabilometer. 

Every second, rectangular current impulses were output from 
an electronic stimulator (SEN-3301, Nihon Kohden Co., Ltd.). 
The duration of the current was set to 0.5 s. A small electric 
current (0.6–2.0 mA) was percutaneously applied to both sides of 
the mastoid processes through Ag/AgCl electrodes of an isolator 
(SS-104J, Nihon Kohden Co., Ltd.). We set the amplitude of the 
electric current to the maximum value obtained in the following 
anti-GVS test [15]; this value varied among subjects. 

4. Results 

Stabilometry was performed with subjects standing on 
stabilometer in the case of the resting state (Figures 2). Then, the 
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anti-GVS test was employed to the young and elderly subjects, 
and stabilograms were recorded during the GVS (Figures 3). In 
these figures, the vertical axis shows the anterior and posterior 
movements of the COP, and the horizontal axis shows the right 
and left movements of the COP. The amplitudes of the sway 
that was observed in the elderly subjects tended to be larger 
than those of the sway that was observed in the young subjects 
(Figures 2-3). Furthermore, the lateral movement of the COP 
was often observed during the GVS shown in Figures 3.  

The amplitudes of the sway are affected by electric current 
during periodic GVS. It is considered that a periodic function s(t) 
is added to the SDE as a forcing term, and the form of the potential 
function U(z) changes [15]. The effective potential is expressed 
as 

Ueff(z) = U(z) + s(t)z 

where z is a space variable in the lateral direction x, that is, the 
direction of the GVS-evoked body sway. Using the sparse density 
[7] in the analysis of stabilograms, we investigate the evolution of 
the potential function U(z) in this study. By comparing the 
stabilograms, we study the effects of aging and GVS on the sway 
of the COP. 

5. Discussion 

The nonlinear property of SDEs is important although the 
concept of simple muscle stiffness control during quiet standing 
has been accepted for a long time [16, 17]. However, the linear 
model [8–10] has been rejected by the experimental results of the 
relationship between the body posture angle and the ankle torque 
[18, 19], and the postural instability, which is called “microfall” 
[20]. The nonlinear property has also been found in the 
distribution of the COP [1]. 

A certain type of standardization is required to provide a 
mathematical model in accordance with the theory stated in 
Section 2 because the noise amplitude is set to be 1 in Eq. (1). To 
prevent arbitrariness in the standardization for each component, 
we discuss and propose a new scheme using  

( ) ( ) ( )dx a x x w t
dt

β= +            (6) 

Moment of Transition Probability 

SDE (1)                                             FPE (2) 

 

change of variables (8) 

 

SDE (6)                                             FPE (7) 
Figure 4: Correspondences between SDEs and FPEs 

as a mathematical model of the time series in this section. By 
calculating the moment of the transition probability for degree n　, 
this SDE corresponds to  

{ } { }
2

0
0 02

( , ) 1( ) ( , ) ( ) ( , )
2

x x t
a x x x t b x x x t

t x x
ψ

ψ ψ
∂ ∂ ∂

= +
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　  (7) 

where 2( ) ( )b x xβ=  (n = 1,2,3,…). The FPE (7) is rewritten as 
Eq. (2) by the change of variables x z  as  

(8.1)
(8.2)

(8.3)

1 ( ). . ( ) ( )
4

dx dz
g

f

b xs t x a x
x

β
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β
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for FPE normalization (Figure 4). Actually, Eq. (2) does not have 
a coefficient function depending on the random variable )(tz  in 
the second term. By this change of variables, the SDE (1) does 
not, however, correspond to Eq. (6) but corresponds to the 
following SDE: 

1 ' ( )
2

dz f w t
dt

β= − + + , 

where the prime ′ denotes differentiation with respect to the 
random variable x . In the case of β  const= , the SDE (1) 
obviously corresponds to Eq. (6), and a stationary solution to 
Eq. (7) can be found as 

( )( ) log
2
b xU x

C
ψ

= −                                (9) 

under a natural boundary condition. Otherwise, we should solve 
the following differential equation: 

 

 
Figure 5: Riemann–Hugoniot manifold 3

1 2( ) 0f z z zα α= − − = . The potential 

function 4 2
2 1

1 1( )
4 2zU z z z zα α= + −  is derived from Eq. (4). The delay 

convention dictates that catastrophe occurs when the local minimum of the 
potential disappears completely and only one global minimum exists (Figure 1a). 
In practical terms, according to the delay convention, a catastrophe occurs when 
the system reaches the edge of the bifurcation set (fold) after crossing the bisector. 

1' 2 '
2

bf a b f = −  
 

To construct an optimal description (9) for each generator of 
time series, we fit graphs of polynomials to the logarithmic 
histogram of the time series, logψ  . For example, we herein 
consider the Riemann–Hugoniot manifold as an equilibrium space 

0)( =zf (Figure 5). By using Eq. (4), the double-well potential 
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can be extracted from the half line in Figure 5. In general, a 
polynomial of degree four   

2 3 4
1 2 3 4( )U z z z z zα α α α= + + +                   (10) 

corresponds to a point ( )1 2 3 4 Uα α α α ×∈ , which is called a 

dual space of a vector space spanned by ( )1 2 3 4z z z z . 

A coefficient vector ( )1 2 3 4α α α α   might depend on 
time t although it was considered as a constant under 
Assumption 1 in this paper. Temporal variations in the coefficient 
vector can describe the variations in temporally averaged 
potential functions. There is a good possibility that the temporal 
variations in the coefficient vector extract the effects of not only 
the breaches of stationary states, but also unobservable state 
values. Moreover, we may find the number of the unobservable 
state values for a motion process by using the dimensional 
analysis for a linear space U × ∋ ( )1 2 3 4α α α α   on a field 
R . 

Let the basis of a vector space U  and its dual space U ×  be 
{ }ie  and { }* je , respectively. The linear space U ×  is a dual space 

of the vector space U  under the dual basis { }* je  as * ( )j j
i ie e δ= , 

where j
iδ  expresses the Kronecker delta [21]. The motion process 

in the dual space help us find a temporal relation of the coefficients. 
Eliminating the temporal variable t , we can look for a mathematical 
expression of the unobservable state values as an algebraic curve, 
which is a four-dimensional curve, in the dual space. It is 
important to study the four-dimensional curve mathematically. If 

( )i tα  generated random numbers, the construction method could 
be applied to sequences { }( )i t Ktα

∈
 again. We can propose novel 

potentials in the mathematical models for coefficients of the 
temporally averaged potential functions or the unobservable state 
values. In this paper, these novel potential functions are called 
grand potentials. One can apply the grand potentials to time series 
analyses for the non-Gaussian and non-stationary processes or 
forecasts for those motion processes. We may classify strategy for 
changes of those motion processes on the basis of the grand 
potentials. 

The following translation is useful to simplify the expression 
of Eq. (10) because the third term on the right-hand side in Eq. (10) 
goes to zero: 

3

44
a

z z
a

−  

The dual space is also degenerated as ( )1 2 40A A α  and can 
be visualized as a three-dimensional space (Figure 6). The 
catastrophe map  χ  

( ) ( )1 2 3 4 1 2:χ α α α α α α  

is considered useful for the visualization of the motion process in 
the dual space. Using the boundary in the dual space (Figure 6), 
we examine the nonlinearity of the potential during the GVS and 
the other loads in the next step.  

 
Figure 6: Boundary of the nonlinear potential that has multiple minimal points 
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