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In an enterprise Wifi network, indoor and dense, co-channel interference is a major issue.
Wifi controllers help tackle this problem thanks to radio resource management (RRM).
RRM is a fundamental building block of any controller functional architecture. One aim
of RRM is to process the radio plan such as to maximize the overall network transmit
opportunity. In this work, we present our dynamic RRM (dRRM), WLCx, solution in
contrast to other research and vendors’ solutions. We build our solution model on a novel
per-beam coverage representation approach. The idea of WLCx is to allow more control
over the architecture design aspects and recommendations. This dynamization of RRM
comes at a price in terms of time and resources consumption. To improve the scalability
of our solution, we have introduced a Machine Learning (ML)-based optimization. Our
ML-optimized dRRM solution, M-WLCx, achieves almost 79.77% time reduction in
comparison with the basic WLCx solution.

1 Introduction

In an enterprise Wlan network, the controller is the central
component of the network architecture. The controller man-
ages all the Wifi access points (APs) and provides their radio
configuration: channel and transmit power. The controller
plays another important role in Wlan integration to other
parts of the enterprise network: Local Area Network (LAN),
Wide Area Network (WAN), internet, and Datacenter Net-
work (DCN), where application servers reside.

Processing the radio plan is the task of RRM functional
architecture block of the controller. It helps minimize co-
channel interference and efficient use by APs of the spectrum,
thus, optimizing the latter transmit opportunity. Then, how
does RRM decide on what channel an access point should use,
and at what transmit power?

To build an efficient radio plan that maximizes the net-
work capacity, the controller needs data from APs, Wifi clients
or devices (WDs), wired network devices, and servers. This
data is what pertains to the quality of the radio interface and
client overall experience when accessing the services. How-
ever, this information is not sufficient to hint on the whole
coverage quality such as the interference at any point in the
coverage area. It is only limited to some coverage points, APs

and WDs, that are able to monitor the radio interface and
report real radio measurements.

To overcome this limitation, either we place sensors ev-
erywhere, which is not feasible in an enterprise network (eco-
nomically and technologically), or model the coverage area.
The modelization effort could be done in a laboratory context,
by vendors for example, to provide strict recommendations
that customers may follow to build their networks. This ap-
proach works in common situations. But it requires a lot of
engineering effort and monitoring to maintain the network
at an optimal condition. In some situations, it may just not
work or false the transmit opportunity estimation. For the
rest of this work, this approach is referred to as static RRM
(sRRM). The third alternative is to allow the controller to do
more complex real-time processing without any or very few
preconfigured settings and find out the suitable RRM config-
uration to apply. This approach is the focus of this study and
will be referenced as dynamic RRM, or dRRM.

A controller, that supports dRRM, does not rely on precon-
figured settings in hardware or software to decide on how to
modify the radio plan to meet the utility function. In dRRM,
even the system parameters are processed to optimize the
network capacity, which is different from sRRM. However,
the advantage of dRRM comes at a high price in terms of time,
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system resources consumption to process the whole network
coverage and, adaptation to frequent changes. In this work,
we present our dRRM optimization solution that builds on
concepts from the Machine Learning (ML) field. Our solution
is built on a novel and realistic per-Beam coverage representa-
tion approach that is different from related-work encountered
research approaches that we discuss later.

In Section 2, we present how related work, research and
vendors, process RRM. In Section 3, we present our dRRM
solution (that is not sRRM) and compare it to the vendor so-
lution in processing the radio coverage. Before we state the
problem in Section 5, and the presentation of our solution
in Section 6, we introduce in Section 4, some important facts
about Wlan network design, coverage representation mod-
els and important machine learning concepts. Section 7 is
dedicated to the evaluation of our optimization, before we
conclude.

This paper is an extension of the work originally presented
in the 2018 15th International Conference on Electrical Engi-
neering, Computer Science and Informatics [1].

2 RRM Related Work

In this section, we discuss RRM approaches from research
and vendors of the Wifi market such as Cisco, Aruba-HPE,
etc. as they pertain to enterprise Wlan networks. We are
interested in algorithms that operate the APs transmit power
to maximize the network capacity or optimize radio resource
usage. An algorithm is different from another when the used
variables are different.

For simplification, we discuss a mono channel condition.
This work could then, be easily extended to a multi-channel
condition.

2.1 In Research

The first category of approaches concentrate on lower-layer
constraints: co-channel interference, physical interface and
MAC performance.

The authors in these works [2, 3, 4], modeled the coverage
area per-range: transmit, interference, and not-talk ranges,
using a circular or disk pattern. The way this model rep-
resents the coverage is common but may not hint on some
opportunities to transmit as discussed in this work [5].

The author in this work [6], focused instead on the inter-
action that an AP may have with its neighboring AP. The re-
sult is a per-zone, Voronoi zone, negotiated coverage pattern.
This model is difficult to put into practice technologically
and economically as it was discussed in [5] and [7]. Both
models: per-zone and per-range, do not consider upper layer
constraints.

Another set of similar works tackle the issue from a power
saving perspective. The authors in [8] build their on-demand
Wlan approach on the observation of idle APs that have no
clients associated. The Wlan controller manages the activa-
tion or not of an AP.

The second category of approaches tackles the issue from
an upper-layer perspective for applications such as FTP, HTTP.
This work [9], as an example, presented an interesting idea to
find out a suitable power, or RRM, scheme, that may optimize
the application performance. It is a per-experience approach
that requires a huge amount of data, to be put into practice.
In addition, it is very dependent on the coexistent individ-
ual application’s behavior. Another challenge is to be able
to determine when the physical layer is responsible for the
observed performance rather than the application one. Works
like [10] use concepts from the Game theory, a powerful tool,
to model the interactions between APs. These concepts are
applied to the user perception of the QoS it receives. The
same limitation of the previously cited work applies to this
one also.

The third category tackles the problem from an inter-
protocol cooperation point of view like in this example [11].
Making the protocols aware of each other is a good strategy
to find an optimum inter-protocol negotiated power scheme
that optimizes the performance of each of them individually.
It is an idealistic scheme, difficult to put into practice techno-
logically and economically, concerning vendors offering. Let
us imagine the integration of a Wifi and a Bluetooth network.
The impact of a Wifi AP on a Bluetooth piconet is very impor-
tant but not the opposite. Then, as an example, it is necessary
to find out a way to provide the network controller (for both
Wifi and Bluetooth) with the necessary feedbacks so it can
adjust the Wifi network power plan to allow a Bluetooth net-
work optimum operation. This would require important data
transfers (and power consumption) from the Bluetooth net-
work to the controller, which is very difficult to implement,
by design of the Bluetooth devices..

2.2 Vendor Solutions

The approach or theoretical background, behind the vendors’
implementations, is hidden in general for commercial pur-
poses; they only provide the settings (recommendations).

Cisco Transmit Power Control (TPC) algorithm, that is a
part of Cisco RRM, processes, at each AP, the desired trans-
mit power hysteresis, T xHysteresis,Current , that is equal to the
sum of the current transmit power (initially at maximum),
T xCurrent , and the difference between the power threshold,
T xT hresh, and RSSI3rd, the third neighbor reported RSSI. If the
difference between the processed power and the current one,
T xHysteresisT hresh, is at least 6dBm, then the current power
must be reduced by 3db (by half). We should then wait for
10 minutes before re-attempting another calculation. Details
about this implementation are given in [12].

Aruba-HPE adopts another strategy. The Adaptive Ra-
dio Management (ARM) algorithm maintains two measures
for every channel: a coverage index, covidx, and an interfer-
ence index, if eridx. The decision of increasing or decreasing
the transmit power level on a given channel is based on the
processed coverage index as compared to the “ideal” cover-
age index, noted covidx,ideal , and “acceptable” coverage index,
covidx,acceptable, for instance. As a general rule, the current
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coverage index should be greater than covidx,acceptable and
equivalent to covidx,ideal . Coverage index, covidx, corresponds
to the sum of two variables : x and y. x is the weighted aver-
age of all other APs SNR as being measured by the current
AP. y is the weighted average of the processed x variables by
other APs from the same vendor and on the same channel.
The same thing applies to if eridx processing. Details of this
calculation are in [13].

Fortinet Auto Power that is a part of ARRP, Automatic
Radio Resource Provisioning, solution, works by reducing au-
tomatically the transmit power if the transmit channel is not
clear. From the corresponding documentation [14], it is an
alternative to manually limiting the number of neighbors per
channel (less than 20) by adjusting the transmit power level.

3 Our Dynamic RRM Solution

Our WLCx dynamic RRM solution is based on the per-Beam
coverage representation we discuss in the upcoming section.
Our solution is ”dynamic” because even the parameters’ val-
ues change: the optimum number of the supported directions
per AP, in the case of the WLC2 variant of our solution, as
an example. The workflow in Figure 1, describes how our
solution works.

Our solution runs three algorithms: TDD (Discovery),
TDM (Map) and TDO (Opportunity). After initialization,
TDD optimizes the number of supported directions per AP
by reducing the power level and doubling the initial num-
ber of directions until all neighbors are discovered and at
almost one neighbor is discovered per AP direction. Based on
information from TDD, TDM categorizes the coverage area
points into categories that hints on how these points appear
on APs directions. Each category is assigned a cost to hint on
its probability to get a fair transmit opportunity. The TDO
processes each coverage point opportunity to transmit, taking
into account data from TDM and SLA (upper-layer input).

We simulate, using Matlab 2019a, two variants of our
WLCx solution: WLC1 and WLC2. In WLC1, all APs share the
same optimal number of supported directions and transmit
at the same power level. In WLC2, the APs process the same
optimal number of the supported directions but may use dif-
ferent transmit power levels per AP. In the same simulation,
we compare both WLCx variants to vendor implementation:
Cisco. We evaluate models based on their performance at
processing the coverage and time this processing takes.

The coverage processing performance, P r(), of a given
model, m, is calculated in (1). I(), H() and O() are the model
processed interference, number of coverage holes and trans-
mit opportunity, respectively.

P r(m) = K1
ΣI

I(m) + 1
+K2

ΣH
H(m) + 1

+K3
O(m)
ΣO

(1)

The performance calculation in (1), is the weighted sum
of relative interference, opportunity and coverage holes in
each model. The weights K1, K2 and K3, hints on how impor-
tant is the processing of interference, opportunity or holes, to

the performance of a given model. For the rest of our study,
we consider that all variables are of equal importance then,
K1 = K2 = K3 = 1.

Figure 1: Our WLC dRRM solution workflow

The diagram in Figure 2, shows the performance of mod-
els after 10 iterations of the same simulation. Each simulation
corresponds to a random distribution of a set of 30 APs and
100 WDs. We check that our WLC2 solution variant performs
better than Cisco and WLC1. The Cisco model performance is
comparable to WLC1. The processing time of models is repre-
sented in Figure 3. The models have a comparable processing
time for a large number of the same simulation iterations.

In work [5], we discuss our WLC2 dRRM solution. For
further details about our solution, refer to [7] work that is an
extension of the previous one.

4 Theoretical Background

Before we dive into the description of the problem, let us
recall some facts about Wlan enterprise network architec-
ture design, the importance of coverage representation for
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radio planning, and NURBS surfaces concepts that are the
foundation of our NURBS optimized WLCx dRRM solution.

Figure 2: Performance of models after 10 simulations of the network of 30
APs and 100 WDs.

Figure 3: Processing time of models after 10 simulations of the network of
30 APs and 100 WDs.

4.1 Wifi Unified Architecture

In a standalone AP-based Wifi architecture, the network ca-
pacity does not scale with dense and frequently changing
radio environments. To optimize the network capacity, some
kind of coordination and control, distributed or centralized,
is needed. In UWA, Unified Wifi Architecture, a WLC, Wireless
LAN Controller, acts as a repository of APs intelligence, runs
routines to plan radio usage, provides an interface to wired
network, etc. and guarantees conformance to policies: QoS
and Security, domain-wide, including LAN, MAN, WAN, and
DCN, network parts. A typical enterprise Wlan architecture
is given in Figure 4. Two market-leading implementations of
such WLCs are the Cisco 8540 Wireless Controller and the
Aruba 7280 Mobility Controller. The rest of our study focuses
on Cisco implementation.

In Figure 4, the APs are located nearest to Wifi clients,
WDs. All APs are connected to the LAN and are associated,
via Virtual Private Networks (VPN), or tunnels, to the con-
troller, WLC, located at the Datacenter, in a Hub and Spoke
architecture. Depending on the network size and require-
ments, the controller may be located at the same location as

the APs. To build an association, an AP should be able to
join the controller, via MAN, WAN or internet. After the AP’s
successful association to the controller, the WDs start their
association process that includes authentication, to the corre-
sponding Wlan. Then the WDs access the network resources
behind the controller or in some configurations, behind the
APs (in FlexConnect or Local Switched mode).

Figure 4: A Wifi unified architecture example topology

WLC receives information about the network from three
sources: the wired path toward the datacenter, the radio inter-
face counters of each associated AP, and OTA, Over-The-Air,
AP-to-AP wireless messages over a dedicated low speed radio.
In the case of Cisco, two protocols are available for exchang-
ing data between APs, and between APs and WLC:

• Control and Provisioning of Wireless Access Points
(CAPWAP) protocol is used by the APs to build asso-
ciations to the RF group leader WLC and for control
information and data exchange.

• Neighbor Discovery Protocol (NDP) allows the APs to
exchange Over-The-Air (OTA) messages that carry stan-
dard, per-vendor proprietary control, and management
information.

In addition to these protocols, Cisco APs have on-chip
features such as CLIENTLINK and CLEANAIR. CLEANAIR
enables the APs to measure real-time radio characteristics
and send them to the controller via the already established
CAPWAP tunnels. Cisco appliances such as Cisco Prime In-
frastructure (CPI) and Mobility Services Engine (MSE), shown
in Figure 4, extend the capability of this feature to process
analytics on Wifi client presence, interfering devices man-
agement and heatmaps processing. CLIENTLINK version
4.0, is the Cisco at AP-level implementation of MU-MIMO
IEEE 802.11ac beamforming. It works independently of
CLEANAIR after the assessment of the quality of the channel.
In this scheme, an AP sends a special sounding signal to all
its associated WDs, which report, back to this AP, their signal
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measurement. Based on these feedbacks, the AP, and not the
controller, decides on how much steering toward a specific
WD is needed to optimize the energy radiation.

4.2 Radio Coverage Representation Models

We categorize the related-work coverage representation mod-
els into three categories: Range-based, Zone-based and Beam-
based. In the upcoming subsections, we describe each of them
and discuss their limitations.

In the Range-based category of models, it is common to
represent an AP’s wireless coverage such as: a transmission,
interference or no-talk range. These ranges processing is
based on the estimation of the distance between the AP and
a receiving point P (AP or WD). Further, this category of
coverage representation models, consider that an AP’s cover-
age pattern is omnidirectional, with the geometric shape of
a circle or a disk, centered at the AP, like in Figure 5. In this
scheme, the interference, for example, at any given point is
approximated by the weighted intersection of all interfering
devices patterns at this point.

Figure 5: A range-based coverage representation example

In the Zone-based category of models, an AP coverage is a
function of its transmission characteristics: channel, power
level, etc., but depends also on the neighboring APs. The
result of this is that the transmission shape is no more a
solid circle but a convex polygon with straight sides. Each
straight side defines a borderline that separates two neigh-
boring APs’ transmission ranges. The more an AP transmit
power is strong, the more the borderline with its neighboring
APs is far. Further, it is important to note that a point in a
transmission zone of one AP could not be in another AP’s
transmission zone. An example of Zone-based AP’s wire-
less coverage is represented in Figure 6. In this scheme, the
interference caused by the transmission ranges in the pre-
vious model, is completely canceled. Only the interference

caused by the other ranges: interference, and no-talk ranges,
is present.

Figure 6: A zone-based coverage representation example

The previous two models: Range and Zone-based, come
with these limitations:

• both models are limited to consider that the strength
of interference is only inversely proportional to the dis-
tance (or quadratic) of an AP from interfering neigh-
bors,

• both models would interpret an increase in a transmis-
sion power level as an expanded reach in all directions:
uniformly in case of Range-based models but depend-
ing on neighboring APs in the case of Zone-based ones,

• a point could not be in two transmission ranges of two
different APs at the same time in Zone-based models,

• both models would interpret falsely obstacles to the
signal propagation, as a weaker signal from an AP in
the context of indoor Wlans does not mean necessarily
that this AP is out of reach,

• alternatively, a stronger signal from an AP does not
mean necessarily that this AP is at reach: it may be
guided or boosted under some conditions.

The consequences of these limitations, the adoption of
a Range or Zone-based like representation model of cover-
age, and regardless of the RRM solution that is built upon,
is to false our transmit opportunity processing and misinter-
pret some phenomena encountered in the specific context of
indoor enterprise Wlans.

To overcome the limitations of the previous models, our
Beam-based coverage representation, defines for each AP a
number of directions over which it may transmit. Depending
on the number of directions, their order and transmit power
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levels, an AP may be able to mimic a Range or Zone-based
scheme. The Figure 7, shows a per-Beam coverage pattern
example. In this pattern, the APs have an equal number of
directions, equal to eight, that are uniformly distributed and
of equivalent transmit power. In works [5, 7], we discussed
in detail how per-Zone and per-Range representation models
are generalized to per-Beam representation and how our rep-
resentation model could solve previous models limitations
such as : per direction transmit power control, hole coverage
reduction, obstacle detection, client localization and transmit
opportunities maximization.

Figure 7: A beam-based coverage representation example

4.3 Machine Learning Regression Models

In his book [15], Tom Mitchell describes a machine, computer
program, etc. process of learning when from an experience
”E” with respect to some task ”T” and some performance
measure ”P” of this task, its performance on ”T”, as measured
by ”P”, improves with experience ”E”.

A simple form of this learning, focus of this work, is de-
scribed as ”supervised” learning. In this learning, the right an-
swers to some input or training data, are provided in advance.
Based on this training data, the inputs and corresponding
outputs or ”truth”, the learning algorithm model parame-
ters are processed such as to minimize the error between the
predicted outputs and the observed ”truth” on the training
set.

This ”trained” learning, also called hypothesis, is indeed
a function that is built using the previously optimized model
parameters. This function maps the input variables or fea-
tures to a predicted outcome.

Supervised learning algorithms could be further classified
by the nature of the outcome they work on. If the outcome
is continuous, then ”regression” models are more suitable.
For categorical or discrete outcome values, ”classification”
algorithms are more suitable.

In our study, we work on outcomes that are continuous,
and then we focus solely on regression models. Many types of
regression models exist including: linear regression models
(LR), regression trees (RT), Gaussien process regression mod-
els (GPR), support vector machines (SVM), and ensembles of
regression decision trees (BDT).

To choose between models, we compare their Root Mean
Square Error (RMSE) validation score. In all the simulations
of our work, we observe that Coarse Gaussian SVM and BDT
score the best RMSE scores. For the rest of our study, we focus
solely on these two models.

Furthermore, SVM and BDT methods represent two dis-
tinct algorithm general approaches. In the following subsec-
tions, we introduce the important differences in these two
approaches.

4.3.1 Support Vector Machines

In SVM, the samples are separated into categories. The idea
of this algorithm is to find the maximum gap between these
categories. The samples that help find this separation are
called support vectors. Each support vector is seen as a di-
mensional data and the goal of the algorithm is to find the
best hyperplane in terms of margin that separates these vec-
tors.

In this work, we use SVM to resolve a linear regression
problem. We use a variable that controls the trade-off be-
tween the classification errors and the size of the margin.
This method corresponds to a soft-margin SVM.

4.3.2 Bagged Decision Trees

Bagging decision trees (BDT) is a meta-algorithm that builds
on an ensemble of algorithms that run independently from
each other. Each algorithm, called bootstrap, obtains a differ-
ent result. The result of the meta-algorithm corresponds to
the average of the bootstraps individual results. In our case,
a bootstrap algorithm may correspond to a simple regression.

The initial training set has n elements. BDT generates,
from this set, m new subsets of size n′ less than the original
set size. If n is equal to n′ and n is very big, the probabil-
ity that each subset has unique values from the initial set is
almost 63.2%, the other values are duplicated.

An example of such meta-algorithm is Classification And
Regression Trees (CART). The tree operates using a metric
and by classifying at each stage, the initial set, the set we
are predicting the outcome for. This metric is based on Gini
impurity that is calculated from the probability of a certain
classification. The classes, which are used in this classifica-
tion, have been identified during the training phase. In the
case of a regression, the algorithm introduces the notion of the
variance reduction to build the classes and the corresponding
metrics.
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5 Problem Description

Coverage processing includes the calculation of interference,
opportunity and coverage holes, as per our Beam-based repre-
sentation model, that is a generalization of the previous work
models such as Range or Zone-based representation models.

For the problem description, let us define:

Pi — a coverage point.

Lj,k — APj , number k direction.

Ci — the sensitiviy of point Pi at reception.

Ci,1 — AP to which Pi is associated, range of transmission.

Cj,2 — APj , interference range.

Cj,3 — APj , no-talk range.

We show in (2), the interference IB() that is calculated
by WLC2, our WLCx dRRM solution variant, using Beam-
based representation model. The processed interference by
this model at a point Pi , corresponds to the sum of the in-
tersections, Sc(), of all APs beam patterns with Ci and their
interference and no-talk ranges with Ci,1 that is the transmis-
sion range of APi to which the point Pi is associated.

IB(Pi(x,y)) = α1ΣjΣkβj,k ∗ Sc(Lj,k ,Ci)

+Σ3
k=2αkΣ

n
j,iβj ∗ Sc(Cj,k ,Ci,1) (2)

For the opportunity calculation, let us define:

s1,i — passive survey result at a coverage point Pi .

s2,i — active survey result at a coverage point Pi .

In (3), we give the opportunity calculated by WLC2 model,
using our Beam-based representation model,OB(). The oppor-
tunity is inversely proportional to the interference calculation
and hints also, on the result of surveys on the active and pas-
sive network paths: s1,i and s2,i . Passive surveys allow the con-
troller to have statistics and metrics from the network devices
and attached interfaces that are on the network path between
the client and the server such as the number of transmit er-
rors, number of lost packets, etc. and is generally available via
protocols such: SNMP or Simple Network Management Protocol.
Active surveys instead, construct traffic patterns and simulate
actively the traffic between the client and the server, using
protocols such as UDP or TCP, and report measurements such
as delay, jitter, etc. to the controller.

OB(Pi(x,y)) ∼
s1,is2,i

IB(Pi(x,y))
(3)

The last element to include in the coverage processing, is
the number of the detected coverage holes, that is given in
(4). Coverage holes are evaluated at every coverage point Pi
and correspond to points where the signal is insufficient to
perform an accurate communication with their APs of associ-
ation or the access network, if they are not already associated.

holeT heshi is another variable that is tight to the point Pi
sensitivity at reception.

HB(Pi) = |(Pi |ΣjΣk ∗ Sc(Lj,k ,Ci) ≤ holeT heshi)| (4)

The processing of the coverage, that is done in (2), (3)
and (4), is a part of the general processing of our dRRM solu-
tion variants: WLC1 and WLC2 that is described in Figure 1
workflow. We give in (5) the necessary time to process the cov-
erage and the changes to this coverage. In (5), we neglected,
for simplification, the necessary time to process the optimal
number of directions that are supported by the APs and the
corresponding transmit power levels. M is the number of APs
and any monitoring device. Tdiscovery is the necessary time to
run TDD and build a neighborship map. N is the number of
coverage points, where the coverage must be calculated. d
is the optimum processed number of directions that are sup-
ported by APs. Tinterf erence corresponds to the necessary time
to process coverage. We consider that Tinterf erence, Topportunity
and Tholes, times are equivalent.

TWLC2 = CONST +M ∗ Tdiscovery
+k(N −M) ∗M ∗ d ∗ Tinterf erence (5)

In Figure 8, we plot the processing time results of models
with and without control: simplistic (Range-based), idealistic
(Zone-based), WLC1, WLC2 (dRRM) and Cisco (sRRM). We
notice that in general, the without-control models perform
better than the with-control models due to the addition of
the control part of processing. The processing times of the
with-control models are equivalent but huge in comparison
with the without-control models.

Figure 8: WLC2 time in comparison with idealistic and simplistic models.

The sRRM and dRRM solutions have advantages over each
other and over the without-control models, approaches but
they require important processing time and resources, which
is not suitable in the context of indoor dense enterprise Wlans.
In the next section, we propose an optimization solution to
with-control RRM models, which is based on concepts from
the Machine Learning (ML) field: SVM and BDT. To stick with
the aim of this work, we apply this optimization to the exam-
ple of our dRRM WLC2 solution, but it is easily applicable to
the other approaches.
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6 MLR-based Optimization Solution:
M-WLC2

In this section, we present the details of our solution. We de-
scribe the general workflow of our solution, how the training
set is chosen and the criteria that allows us to choose between
models: RMSE validation score. At the end of this section, we
present the new processing time of our solution.

6.1 Workflow

The workflow in Figure 9 describes how our solution pro-
cesses the coverage. After the initialization, our solution
model process a random AP distribution. In this work, we
limit the dimension of the coverage plan to 128 coverage
points in each dimension. The total number of the coverage
points is equal to 128 ∗ 128 = 16,384 points. From the pre-
vious dataset, we build our Test dataset that corresponds to
30% of the total dataset. The Test set is then split into a Train
dataset and a Validation dataset. Using the Train dataset,
the model trains a number of machine learning models. The
predicted data is then compared to the one available in the
Validation dataset. Based on the RMSE validation score, the
best algorithm is chosen to predict the remaining 70% of the
overall dataset.

Figure 9: Our ML-WLC2 solution workflow

Our solution is written and simulated in Matlab program-
ming language. Further work would consider the implemen-
tation of our solution on Linux-based APs and test its perfor-
mance in a real laboratory setup. In Figure 10, the detailed
description of the software architecture of our solution. The
functionProcessML() module is responsible of processing the
different data sets, training of the models and of the predic-
tion of the outcomes.

Figure 10: Our ML-WLC2 solution software architecture

6.2 Training Set

To overcome overfitting problems, the training set, Train
dataset in the workflow of Figure 9, corresponds to 20% of
the Test set. The Validation set is 80% of the the Test set.
The Test set represents 30% of the overall available dataset
(16,384 points).

For each point in the validation set (the training set is a
subset of the validation dataset), we gather this information:
the index of the WD or coverage point, the coordinates of this
WD, the first AP of association, the corresponding direction
of transmission, the transmit power level, the AP load, the
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list of neighboring AP, the second AP of association, the cor-
responding direction of transmission, and so on. The list may
be augmented by any relevant information or feature that
may have an impact on the phenomenon under study (the
interference, in our case).

6.3 RMSE Validation

RMSE stands for Root Mean Square Error. It measures the
error between the predicted outcome using the trained model
and the truth. The truth in our case is the real measures that
were reported by the network APs, WDs, and sniffers.

An important number of tests, the same simulation of
the previous networks, allowed us to choose SVM and BDT
models. These models score an average of 16.03 and 14.75
points respectively.

Based on the historical results, we set the acceptable RMSE
validation score for a model to be accepted in processing the
remaining overall dataset points, as it was described in the
workflow of Figure 9.

In addition to the RMSE validation score, we use statisti-
cal results and visual observations of the heatmap to validate
the precision of the outcome.

6.4 Time

The total required processing time of our M-WLC2 solution is
given in (6). The total time is the sum of the required time to
train the model, Ttrain, and the time to process the validation
set, 30% ∗ TWLC2, where TWLC2 is the total time required to
process WLC2 solution model coverage. In case the training
set points report the measurement in real-time, this time is
very negligible.

TWLC2,ML = CONST + 30% ∗ TWLC2 + Ttrain (6)

7 Evaluation

In this section, we evaluate the predictions accuracy and the
required processing time of the models with and without
optimization: WLC2, SVM and BDT M-WLC2.

7.1 Simulation

We simulate a network of 30 APs that are distributed ran-
domly in a 2D plan using the Matlab built-in randperm()
function.

The coverage map has a dimension of 128 points in each
direction. We process a total of 128 ∗128 = 16,384 coverage
points. Each coverage point (in red) corresponds to a potential
WD. The WDs are distributed uniformly on the plan.

In Figure 11, we show the distribution of the APs and
WDs in the coverage area that corresponds to this simulation.
AP1 and AP2 coverage is represented using their Beam-based
coverage pattern. AP14 and AP15 coverage is represented by
their Range-based coverage pattern.

7.2 Processing of Area Coverage Heatmap

Before we process the coverage of the optimized models, we
process the coverage of the WLC2 without optimization. In
Figure 12, we show the resultant heatmap of WLC2 process-
ing that indicates the level of interference in the coverage
area.

Figure 11: The distribution of APs and WDs in a simulated network

Figure 12: WLC2 area coverage resultant heatmap

In Figure 13 and Figure 14, we show the result of the BDT
and SVM optimized WLC2 model coverage processing, re-
spectively. Visually we observe a strong resemblance of the
three patterns.

Figure 13: BDT ML-WLC2 area coverage resultant heatmap
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Figure 14: SVM ML-WLC2 area coverage resultant heatmap

In addition to the visual resemblance, the accuracy of the
models’ prediction is evaluated statistically and using the
RMSE validation score. The statistical results hint on the
mean, median, standard deviation in between the prediction
and the WLC2 model calculated values. The performance of
the models depends also on the required processing time.

7.3 Multiple Iterations of The Same Simulation

In this section, we present the results of multiple iterations of
the same simulation (random distribution of APs at each iter-
ation). In Figure 15, we draw the mean, median and standard
deviation results for BDT and SVM models for 10 iterations
of the same simulation.

In Figure 15, we observe that BDT presents a better mean
around zero and a median slightly around five points in av-
erage. SVM shows a better median but a mean around three
points in average. BDT standard deviation is twice greater in
average than the SVM’s, almost 40 points in the first simula-
tions and 30 points in the last ones.

Figure 15: Statistical results of 10 iterations of BDT and SVM M-WLC2
simulation

For the same simulations, we show in Figure 16, the vari-
ation of the RMSE score. We observe that the BDT solution
scores the best RMSE value, almost 45 points, against the
SVM model, almost 25 points, in the first simulations. In the
three last simulations, the RMSE score drops to almost 25
points for BDT model and only 15 points for the SVM model.

In Figure 17, we show the required processing time of
models with and without optimization. In general, we ob-
serve that the optimized models: BDT and SVM times are
comparable and very negligible in comparison with WLC2
time, almost 2.5 smaller.

Figure 16: RMSE resultats of 10 iterations of BDT and SVM M-WLC2 simu-
lation

7.4 The Effect of Modifying The Training Set Size

In this subsection, we propose to check the effect of modifying
the training set size on the optimized models performance.

In Table 1, we show the results of modifying the size
of the training set in this range: 10%, 20%, 30%, 50% and
90% of the total available data set. We notice no remarkable
change in statistical results in terms of mean and median in
between the models when the training set is 10%, 20% and
30%. For bigger training sets, these values are getting remark-
ably smaller. The SVM model standard deviation decreases
with the increasing training set sizes. Concerning the BDT
model, we observe the opposite; the standard deviation is at
its highest value when the size of the training set is 90% of
the total available data set.

Figure 17: Required processing time of 10 iterations of BDT and SVM M-
WLC2 simulation, training set 30% of total data set

www.astesj.com 28

http://www.astesj.com


M. Guessous et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 19-31 (2019)

Table 1: Effect of modifying the training set size on model performance

Var. trnset =
10%

20% 30% 50% 90%

msvm -3,92 -3,23 -3,25 -2,39 -2,50
mbdt -0,27 0,18 0,11 -0,03 -0,05
medsvm 0,29 0,25 0,20 0,15 0,12
medbdt 4,69 5,66 5,37 4,87 5,45
stdsvm 23,76 20,55 19,69 16,50 16,40
stdbdt 34,93 34,75 36,90 35,90 38,91
rmsesvm 25,10 21,88 21,13 17,82 17,21
rmsebdt 34,69 34,74 37,02 36,02 38,85

tsvm
2594
,88

3776
,93

5291
,24

7602
,12

1485
1,02

tbdt
2594
,19

3774
,37

5286
,25

7585
,18

1479
3,40

twlc2
1209
1,41

1202
4,33

1280
9,81

1229
2,02

1469
0,10

In general, BDT scores better RMSE values than SVM.
SVM’s RMSE score is better when the size of the training set
is the smallest, 10% of the total available data set. Differently
from SVM, the BDT model scores the best RMSE value when
the training set is 90% of the total data set.

The optimized models processing time is comparable. For
a training set equal to 10% of the total available data set, this
time is enhanced by almost 78.54% relatively to the WLC2
model.

7.5 Modifying The Dimension Size of The Coverage
Area

In this subsection, we present the results of modifying the
size of the coverage area or dimension on the performance of
the optimized models. The training set is set to 10% of the
total available data set.

In Table 2, we observe that the required time to process a
256 dimension coverage area is almost 842 times higher than
processing a 16 dimension map. In the first case, our opti-
mized models enhance the required time by almost 79.77%.

The visual aspect of the coverage is presented in Figure 18.
The pattern is comparable between both optimized models
and representative of WLC2 result. We notice though that
SVM result is more precise than BDT if we focus on the lowest
coverage values.

The BDT model scores the best RMSE score in comparison
with the SVM models for the high dimensions. The opposite
happens for the low dimension values.

In terms of the statistical results, the SVM model results
in less standard deviation from the mean. The SVM median
is around zero whereas the BDT model median is at almost 5
points for high dimensions.

Table 2: Modifying the dimension of heatmap effect on ML heatmap process-
ing

Var. dim =
256

128 64 32 16

msvm -2,15 -4,16 -1,87 -0,93 0,04
mbdt -0,15 -0,11 0,09 0,34 0,64
medsvm 0,15 0,36 0,32 0,19 0,69
medbdt 4,15 5,56 1,59 -0,73 -0,67
stdsvm 15,82 24,8 19,83 23,76 23,29
stdbdt 25 37,6 23,72 20,21 17,47
rmsesvm 16,04 26,7 20,94 24,08 25,63
rmsebdt 24,75 37,63 23,29 21,02 18,2

tsvm
1297
1,54

2744
,41 450,09 130,53 58,9

tbdt
1295
9,84

2743
,7 450,12 130,65 58,99

twlc2
6406
3,31

1280
9,94

1836
,07 304,17 76,58

8 Conclusion

In this work, we have introduced our WLC2 dRRM solution in
contrast with literature approaches: Zone or Voronoi diagram-
based (idealistic) and Range-based (simplistic), and vendor
sRRM category of models: Cisco especially. We have shown
that our solution performs better than the vendor sRRM solu-
tion in a simulated controller-based Wifi environment.

Further, in this work, we have shown that the basic vari-
ant of our dRRM solution, WLC2, comes with some limita-
tions: the important system resources consumption and the
required processing time. The M-WLC2 optimization solu-
tion, which is based on important machine learning concepts,
allowed us to achieve an average of 79.99% relative time re-
duction by processing only 10% of the total available data
set. The accuracy of the results was evaluated visually and
statistically.

Our M-WLC2 optimization solution does not depend on
the Beam-based coverage representation model approach we
adopted for the simulation of the coverage area. It relies only
on the environmental variables, which influence the phenom-
ena, to build a prediction model rather than on an analytical
calculus of the physical phenomena itself. Besides, our opti-
mization solution is not limited to only our dRRM solution
but could be easily extended to optimize sRRM models too.

It is to mention that the optimization process of our dRRM
solution, presented in this work, could be accomplished in
different ways. The first approach is to describe analytically
the physical phenomena under study like in our solution N-
WLCx discussed in this work [16]. The second approach is
to work deeply on the performance of the actual machine
learning algorithms as it may be suggested by works such as
[17]. The idea here is to adapt the standard machine learning
algorithms to our specific need.
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(a) ”WLC2”

(b) ”BDT”

(c) ”SVM”

Figure 18: Visual aspect of ML optimized WLC2 coverage when dim = 256

Conflict of Interest The authors declare no conflict of in-
terest.

Acknowledgment We would thank colleagues : re-
searchers, engineers, and reviewers for sharing their precious
comments and on-field experience that improved the quality
of this paper.

References

[1] M. Guessous and L. Zenkouar. “ML-Optimized Beam-based
Radio Coverage Processing in IEEE 802.11 WLAN Networks”.
In: 2018 5th International Conference on Electrical Engineering,

Computer Science and Informatics (EECSI). Oct. 2018, pp. 564–
570. doi: 10.1109/EECSI.2018.8752874.

[2] Rafiza Ruslan and Tat-Chee Wan. “Cognitive radio-based
power adjustment for Wi-Fi”. In: TENCON 2009-2009 IEEE
Region 10 Conference. IEEE. 2009, pp. 1–5. doi: 10.1109/
TENCON.2009.5396078.

[3] Daji Qiao et al. “Adaptive transmit power control in IEEE
802.11 a wireless LANs”. In: The 57th IEEE Semiannual Vehic-
ular Technology Conference, 2003. VTC 2003-Spring. Vol. 1.
IEEE. 2003, pp. 433–437. doi: 10 . 1109 / VETECS . 2003 .

1207577.

[4] Nabeel Ahmed and Srinivasan Keshav. “A successive refine-
ment approach to wireless infrastructure network deploy-

www.astesj.com 30

https://doi.org/10.1109/EECSI.2018.8752874
https://doi.org/10.1109/TENCON.2009.5396078
https://doi.org/10.1109/TENCON.2009.5396078
https://doi.org/10.1109/VETECS.2003.1207577
https://doi.org/10.1109/VETECS.2003.1207577
http://www.astesj.com


M. Guessous et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 4, No. 6, 19-31 (2019)

ment”. In: IEEE Wireless Communications and Networking Con-
ference, 2006. WCNC 2006. Vol. 1. IEEE. 2006, pp. 511–519.

[5] Mehdi Guessous and Lahbib Zenkouar. “Cognitive direc-
tional cost-based transmit power control in IEEE 802.11
WLAN”. In: 2017 International Conference on Information Net-
working (ICOIN). IEEE. 2017, pp. 281–287. doi: 10.1109/
ICOIN.2017.7899520.

[6] Prateek R Kapadia and Om P Damani. “Interference-
constrained wireless coverage in a protocol model”. In: Pro-
ceedings of the 9th ACM international symposium on Modeling
analysis and simulation of wireless and mobile systems. ACM.
2006, pp. 207–211. doi: 10.1145/1164717.1164754.

[7] Mehdi Guessous and Lahbib Zenkouar. “A novel beamform-
ing based model of coverage and transmission costing in IEEE
802. 11 WLAN networks”. In: Adv. Sci. Technol. Eng. Syst. J.
2.6 (2017), pp. 28–39. doi: 10.25046/aj020604.

[8] Amit P Jardosh et al. “Green WLANs: on-demand WLAN
infrastructures”. In: Mobile Networks and Applications 14.6
(2009), pp. 798–814. doi: 10.1007/s11036-008-0123-8.

[9] Aditya Akella et al. “Self-management in chaotic wireless
deployments”. In: Wireless Networks 13.6 (2007), pp. 737–755.
doi: 10.1007/s11276-006-9852-4.

[10] Cem U Saraydar, Narayan B Mandayam, David J Goodman,
et al. “Efficient power control via pricing in wireless data net-
works”. In: IEEE transactions on Communications 50.2 (2002),
pp. 291–303. doi: 10.1109/26.983324.

[11] Dipankar Raychaudhuri and Xiangpeng Jing. “A spectrum
etiquette protocol for efficient coordination of radio devices
in unlicensed bands”. In: 14th IEEE Proceedings on Personal,
Indoor and Mobile Radio Communications, 2003. PIMRC 2003.

Vol. 1. IEEE. 2003, pp. 172–176. doi: 10.1109/PIMRC.2003.
1264255.

[12] Radio Resource Management White Paper - Transmit Power Con-
trol (TPC) Algorithm [Cisco 5500 Series Wireless Controllers].
en. June 2016. url: https://www.cisco.com/c/en/us/
td/docs/wireless/controller/technotes/8-3/b_RRM_

White_Paper/b_RRM_White_Paper_chapter_0101.html

(visited on 05/14/2019).

[13] ARM Coverage and Interference Metrics. url: https://www.
arubanetworks.com/techdocs/ArubaOS_64x_WebHelp/

Content/ArubaFrameStyles/ARM/ARM_Metrics.htm (vis-
ited on 05/17/2019).

[14] Lowering the power level to reduce RF interference. url: https:
/ / help . fortinet . com / fos50hlp / 52data / Content /

FortiOS / fortigate - best - practices - 52 / Wireless /

Lowering_Power_Level.htm (visited on 05/17/2019).

[15] Thomas M. Mitchell. Machine Learning. 1st ed. New York,
NY, USA: McGraw-Hill, Inc., 1997. isbn: 0070428077,
9780070428072.

[16] Mehdi Guessous and Lahbib Zenkouar. “A nurbs based
technique for an optimized transmit opportunity map pro-
cessing in wlan networks”. In: International Conference
on Wired/Wireless Internet Communication. Springer. 2017,
pp. 143–154. doi: 10.1007/978-3-319-61382-6_12.

[17] Alireza Babaei. “Longitudinal vibration responses of axi-
ally functionally graded optimized MEMS gyroscope using
Rayleigh–Ritz method, determination of discernible patterns
and chaotic regimes”. In: SN Applied Sciences 1.8 (2019),
p. 831. doi: 10.1007/s42452-019-0867-8.

www.astesj.com 31

https://doi.org/10.1109/ICOIN.2017.7899520
https://doi.org/10.1109/ICOIN.2017.7899520
https://doi.org/10.1145/1164717.1164754
https://doi.org/10.25046/aj020604
https://doi.org/10.1007/s11036-008-0123-8
https://doi.org/10.1007/s11276-006-9852-4
https://doi.org/10.1109/26.983324
https://doi.org/10.1109/PIMRC.2003.1264255
https://doi.org/10.1109/PIMRC.2003.1264255
https://www.cisco.com/c/en/us/td/docs/wireless/controller/technotes/8-3/b_RRM_White_Paper/b_RRM_White_Paper_chapter_0101.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/technotes/8-3/b_RRM_White_Paper/b_RRM_White_Paper_chapter_0101.html
https://www.cisco.com/c/en/us/td/docs/wireless/controller/technotes/8-3/b_RRM_White_Paper/b_RRM_White_Paper_chapter_0101.html
https://www.arubanetworks.com/techdocs/ArubaOS_64x_WebHelp/Content/ArubaFrameStyles/ARM/ARM_Metrics.htm
https://www.arubanetworks.com/techdocs/ArubaOS_64x_WebHelp/Content/ArubaFrameStyles/ARM/ARM_Metrics.htm
https://www.arubanetworks.com/techdocs/ArubaOS_64x_WebHelp/Content/ArubaFrameStyles/ARM/ARM_Metrics.htm
https://help.fortinet.com/fos50hlp/52data/Content/FortiOS/fortigate-best-practices-52/Wireless/Lowering_Power_Level.htm
https://help.fortinet.com/fos50hlp/52data/Content/FortiOS/fortigate-best-practices-52/Wireless/Lowering_Power_Level.htm
https://help.fortinet.com/fos50hlp/52data/Content/FortiOS/fortigate-best-practices-52/Wireless/Lowering_Power_Level.htm
https://help.fortinet.com/fos50hlp/52data/Content/FortiOS/fortigate-best-practices-52/Wireless/Lowering_Power_Level.htm
https://doi.org/10.1007/978-3-319-61382-6_12
https://doi.org/10.1007/s42452-019-0867-8
http://www.astesj.com

	 Introduction
	RRM Related Work
	In Research
	Vendor Solutions

	Our Dynamic RRM Solution
	Theoretical Background
	Wifi Unified Architecture
	Radio Coverage Representation Models
	Machine Learning Regression Models
	Support Vector Machines
	Bagged Decision Trees


	Problem Description
	MLR-based Optimization Solution: M-WLC2
	Workflow
	Training Set
	RMSE Validation
	Time

	Evaluation
	Simulation
	Processing of Area Coverage Heatmap
	Multiple Iterations of The Same Simulation
	The Effect of Modifying The Training Set Size
	Modifying The Dimension Size of The Coverage Area

	Conclusion

