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Deep Neural Networks (DNNs) prove to be susceptible to synthetically generated samples,
so-called adversarial examples. Such adversarial examples aim at generating misclassifications
by specifically optimizing input data for a matching perturbation. With the increasing use of
deep learning on embedded devices and the resulting use of quantization techniques to compress
deep neural networks, it is critical to investigate the adversarial vulnerability of quantized
neural networks.
In this paper, we perform an in-depth study of the adversarial robustness of quantized networks
against direct attacks, where adversarial examples are both generated and applied on the same
network. Our experiments show that quantization makes models resilient to the generation of
adversarial examples, even for attacks that demonstrate a high success rate, indicating that it
offers some degree of robustness against these attacks. Additionally, we open-source Adversarial
Neural Network Toolkit (ANNT) to support the replication of our results.

1. Introduction

This paper builds upon our recent work, presented at the 5th
ACM/IEEE International Conference On Automation of Software
Test [1], which involved a comprehensive study on transferability
of adversarial examples among quantized networks under various
conditions. In this study, we advance the analysis by examining
the efficiency of adversarial attacks on quantized networks when
attacks are created and applied on the same network (direct attacks).
Together, our previous and current work provide a more complete
understanding of how quantization affects network vulnerability by
addressing both transfer-based and direct attack scenarios.

Adversarial examples are images with deliberately added per-
turbations which can cause a network to misclassify the image at
a high rate [2]. These perturbation vectors are computed using
specific algorithms and often distort an image in such a way that it
looks benign or clean to human observers but are enough to cause a
network to misclassify the image [3, 4].

As the use of DNNs proliferates over various safety-critical
domains like medical diagnosis [5], railway [6], and aviation [7],
the possibilities of adversarial examples coercing a network into
making adversary-controlled decisions become a severe threat. One
of the domains where deep learning is rapidly gaining popularity is
the embedded systems. For instance, autonomous systems use AI

for decision-making by processing sensory information [8], mobile
devices use them for image processing [9], and surveillance systems
use them for biometric analysis [10]. However, the implementation
of deep learning on edge devices is challenging. While the em-
bedded devices are inherently constrained in terms of memory and
power resources [11, 12], the state-of-the-art capabilities of DNNs
come at a price of tremendous computational power required for
running them. A pre-trained neural network comes with a large
number of parameters: AlexNet [13] has 60 million parameters;
VGG16 [14], an improvement over AlexNet, has 138 million pa-
rameters; similarly, ResNet50 [15], another popular DNN, has 26
million parameters. The presence of these large number of pa-
rameters mean that the computational demand at run-time is very
high and requires the systems implementing these models to have
considerable computing capabilities for a smooth operation.

One of the solutions to the limited resource problem is using a
high-performance server that handles the deep learning tasks, with
the devices just having to communicate with the server. Another
solution, which is more widely adopted, is to deploy optimized ver-
sions of a base model on the device itself. On-device deployments
has several benefits [16]:

• No need to communicate with the server frequently which
saves energy.
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• Privacy is maintained as the user data does not leave the
device.

• Performance is improved as round-trips to the server is
avoided.

Various methods have been developed to optimize models for on-
device deep learning [17, 18, 19]. One such effective approach is
model compression through quantization [20], which reduces both
the computational complexity and memory footprint of a network by
lowering the precision of its values from the default 32-bit floating
point (float32) to smaller bitwidths.

However, recent studies have shown that quantized networks
remain vulnerable to adversarial examples [21, 22]. The adversar-
ial vulnerability is especially concerning in compressed networks
because of the wide-spread use and accessibility of embedded de-
vices as compared to the full-scale networks running on high-end
servers. Moreover, adversarial examples are found to be transfer-
able [4, 23, 24, 25]. Samples created in one network (source) are
found to be effective when applied on another network (target)
trained to perform similar tasks. Our prior work [1] investigated
this transferability property. Interestingly, we observed that iterative
attacks like the Boundary Attack [26] and Carlini-Wagner (CW)
attack [27] showed high efficiency in direct attack settings (where
the source and target network are same), even when the networks
were quantized. In this paper, we present an in-depth analysis of
this behaviour, offering further insights into attack effectiveness on
quantized networks.

Our contributions with this work are as follows:

• We consider diverse adversarial attack algorithms to assess the
adversarial vulnerability of quantized networks against direct
attacks. Our analysis shows that even though some attacks
succeed with high rate, quantized networks, in general, offer
some resistance against both gradient-based and gradient-free
attacks as they require higher distortion to become effective,
making samples easier to detect.

• We introduce the Adversarial Neural Network Toolkit
(ANNT), a holistic application that streamlines the entire
process—from training full-precision and quantized models
to generating adversarial examples and evaluating robust-
ness—within a single tool. ANNT, together with the trained
models and adversarial images provided with this paper, en-
ables the replication of our results—both from this study and
our previous work [1]. Furthermore, ANNT can serve as a
valuable resource for the research community, simplifying ex-
perimentation by allowing users to train quantized models and
immediately test their robustness using various adversarial
attacks without switching between tools.

2. Scope of the Study

Only untargeted misclassifications are considered. This means, for
an attack algorithm, classification to any class other than the true

class is considered as a successful attack. Targetted misclassifica-
tions that require attack algorithms to cause misclassifications to a
specific target class selected by an adversary are not considered.

When quantizing a network, both activation and weight values
are quantized to the same bitwidth. Quantization of activation and
weights individually to different bitwidths is possible and could be
a subject of further work. Moreover, gradients and bias values are
not quantized.

Further, the study is limited to only image classifiers. Datasets,
attack algorithms, and DNNs are selected accordingly.

3. Background

3.1. Deep Neural Network (DNN)

A DNN can be defined as a function that maps a high-dimensional
input to a vector1 output. More specifically, a DNN is a classification
function that can be expressed as:

f (x,θ) = y (1)

Here, x ∈ Rm is an input of m dimensions, θ represents param-
eters (weights and biases) learned during training, and y ∈ Rn is a
vector representing probability distribution over n classes, meaning
that y1 + y2 + y3 + . . .+ yn = 1 and 0 ≤ (yi)

n
i=1 ≤ 1. Each yi in y

represents the probability that the input x is assigned to class i.
Thus, the class assigned to the input x is determined by the index

of the maximum value in the output vector y. Hence, yi = fi(x)
being ith output of the network, the output label y is given by:

argmax
i

fi(x) = y (2)

The network learns by iteratively adjusting θ based on an op-
timization algorithm that guides the adjustments by moving in the
direction opposite to the loss gradient ∇θ J(x,y,θ), where J(x,y,θ)
represents loss function used to train the network. The gradient
∇θ () is computed with respect to the current network parameters θ .
In our work, since we use trained networks, θ is constant (therefore
ignored in Equation 2).

3.2. Distance Metrics

Various distance metrics can be used to measure the similarity (or
dissimilarity) between the benign and adversarial samples. Lp-norm
distances are widely used as one of the performance metrics when
generating adversarial examples [26, 27, 28].

Let, xadv ∈ Rm be the corresponding adversarial example of a
benign sample x, Lp distance between x and xadv for p ∈ [0,∞) is
given by:

|x−xadv|p =
(
∑

m
i=1 |xi −xadv

i |p
) 1

p (3)

The Lp-norm distances include:

• L0 distance (Hamming distance): L0 counts the number of
non-zero elements in |x−xadv|0, that is, |{xi −xadv

i , 0}|.
1The bold letterings indicate that the corresponding values are vector quantities.
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When considering image classifiers, each element of the in-
put vector x is a pixel value, and thus, L0 basically counts
the number of pixels that have altered between x and xadv

[27, 28].

• L1 distance (Manhattan distance): From Equation 3, L1 dis-
tance can be expressed as:

|x−xadv|1 = ∑
m
i=1 |xi −xadv

i | (4)

• L2 distance (Euclidean distance): As per Equation 3, the
Euclidean distance between x and xadv is given by:

|x−xadv|2 =
√

∑
m
i=1(xi −xadv

i )2 (5)

L2 can remain small even where there are minute changes in
many pixels [27].

• L∞ distance (Chebyshev distance): This is given by:

|x−xadv|∞ = max(|xi −xadv
i |{i=1,...,m}) (6)

Thus, L∞ measures the largest change in pixel values. This
can be used to set a maximum limit up to which a pixel value
is allowed to change. While any number of pixels can be
modified, each pixel can only be modified to this limit.

3.3. Adversarial Examples

Adversarial examples are generated by adding computed pertur-
bations to a clean image, resulting in distorted samples that look
almost identical to the original image to human observers, but cause
significant changes in the output class probabilities of a classifier,
leading to a misclassification in majority of cases [2, 4, 25, 28].
Adversarial samples are crafted at test time and do not require an
adversary to have any kind of influence on the training process
[29, 30].

If ytrue be the true label corresponding to a clean image x, then
from Equation 2 we have: argmaxi fi(x) = ytrue. If a perturbation
vector η ∈ Rm is added to input x, resulting in a perturbed example
xadv causing successful misclassification, then:

argmax
i

fi(xadv) , ytrue (7)

It is also worth noting that not all adversarial examples cause
misclassification. These samples have high probability of causing
misclassification but do not guarantee misclassification [25]. In this
view, all samples created from an adversarial examples generation
algorithm are adversarial examples but it is possible that not all of
them are successful in fooling a network.

A DNN learns by iteratively reducing loss by utilizing optimiza-
tion algorithms like the gradient descent. In other words, a network
is made to converge to a point where the parameters are such that the
resulting class probabilities yield low loss. With this in mind, the
basic concept behind generating adversarial samples is to increase
the loss such that the class probabilities are manipulated in a way
desired by the adversary. Since it is not possible to modify the
network parameters θ at test time, the input itself is varied till the

goal of misclassification is met. Thus, for generating adversarial
examples, the optimization problem becomes:

max
xadv

J(xadv,y,θ)

s.t. |x−xadv|p ≤ ε

(8)

Where, xadv = x+η and ε is the maximum allowed perturba-
tion measured in terms of | · |p utilized by the algorithm to generate
the sample.

3.4. Crafting Algorithms

Inducing misclassification through random perturbations is notably
more challenging [23] and therefore definite algorithms are required
to compute perturbation vectors of specific magnitude and direction.
Usually, these algorithms aim to solve the optimization problem in
Equation 8. In our original work [1], we considered five concep-
tually different algorithms to create such attacks. In this work, we
use the same algorithms as we want to study the attack efficiency of
these attacks on the source network.

Fast Gradient Sign Method (FGSM) [4]: The attack is based
on the reasoning that all non-linear models are trained to behave
rather linearly to make the training process easier. For instance,
commonly used activation functions like ReLU are piecewise linear
and even sigmoid functions are tuned to work within the linear part
of the curve. As a consequence, adding linear perturbations to the
input can break the models.

If perturbation vector η be the distortion introduced to input
vector x such that xadv = x+η . For |η |∞ < ε , where ε is less than
the precision of the model, the model should not respond to this
distortion. However, for a linear model with weight vector w, this
distortion grows by w ·η as shown by the relation in Equation 9.

w ·xadv = w ·x+w ·η
wT xadv = wT x+wT

η
(9)

To maximize the effect of this distortion, direction of max-norm
constrained perturbation η can be aligned with weight vector. Then,
m being the average weight of each element of w and n be the dimen-
sion of w, the activation change can be represented as in Equation
10

wT
η = εmn (10)

The consequences of Equation 10 are: (a) Keeping the average
weight same, change in activation due to η grows linearly with n.
Thus, a small change at input can aggregate to create large change
in output at high dimensions. (b) Since all models behave linearly,
the concept of this linear perturbation can also be applied to DNNs
to cause misclassifications.

Authors then use these ideas to propose FGSM which adds
linear distortion to the input in a single step to create adversarial
samples. The perturbation vector η is constructed as:

η = εsign(∇xJ(x,y,θ)) (11)

Thus, the adversarially perturbed sample is given by:

xadv = x+ εsign(∇xJ(x,y,θ)) (12)
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As can be seen, the perturbation is added in the direction of the
loss gradient computed with respect to input x. This makes sense
because loss gradient gives the direction of the largest increase in
loss. Thus, perturbation aligned with this direction is optimal for
increasing loss. ε is the L∞ norm of the perturbation which also
gives the distance between x and xadv.

Jacobian Saliency Map based Attack (JSMA) [29]: The
attack generates adversarial examples by establishing a direct re-
lationship between input variations and output changes, allowing
it to identify the features most effective in altering the classifier’s
decision.

The basic idea behind the algorithm can be summed up in three
steps:

1. Compute forward derivative of the function learned by the
network to create a mapping between rate of change in output
with respect to change in input.

2. Create a saliency map based on the computed forward deriva-
tive to search for the most sensitive features that produce
change towards the adversarial class.

3. Add defined perturbation to the selected features. Keep
adding changes iteratively with each iteration computing the
forward derivative and the saliency map until the misclassifi-
cation is achieved.

The forward derivative of a network computes how much the
output y changes due to the change in x. Since a network learns
a vector valued function, the forward derivative has to compute
change in each element of y due to change in each element in x.
This is basically the Jacobian of the vector valued function learned
by the network.

Thus, the forward derivative is given by:

∇ f (x) =
∂ f (x)

∂x
=

[
∂ f j(x)

∂xi

]
i∈1,...,m, j∈1,...,n

(13)

For more clarity, when assuming a 2-dimensional input x and
output y, the forward derivative is computed as:

∇ f (x) =

 ∂ f1(x)
∂x1

∂ f1(x)
∂x2

∂ f2(x)
∂x1

∂ f2(x)
∂x2

 (14)

In the Jacobian matrix, a positive rate of change of an output
class means that the change in the corresponding input feature will
increase its current prediction probability, while a decrease means
that it will decrease its prediction probability. Based on this, a
saliency map can be constructed which filters the features that are
most important based on the given criteria. Equation 15 provides a
very basic filter criteria as defined in [29].

S(∇ f (x), t)[i] =

 0 if ∂ ft (x)
∂xi

< 0 or ∑ j,t
∂ f j(x)

∂xi
> 0(

∂ ft (x)
∂xi

)∣∣∣∑ j,t
∂ f j(x)

∂xi

∣∣∣ otherwise
(15)

Here, t is the target class to which the input is to be misclassified,
that is, t , ytrue. S(∇ f (x), t)[i] is the saliency map computed for ith

feature.

Thus, as per Equation 15, from the Jacobian matrix, features
that increase the target class probability and at the same time de-
crease the probabilities of all other classes are weighed. The feature
with the highest value is then selected. In each iteration, selected
feature is perturbed by a defined amount. This is continued till
misclassification is achieved, that is, argmaxi fi(x) = t.

In practice, saliency map criteria as defined in Equation 15 is
too restricting; thus, an optimized version which selects a pair of
features in one iteration is often used [29]. The policy for gen-
erating maps may need to be optimized as per requirement. For
instance, pairwise selection is usable for CIFAR10 [31] and MNIST
[32] datasets but was found to not work for datasets that contain
high-resolution images like the ImageNet [27].

Universal Adversarial Perturbation (UAP) [3]: UAP is dif-
ferent from other attacks discussed in this section as it generates
image-agnostic perturbations. Instead of computing adversarial
images for each image in a dataset, the algorithm aims to find a
single perturbation vector from a given subset of data which can
then be applied to the entire data distribution to create adversarial
samples. These types of perturbations are called Universal Adver-
sarial Perturbations (UAP). The prefix universal is used because
they are generalizable across new data points that were not used
when creating the perturbation.

If X = {x1,x2, . . . ,xn} be a dataset sampled from a data distribu-
tion µ , then the goal is to compute a universal perturbation v ∈ Rm

using X, such that for most x ∈ Rm in µ , Equation 16 is fulfilled.

f (xk + v) , ytrue (16)

The algorithm iterates though each image in X and computes
a perturbation vector ∆vk that sends the current data point xk + v
across the decision boundary. Perturbation v is then updated as
(v+∆vk).

The perturbation vector v is such that |v|p < ξ , where | · |p is the
desired Lp-norm. To make sure that the magnitude of perturbation
v is within ξ , updated v is again projected onto a Lp ball of radius
ξ centered at 0. The algorithm stops when a pre-defined fooling
rate is obtained on X. If δ be the desired accuracy on X then the
required fooling rate is denoted by (1−δ ).

At the end of each iteration, the computed perturbation v is
added to all data points in X to create a set of perturbed data points
Xv = {x1 + v,x2 + v, . . . ,xn + v} . The current fooling rate is then
given by Equation 17. The algorithm stops when Err(xv)≥ (1−δ ).

Err(xv) =
1
n

n

∑
k=1

1[ f (xk+v), f (xk)] (17)

The individual image perturbation ∆vk can be computed using
any algorithm. For instance, authors in [3] use DeepFool [33], while
[34] uses Projected Gradient Descent (PGD) [35]. In our case, we
use FGSM to compute this vector and measure ξ in L∞.

The Carlini-Wagner (CW) Attack [27]: Carlini and Wagner
introduce three variants of one of the most powerful gradient-based
adversarial attacks against neural networks. The attacks not only
cause misclassification with high success rate but they do so while
introducing comparatively low distortion than other attacks like
FGSM and JSMA. The three variations of the attacks are based on
the L2, L0, and L∞ distance metrics. However, as in our previous
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work [1], we only focus on the L2 version as it is considered to be
the strongest [27].

The effectiveness of the attack can be attributed to the optimiza-
tion problem (Equation 18) that balances two objectives: (1) Mini-
mize distance between adversarial and the original image. (2) Mis-
classify the image into any class other than the original. This results
in adversarial samples that are minimally perturbed while ensuring
misclassification.

minimize ∥xadv −x∥2
2 + c · l(xadv); where,

l(xadv) = max
(

Zi(xadv)−max
(

Zt(xadv) : t , i
)
+κ,0

) (18)

In equation 18, Zi(xadv) is the logit corresponding to the true
label and Zt(xadv) corresponds to any other label t , i. The equation
considers L2 norm. The amount of distortion or the misclassification
confidence can be controlled by varying κ . Larger κ means samples
are more stronger (high confidence misclassification) at the cost of
higher distortions. On the other hand, c is a positive constant that
mediates the trade-off between minimizing perturbation and achiev-
ing misclassification. It is determined via binary search during the
attack.

Further, the attack considers logits rather than activation values
from the softmax layer, this enables the attack to still be effective on
networks that apply gradient-masking techniques like the defensive
distillation [36]. Moreover, the original paper designs the attack for
targeted misclassifications, adapting the objective function accord-
ingly. In this work, we focus on untargeted misclassification and
therefore utilize the objective function presented in Equation 18.

The Boundary Attack (BA) [26]: The Attack uses model’s
decisions on the input points to craft adversarial examples and there-
fore, unlike other attacks discussed in this section, it does not require
access to model parameters or architecture to create adversarial sam-
ples.

For each clean image, the algorithm initializes a random adver-
sarial image and iteratively applies perturbations that reduce the
L2 distance between the adversarial and the corresponding clean
image. After each iteration, the algorithm checks that the perturbed
image remains outside the decision boundary of the original image
by querying the model. This process continues until the minimum
distance between the clean and adversarial image is achieved.

The algorithm internally uses two parameters, δ and ε to con-
trol the perturbations that guide the initialized image towards the
clean image. δ controls the magnitude of the perturbations and
ε controls the step size towards the clean image. The generation
process begins by sampling feature values from a uniform distri-
bution U (0,1) to create a random image that is adversarial to the
clean image. Multiple perturbations are sampled randomly from
an iid Gaussian distribution N (0,1) and are rescaled based on the
current value of δ . These perturbations are then projected on a
sphere around the clean image and are then added to the random
image. From the resulting perturbed images, only those that are
still adversarial are selected for further processing. If less than 20%
of the perturbed images are adversarial, then this means that the
image is already close to the decision boundary, and thus the value
of δ is decreased. However, if more than 50% are adversarial, then
δ is increased. Finally, to make a movement towards the decision

boundary, the perturbations are again scaled by ε and added to the
perturbed images. Again, out of the resulting perturbed images, only
those that remain adversarial are selected. Value of ε is adjusted
by considering similar thresholds as in the case of δ . From the
successful adversarial images, the adversarial image that is closest
to the initial image in terms of L2 distance is selected for the next
iteration. The loop continues with the updated values of δ and ε

until an adversarial image with minimum possible L2 is obtained.
Thus, with each iteration, the adversarial image comes closer to the
decision boundary and starts to look like the original image, yet
remaining adversarial.

Both δ and ε are adjusted automatically during generation. The
number of iterations, however, is provided as input to the algorithm.
Fewer iterations result in higher distortion, while more iterations
result in less distortion, as the algorithm has more opportunities to
bring the initial image closer to the original image.

Moreover, BA is a gradient-free attack as it does not use any
type of gradient-information to craft adversarial samples.

3.5. Quantization as a Model Optimization Technique

Quantization reduces the computational complexity during training
and inference by reducing the bitwidth of activations, gradients,
and weights [18] to lower bitwidth numbers. This allows floating-
point multiplications during convolution operations to be replaced
with faster bitwise operations. For instance, by binarizing weights
and input activations of convolution layers, the dot products during
forward pass can be computed with the formula as in Equation 19
[37].

x ·y = bitcount(AND(x,y)),xi,yi ∈ {0,1}∀i (19)

Here, x and y are two bit vectors and the bitcount operation
counts the number of 1s in the resulting vector. Equation 19 can
be further extended to be valid for any fixed-point integer values.
If x be a sequence of M-bit integers and y be a sequence of K-bit
integers then:

x =
M−1

∑
m=0

cm(x)2m (20)

y =
K−1

∑
k=0

ck(y)2k (21)

where, (cm(x))M−1
m=0 and (ck(y))K−1

k=0 are bit vectors. Then the dot
product of x and y is given by Equation 22 [37].

x ·y =
M−1

∑
m=0

K−1

∑
k=0

2k+m bitcount[AND(cm(x),ck(y))] (22)

Thus, by representing activation, weights, and gradients by in-
teger values, convolution operations between them can be greatly
optimized.

There are two types of quantization [20, 22]: post-training
quantization and quantization aware training. In post-training quan-
tization, weights and activation values are quantized after a model
is fully trained. Quantization aware training quantizes weights,
activations, or gradients during training.
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DoReFa-Net [37]: The quantization method quantizes weights,
activations, and gradients to lower bitwidths during training. Activa-
tion and weight values are quantized during forward pass, while the
gradients are quantized during backward pass. Although DoReFa-
Net is able to perform low bitwidth quantization of gradients, we
do not consider gradient quantization in this work. Thus, the con-
volution operation between weights and activations during forward
pass takes place in low bitwidths, while backward pass still requires
convolution between quantized and unquantized values.

(a)

(b)

Figure 1: 1-bit quantization of weights using DoReFa-Net: (a) Weight values from
a part of a full-precision float32 convolution layer. (b) The same values after 1-bit
quantization using DoReFa-Net (without conversion to integers).

If q is a quantized value of p and c is the cost function, then
during backward pass, computation as in Equation 23 requires ∂q

∂ p
which is not well defined. This creates a problem during back-
propagation.

∂c
∂ p

=
∂c
∂q

· ∂q
∂ p

(23)

One of the solution to this problem is to estimate the value of
∂q
∂ p , given that ∂c

∂q is properly defined. These estimators that allow

defining custom ∂q
∂ p are called Straight Through Estimators or STEs

[38]. DoReFa-Net uses quantizen STE [37], which is defined as in
Equation 24.

Forward: ro =
1

2n −1
round((2n −1) ri)

Backward:
∂c
∂ ri

=
∂c
∂ ro

(24)

Equation 24 uses ∂c
∂ ro

as an approximate of ∂c
∂ ri

. In the equation,
ri ∈ [0,1] is a float32 real number and ro ∈ [0,1] is the quantized
output value representable by an n-bit number. Since there is always
an affine mapping between fixed-point integers and n-bit numbers,

the bit-convolutions as specified in Equation 22 can take place be-
tween quantized weights and activations during forward pass. This
significantly speeds-up the training and inference process.

Figure 1 compares weight values of a convolution layer before
and after 1-bit quantization using DoReFa-Net. As illustrated in the
figure, the weight values are 1-bit quantized (2 possible values) but
the data type remains float32. We maintain the n-bit numbers as
float32 and do not convert them to integers. This approach preserves
the levelling effect caused due to quantization, but without the speed
optimizations that integer representations could provide. However,
improving computational speed is not a priority, as the primary goal
is to analyze the network’s behaviour.

Quantization of weights: DoReFa-Net treats 1-bit quantization
of weights differently than n-bit quantization where n > 1. For 1-bit
quantization, a method similar to [39] is used. The STE is as shown
in Equation 25.

Forward: ro = sign(ri)×E(|ri|)

Backward:
∂c
∂ ri

=
∂c
∂ ro

(25)

Here, sign(ri) = 2Iri>0 −1 has two possible values: -1 and 1.
E(|ri|) is the average of absolute values of all weights in the layer.
For n-bit quantization, forward operation as in Equation 26 is used.

Forward: ro = f n
w(ri) = 2quantizen

(
tanh(ri)

2max(|tanh(ri)|)
+

1
2

)
−1 (26)

Here, tanh bounds the value of ri within [-1,1]. The expression(
tanh(ri)

2max(|tanh(ri)|)
+ 1

2

)
results in a value between [0,1], maximum

here is taken over all weights in that layer. f n
w thus quantizes weights

to n-bit numbers within [-1,1].
Quantization of activations: The input to each weight layer is

quantized with forward operation as defined in Equation 27.

Forward: ro = f n
a (ri) = quantizen(ri) (27)

Here, ri is passed through an activation function that limits it
within [0,1] before being used as input to f n

a .

4. Related Work

In our previous work [1], we performed a comprehensive analysis of
transferability among quantized and full-precision networks trained
on the MNIST and CIFAR-10 datasets. The analysis involved
various attack algorithms, as well as variations in model-related
properties like architecture and capacity. The findings show that
although transferability, in general, remains poor, it may be possi-
ble to improve the attack transfer rate using UAP. Further, it was
observed that the attacks like BA and CW had high efficiency when
applied on the source network even in the case of low-bitwidth
networks. Additionally, it was observed that an attacker might be
able to predict the success rate of an attack on a target network with
different bitwidths, capacities, and architectures based on the per-
formance of the attack when transferred among different bitwidth
versions of the source model.
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There has been substantial research related to network quanti-
zation, adversarial examples, and the impact of adversarial attacks
on both full-precision and quantized models, providing significant
insights into the vulnerability and robustness of quantized networks.

4.1. Quantization

A survey on various works on quantization of DNNs is presented
in [20]. The paper provides an overview of different types and
techniques of quantization along with the references to different
networks that implement those methods. The case studies presented
in the paper involving XNOR-Net [39] and Binaryconnect [40]
provide a good starting point for understanding binarized networks.

The paper also provides an introduction to the DoReFa-Net
method [37] which is used in this work for quantization. Further,
it also compares DoReFa-Net with other quantization methods in
terms of accuracy of the resulting quantized networks. The compar-
isons in this paper helped to confirm that DoReFa-Net had no known
issues and that the performance was comparable, if not better, than
other similar quantization techniques. This strong performance was
a key factor in our decision to select DoReFa-Net for quantization.

Authors in [18] provide details on how TensorFlow Lite [41] can
be used for quantization. Although the strategies and the quantiza-
tion process itself are only focused on TensorFlow Lite’s implemen-
tation, the findings are significant and can be generalized for other
quantization tools as well. The key takeaway is that fine-tuning an
already trained network leads to better accuracy models after quan-
tization than training from scratch and that the models with large
number of parameters are more resistive to accuracy loss due to
quantization. This observation is in agreement with the conclusion
drawn from the model configuration experiment in [37].

In [42], authors present an open-source model optimization
framework called Mayo which supports multiple compression tech-
niques like the Low-rank Approximation (LRA) [43], quantization
and pruning [17]. These compression techniques are implemented
through objects called overriders which can be applied to any net-
work component like weights, biases, activations or gradients to
customize their value. Further, Mayo also allows chaining of multi-
ple overriders meaning that multiple compression techniques can be
applied in a sequence. This unique ability enables Mayo to achieve
higher compression ratio than any other compression APIs.

However, there are several drawbacks with Mayo; for instance,
it uses multiple YAML files for configuration, which makes it cus-
tomizable but also makes the control flow complex and hard to
comprehend for custom implementations. Moreover, there is no
clear explanation on how quantization is performed. Authors men-
tion that the quantization is fixed point [42] but do not go into details
on how this is done.

The Model Optimization Toolkit2 from TensorFlow provides
multiple methodologies for network quantization. However, the
post-training quantization does not support quantization other than
16-bit float and 8-bit integer. The quantization aware training al-
lows to define specific bitwidths for each layer during training, but
quantization parameter configuration (like custom bitwidths) are not
supported for deployment, meaning that although network layers
can be trained at lower bitwidths, model execution takes place at 8

bits. Therefore, lower bitwidth quantization is not possible.

4.2. Adversarial Examples

In [4], authors argue that adversarial examples exist not due to ex-
treme non-linearity or over-fitting of a model, but rather because of
its linear behaviour in high dimensions. Authors use this hypothesis
to introduce the Fast Gradient Sign Method (FGSM) for creating
adversarial examples. FGSM being able to produce successful ad-
versarial examples provides validity to the claim that these examples
exploit the model’s inherent linearity. The paper also makes an im-
portant observation that the adversarial examples exist in broad
contiguous regions in input space rather than in fine pockets. For
multiple models, these adversarial subspaces are shared. Perturba-
tions leading to the shared subspaces lead to adversarial transfers.
Thus, direction of perturbation is important for transferability rather
than magnitude.

Authors further explore the concept of adversarial subspaces in
[23] where they estimate the dimensionality of this subspace. They
find that compared to the input dimension, the dimension of the
adversarial subspace is relatively small. The perturbation directions
leading to the adversarial subspace are referred to as adversarial
directions. These orthogonal adversarial directions are shared across
multiple models, forming a common subspace. As a result, all adver-
sarial points within this shared subspace are transferable, meaning
they can fool any model that share it. Further, authors show that the
minimum distance required to cross the decision boundary for any
data point is least in the adversarial direction while it is higher in
random directions. This means that adding small perturbations is
enough to make the data point cross the decision boundary if the per-
turbation is in the adversarial direction, while larger perturbations
are necessary if the perturbation directions are random.

A comprehensive study on how model-specific properties like
model accuracy, capacity, and architecture affect transferability is
presented in [24]. Here, the authors use Iterative Fast Gradient Sign
Method (IFGSM) [25] and FGSM to generate adversarial attacks;
hence, the findings are valid only for attacks that leverage loss gra-
dients to create adversarial samples. Authors show that the attacks
crafted on low-accuracy networks have very poor transferability
regardless of model’s capacity and that same architecture transfers
are better than different architecture transfers. Further, authors ar-
gue that the iterative attacks transfer better than single-step attacks;
however, direct attack effectiveness is not considered.

In [30], authors use a custom attack based on Projected Gradi-
ent Descent (PGD) algorithm [35] to study both transferability and
direct attack effectiveness on various types of networks. Different
types of classifiers including Support Vector Machines (SVMs), lo-
gistic regression, and neural networks are considered. Authors find
that high-complexity networks require less distortion to produce
successful adversarial examples because sudden changes in the loss
function mean local optima are easier to find. This also meant that
highly regularized models were hard to create successful adversarial
samples against. Moreover, authors also find that both transferabil-
ity and attack performance on the source network increases when
the hyperparameter value associated with the attack is increased.
However, since the attack is gradient-based, the observations, like

2https://www.tensorflow.org/model optimization
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[24], are limited for gradient-based attacks.
The study in [44] offers a unique perspective on adversarial ex-

amples, arguing that all datasets contain non-robust features which
are imperceptible to humans but are highly predictive. Models
become sensitive to these features as they learn to rely on them
during training. These features are brittle and therefore samples
with slight change in them can cause misclassification. Additionally,
these features being non-perceptible also means that changes are
not visible. The presence of these non-robust features also leads to
adversarial examples being transferable because all datasets contain
these features and thus models trained on similar datasets are likely
to learn similar non-robust features.

In [45], authors present a study on transferability among mul-
tiple networks. The paper considers various models including
ResNet50, ResNet101, ResNet152, VGG16, and GoogleNet [46].
FGSM, FGM (Fast Gradient Method), and a custom optimization
based attack3 are used to generate adversarial examples. Both FGM
and optimization based attack were found to have similar trans-
ferability. Interestingly, the transferability between networks with
similar architectures was not found to be consistently better than
between networks with different architectures, a result that contrasts
with [24] but aligns with our findings in [1]. Moreover, the authors
observed that the optimization based attack performed better than
the other two attacks when applied on the source network, possibly
because FGSM and FGM create adversarial samples in a single step
and thus sacrifice efficiency for speed.

Authors in [47] use a tool called Deep Learning Verifier (DLV)
[48] to generate adversarial examples. DLV performs an exhaustive
search within a defined radius around an image and returns all pos-
sible adversarial examples (if any) and thus provides a guarantee
that apart from the ones that are discovered, the image is robust
against all other perturbations within the defined region. In their
experiments, authors find that some classes in MNIST dataset had
smaller number of effective adversarial samples than others. This
indicates that not all classes in a dataset are equally robust and some
might be more vulnerable than others.

Regarding adversarial attack generation, there are several popu-
lar tools that can be used to implement multiple attack algorithms.
For instance, [26] uses FoolBox [49] to implement FGSM and
DeepFool [33] attacks; [27] and [23] uses CleverHans library [50]
to implement JSMA and FGM, respectively. Moreover, several
works like UAP provide open source access to their work4 so that
the community can build on them. In [1] and in this work, we
use Adversarial Robustness Toolbox (ART) [51] to create adver-
sarial examples. The library supports comparatively large number
of attack algorithms and provides comprehensive documentation
for each attack implementation, along with an actively maintained
codebase5.

4.3. Vulnerability of Quantized Networks to Adversarial
Examples

In [22], authors use multiple attack algorithms to evaluate the ro-
bustness of quantized networks against adversarial attacks. The

paper uses DoReFa-Net for network quantization. However, Binary
Neural Network (BNN) [52] is used for 1-bit quantization while
DoReFa-Net is used only for 2-bit, 3-bit, and 4-bit quantization.
The robustness of quantized networks against attacks created on the
same network as well as against transfer-based attacks is examined
for five attack types: FGSM, Basic Iterative Method (BIM) [25],
Simultaneous Perturbation Stochastic Approximation (SPSA) [53],
CW attack, and Zeroth Order Optimization (ZOO) [54]. Authors
observe that gradient masking caused by activation quantization
may increase the robustness of a quantized network against gradient-
estimation algorithms like ZOO and gradient-based attacks like
FGSM and BIM, but some gradient-estimation algorithms, like
SPSA and CW, that are specialized to handle noise function were
found to be still effective. These observations are similar to ours
as we discuss in Section 7.2. However, we analyse this phenom-
ena further with additional attacks. Furthermore, authors show
that weight-only quantization does not affect attack performance
at source as the attacks can still produce similar variance in logit
values in quantized networks as in full-precision networks.

The work in [21] investigates the transferability of adversarial
attacks among compressed networks. The study considers pruning
and quantization as compression techniques and uses Mayo [42]
for compression. BIM, IFGM, and DeepFool are used to craft ad-
versarial examples. Authors show that the density of a network
can be reduced to as low as 15% for both CIFAR10 and MNIST
networks without any reduction in the test accuracy. This is inter-
esting because it shows that majority of parameters in a network
are not significant and supports the claim in [20] that low-bitwidth
quantization works because most parameters in a network are not
useful.

Authors in [34] present a transferability study that implements
various compression techniques including quantization to analyse
the transferability of the UAP attack across compressed networks.
A method called Additive Powers-of-two (APoT) [55] is used for
quantization. PGD is used to create UAPs. The difference between
the UAP crafted using PGD and FGSM (as used in this work) is
that the PGD updates the overall noise vector v in mini-batches,
while FGSM updates it per image. An important observation is that
SVHN dataset [56] was found to be more robust against attacks
created and applied on the same network as compared to CIFAR10
even when both CIFAR10 and SVHN were trained on the same
network and images in both datasets had the same resolution. This
indicates that some datasets are more robust to adversarial attacks
due to the nature of data. Further, similar to [22], authors argue that
quantization can cause gradient-based attacks to perform poorly on
the source network due to gradient masking. Experiments in the
paper also show that transferability is poor when source and target
networks differ in bitwidths, as well as when they differ in the type
of compression algorithm used.

5. Adversarial Neural Network Toolbox (ANNT)

We introduce Adversarial Neural Network Toolbox (ANNT) [57],
an open-source tool that provides a unified interface for handling

3Optimization based attack implemented by the authors iteratively adds perturbation to a clean sample until the loss is large enough to cause misclassification.
4https://github.com/LTS4/universal
5https://github.com/Trusted-AI/adversarial-robustness-toolbox
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the complete workflow of quantized model training, adversarial
image creation, and model robustness evaluation. Figure 2 shows
the usability of the tool in terms a basic workflow.

Figure 2: The custom API can be used to train models, create adversarial examples
and transfer created adversarial examples.

To train full-precision models, users can provide the model de-
scription (architecture), input dataset, and training hyperparameters.
Additionally, quantization hyperparameters such as the weight, ac-
tivation, and gradient bitwidths can be provided to train quantized
versions of a network.

The tool provides a unique functionality of generating adversar-
ial examples on a network of specified bitwidth. Users can provide
a trained model, quantization bitwidth, adversarial attack algorithm,
and attack hyperparameters to create specified number of adversarial
samples.

Further, the tool can also be used to perform adversarial in-
ferences on any given target network. The process computes the
accuracy of the target network against the input adversarial samples.
It also generates other relevant information like the correctly and in-
correctly classified samples and average L∞ and L2 distance between
the successful adversarial and clean samples. Thus, the cumula-
tive information generated is enough to perform a comprehensive
analysis of both direct and transfer-based attacks.

The tool can be used as a standalone Python application or as
a library. When used as an application, configurations like current
task (training/ inference/ attack creation), bitwidths, adversarial at-
tack algorithm (for attack creation), training hyperparameters, and
dataset can be provided through a YAML file. The tool then ex-
ecutes the specified task and provides detailed logs of the entire
process. When used as a Python library, users can simply import
ANNT as a module and utilize the provided interfaces for each

task. Additionally, an interface to load the generated samples for
visualization is also included. The repository provides a detailed
wiki as well as sample notebooks to help users get started with the
tool.

In addition to MNIST trained LeNet-5 [32] and CIFAR10
trained Resnets [15] of different capacities including Resnet20,
Resnet32, and Resnet44, several custom Convolutional Neural Net-
works (CNNs) trained on MNIST and CIFAR10 are supported out-
of-the-box. Further, five different attack types—FGSM, CW attack,
Boundary Attack, JSMA, and UAP—are supported.

The tool is based on TensorFlow 1.13 [58] and uses Tensorpack
0.11 [59] for model training and inference. Further, DoReFa-Net
[37] is used for quantization while Adversarial Robustness Toolbox
(ART) [51] is used to create adversarial samples.

6. Experimental Setup

6.1. Datasets and Models

The details regarding the datasets and full-precision (32-bit) models
used in the experiments are shown in Tables 1 and 2, respectively.

Table 1: MNIST and CIFAR10 datasets.

Dataset Remarks

MNIST
• 60,000 images in training set,
• 10,000 images in test set,
• 28x28 grayscale images,
• 10 distinct labels

CIFAR10
• 50,000 images in training set,
• 10,000 images in test set,
• 32x32 colour images,
• 10 distinct labels

Table 2: Full-precision (FP) MNIST and CIFAR10 models used in the experiments.

Dataset Model ID Test Set Accuracy Parameters

MNIST Mnist A 0.991 414K
CIFAR10 Resnet20 0.892 269K

All models were trained from scratch. The MNIST model
(named as Mnist A) is a custom CNN while Resnet20 is a ResNet
[15] trained on CIFAR10. The model architecture for Mnist A6

and Resnet207 are based on the examples defined in the Tensorpack
repository [59].

6.2. Quantization

1-bit, 2-bit, 4-bit, 8-bit, 12-bit, and 16-bit quantized versions of the
models in Table 2 were trained. As recommended in [37], the first
and last layers were not quantized in favour of better accuracy.

6https://github.com/tensorpack/tensorpack/blob/master/examples/basics/mnist-convnet.py
7https://github.com/tensorpack/tensorpack/blob/master/examples/ResNet/cifar10-resnet.py
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Quantization here refers to weight and activation quantization.
Thus, an 8-bit network means both weights and activations are
quantized to 8 bits.

Table 3 shows the accuracy of the quantized versions of the
Mnist A and Resnet20 models. Like the FP versions, all quantized
models were trained from scratch. As can be seen, quantization
did not result in noticeable drop in accuracy for models trained on
MNIST, while CIFAR10 models show a non-negligible decrease
in accuracy. This was expected because DoReFa-Net is known to
result in accuracy drops for more natural datasets [37].

Table 3: Test set accuracy of the quantized versions of the Mnist A and Resnet20.

Test Set Accuracy
Quantization Bitwidth Mnist A Resnet20

1 0.991 0.834
2 0.991 0.865
4 0.992 0.847
8 0.992 0.829
12 0.991 0.843
16 0.990 0.842

6.3. Attacks and Metrics

Attacks: Table 4 summarizes the attack algorithms used along with
other relevant information.

Table 4: Adversarial attack algorithms used and their key characteristics.

Algorithm Gradient-Based/ Iterative/ Distance
Gradient-Free Single-Step Metric

FGSM Gradient-based Single-step L∞

JSMA Gradient-based Iterative L0
UAP Gradient-based Iterative L∞

CW Gradient-based Iterative L2
BA Gradient-free Iterative L2

Attack hyperparameters: Table 5 shows the selected hyperpa-
rameter values for each attack type for both Mnist A and Resnet20
models.

In the case of FGSM, ε controls the magnitude of perturbation
introduced to the images. In JSMA, θ is the amount of distortion
added per feature in each iteration and γ is the percentage of features
allowed to be distorted for an image. For UAP, ε is the perturbation
magnitude for FGSM which is used to generate adversarial examples
within the UAP (Section 3.4), ξ is the maximum allowed magnitude
of perturbation of the UAP noise vector. As recommended in [34],
we measure ξ in L∞. For the Boundary Attack, i is the maximum
number of iterations8. Finally, for CW attack, κ ≥ 0 controls attack
confidence, i is the number of iteration the algorithm runs per image
(gradient descent steps), c > 0 is a balancing constant used in the op-
timization problem (Equation 18), bs is the number of binary search
steps to determine c, and ci is the initial value of c. The values of
ci and bs were selected based on the original paper [27], while κ

was varied to control distortion. The values of hyperparameters in
Table 5 were selected such that the images were distorted but yet
remained recognizable to human observers.

Table 5: Attack hyperparameter values for the full-precision (FP) and quantized
versions of the MNIST and CIFAR10 models.

ModelID Attack Hyperparameter Value

Mnist A

FGSM ε 0.25

JSMA θ 1
γ (%) 10

UAP ε 0.1
ξ 0.6

BA i 15

CW

κ 5
i 25

bs 20
ci 0.01

Resnet20

FGSM ε 0.05

JSMA θ 0.3
γ (%) 5

UAP ε 0.01
ξ 0.1

BA i 12

CW

κ 5
i 25

bs 20
ci 0.01

Attack metrics: Based on the metrics used by the current state
of the art, there are two possibilities for representing the effective-
ness of an adversarial attack on a network: adversarial accuracy and
evasion rate.

Adversarial Accuracy is the accuracy of a network against ad-
versarial examples. It is expressed as the ratio of the number of
adversarial examples that are classified correctly by the network to
the total number of samples used to attack the network.

For a set of pairs of clean sample and its adversarial counterpart,

N = {(x1,xadv
1 ),(x2,xadv

2 ), . . . ,(xn,xadv
n )}

the adversarial accuracy is computed as below:

Adv. accuracy =

∣∣{xadv ∈ N : argmaxi fi(xadv) = ytrue}
∣∣

|N|
(28)

Here, f is the classifier in which the attack is applied.
Similarly, evasion rate gives the success rate of the adversarial

attack on a network. It is defined by the ratio of the number of
adversarial examples that are classified incorrectly by the network
to the total number of samples used to attack the network. This is
computed as:

8The values of δ and ε , as mentioned in Section 3.4 are adjusted automatically. ART initializes both of them as 0.01, altering this initial value did not create any
noticeable change in final quality of samples, and thus were left at their default values for the experiments.
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Evasion rate =

∣∣{xadv ∈ N : argmaxi fi(xadv) , ytrue}
∣∣

|N|
(29)

A network having higher adversarial accuracy means the model
is more robust against the attack, while an attack having higher
evasion rate means the network is less robust.

Any one of these metrics can be used to represent adversarial
robustness. [21, 22, 45] use Equation 28, whereas [23, 24, 30, 34]
use Equation 29.

In this paper, we use adversarial accuracy, as we have selected
the same metric in [1]. This is simply a preference, using evasion
rate would not affect the observations or the results.

Training of all models, adversarial examples creation, and com-
putation of adversarial accuracy on target network were done using
ANNT.

7. Experiments, Observations, and Analysis

7.1. Experiments

A random sample of 1,000 clean images was selected from the
MNIST dataset (Table 1). Taking FP Mnist A (Table 2), and its
quantized counterparts (Table 3) as source networks, adversarial ex-
amples were created using all attack types described in Table 4 with
attack hyperparameter values as described in Table 5. When creat-
ing adversarial examples, inherent inefficiencies of the models were
avoided by selecting only those clean samples that were correctly
classified by the source network. The samples were then applied on
the same source network. The resulting adversarial accuracy of the
network, along with the average L2 and L∞ distances (as a measure
of distortion) between the successful adversarial and clean samples
were recorded. The samples were taken again, and the process was
repeated for 3 independent runs.

The same procedure was performed for FP Resnet20 (Table
2) and its quantized versions (Table 3). Table 6 shows averaged
adversarial accuracies and the Lp distances from the 3 runs for each
MNIST and CIFAR10 model.

7.2. Observations and Evaluation

Based on the results in Table 6, the following observations can be
made:

Observation 1: The Boundary Attack has high effectiveness.
For both CIFAR10 and MNIST models, the Boundary Attack shows
very high effectiveness while requiring very less number of itera-
tions to look like the original image. From Figure 3, it can be seen
that it just takes about 15 iterations for MNIST and 12 for CIFAR10
for the adversarial images to look like the original image. This also
goes along with the observation made in [26] where it takes very
less number of iterations to make the initial random image look like
the original image with more visible distortions at lower iterations.

The attack’s high effectiveness across all models, including the
quantized ones, makes sense because it keeps the initialized image
adversarial for any number of iterations in all cases.

(a)

(b)

Figure 3: The adversarial image generation progression using the Boundary Attack
depicted over multiple iterations on: (a) Mnist A FP model. (b) Resnet20 FP model.

Observation 1.1: Adversarial images generated by the Bound-
ary Attack are more distorted in case of quantized networks. Ideally,
when given enough iterations, the Boundary Attack should gener-
ate adversarial image which looks exactly like the original image
with no visible distortions. However, compared to the FP models,
majority of the adversarial images produced with quantized models
especially at lower bitwidths were more distorted. This can also
be observed in terms of L2 distances in Table 6 where L2 distances
in case of 1-bit quantized network is higher when compared to the
corresponding FP network.

(a)

(b)

Figure 4: Adversarial examples generated by the Boundary Attack on: (a) Mnist
A FP model (top row of 5 images) and 1-bit quantized Mnist A (bottom row of
5 images) for 100 iterations. (b) Resnet20 FP model (top row of 5 images) and
1-bit quantized Resnet20 (bottom-row of 5 images) for 50 iterations. For easier
comparison, all image sets are first 5 images from the corresponding datasets.

Figure 4 shows a comparison between adversarial images gen-
erated from the FP and 1-bit quantized models. As can be seen,
the adversarial images for 1-bit models are more distorted with
one of the images in the quantized version of Resnet20 being non-
recognizable (elaboration in observation 1.2). It can be hypothesized
that this is because quantized networks are more resistive to noises
in the input data than their FP counterparts. The activation quantiza-
tion causes activation values to be clipped [21] because of which it
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Table 6: The adversarial accuracy of FP and quantized versions of Mnist A and Resnet20 against the five attacks. Attacks were created and applied on the same network.
The average L2 and L∞ distances between the successful adversarial example and the corresponding clean sample is shown as well.

Mnist A ResNet20

Bitwidth Attacks Hyperparameter
Values

Adversarial
Accuracy L2 L∞

Hyperparameter
Values

Adversarial
Accuracy L2 L∞

FP

FGSM ε = 0.25

0.337 5.219 0.25

ε = 0.05

0.119 2.740 0.05
1 0.845 5.134 0.25 0.137 2.737 0.05
2 0.750 5.116 0.25 0.206 2.742 0.05
4 0.715 5.128 0.25 0.292 2.742 0.05
8 0.678 5.132 0.25 0.299 2.736 0.05
12 0.493 5.120 0.25 0.308 2.736 0.05
16 0.480 5.129 0.25 0.367 2.737 0.05

FP

JSMA θ = 1,
γ = 10%

0.116 5.436 1

θ = 0.3,
γ = 5%

0.074 2.425 0.436
1 0.339 7.801 1 0.142 2.504 0.513
2 0.375 6.707 1 0.247 2.581 0.395
4 0.140 6.814 1 0.419 2.804 0.484
8 0.064 5.739 1 0.351 2.680 0.505
12 0.066 6.370 1 0.469 2.720 0.502
16 0.148 6.981 1 0.430 2.808 0.515

FP

UAP ε = 0.1,
ξ = 0.6

0.114 9.352 0.6

ε = 0.01,
ξ = 0.1

0.176 3.362 0.1
1 0.683 9.073 0.6 0.110 3.430 0.1
2 0.555 8.585 0.6 0.154 3.275 0.1
4 0.438 8.685 0.6 0.169 3.414 0.1
8 0.378 8.648 0.6 0.192 3.308 0.1
12 0.174 8.618 0.6 0.297 3.390 0.1
16 0.162 8.159 0.6 0.175 3.275 0.1

FP

CW

κ = 5,
i = 25,
bs = 20,
ci = 0.01

0.037 3.655 0.888

κ = 5,
i = 25,
bs = 20,
ci = 0.01

0.000 0.111 0.014
1 0.526 5.220 0.944 0.000 0.822 0.104
2 0.558 5.047 0.928 0.000 0.360 0.049
4 0.148 3.182 0.803 0.000 0.249 0.041
8 0.190 3.833 0.897 0.001 0.155 0.020
12 0.163 3.650 0.874 0.000 0.102 0.013
16 0.106 3.066 0.780 0.000 0.112 0.013

FP

BA i = 15

0.000 5.507 0.629

i = 12

0.000 2.387 0.155
1 0.000 6.259 0.634 0.012 2.816 0.184
2 0.000 4.649 0.507 0.066 2.603 0.170
4 0.000 4.338 0.488 0.045 2.859 0.186
8 0.000 4.267 0.493 0.080 2.904 0.189
12 0.001 3.664 0.432 0.002 3.128 0.203
16 0.000 3.235 0.387 0.080 2.803 0.184
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becomes hard to produce differential activations from small changes
at the input9, and thus, even when the input has slight perturbations,
quantized networks can correctly classify the image. This is also
evident from the data from other attack types where for the same
value of attack hyperparameters, FGSM, JSMA and UAP perform
comparatively bad when the network is quantized. In the case of
the Boundary Attack, this could mean that the algorithm cannot
further reduce the distortions in an image because then the quantized
network will classify the adversarial example correctly.

This hypothesis was put to test by increasing the number of
iterations in the Boundary Attack to 1,000 for the 1-bit quantized
Mnist A model. As can be seen in Figure 5a, the adversarial images
are still equally distorted for 1-bit quantized version; whereas, the
distortions are significantly less even for less number of iterations
for the FP models, as seen in Figure 5b. Therefore, it would not
matter if the iterations are increased any further because the algo-
rithm will not be able to reduce the distortions due to the network
being insensitive to small noises at input.

(a)

(b)

Figure 5: Adversarial examples generated by the Boundary Attack on: (a) 1-bit
quantized Mnist A at 1,000 iterations. (b) Mnist A FP model at 200 iterations. Both
images are first 10 images from the MNIST dataset.

Quantized networks being more resistive to input noises is also
observed in [47] and [34] where the authors find that the pertur-
bations that worked in FP stopped working in quantized networks.
Quantization thus acting as a filter for adversarial noise.

Observation 1.2: Imperceptible adversarial images resulting
from the Boundary Attack on quantized networks. Apart from the im-
ages that are distorted but recognizable to human oracles, the Bound-
ary Attack also resulted in adversarial images that were completely
distorted and unrecognizable but only in case of quantized networks.
Figure 6 shows adversarial images generated by the Boundary At-
tack on 1-bit quantized versions of Mnist A and Resnet20 models.
As can be seen, multiple images in both figures are unrecognizable.

This could again be due to the algorithm not being able to re-
duce the distortion any further because of the model being robust
against input noises. To verify this, an experiment was performed
in which adversarial examples were generated from 3,000 randomly

sampled clean images from MNIST and CIFAR10 datasets using
the 1-bit quantized versions of Mnist A and Resnet20 as source.
The images that seemed to be composed of random pixels were then
isolated and inferences were ran on them. It was found that for all
of these images, the true class was within top-2 predicted classes.
This indicates that the Boundary Attack could not reduce the L2
distance between the original and the adversarial image any further
because any further reduction would cause the image to go inside
the decision boundary of the original image making the image no
longer adversarial.

Imperceptible images having true labels within top-2 predicted
classes also means that although the features in the images in Figure
6 are not recognizable to human observers, the network identifies
these features and tries to classify them to the correct class. These
features that are non-recognizable to humans but tend to be mean-
ingful and predictive for networks are studied in [44].

(a)

(b)

Figure 6: Adversarial examples generated by the Boundary Attack on: (a) 1-bit quan-
tized Mnist A model at 100 iterations. (b) 1-bit quantized Resnet20 at 50 iterations.
The adversarial images were generated from 10 randomly selected clean images
from the corresponding datasets.

One of the important qualities of adversarial examples is that
they should be classified correctly by human oracles, and since
these images are completely distorted, they cannot be considered
as adversarial images. Thus, these examples were removed when
computing source network performance in Table 6.

It is also worth noting that these imperceptible images are rare.
In a set of 3,000 random images, on 3 separate runs, for 1-bit quan-
tized Resnet20 at 12 iterations, only about 280 images on average
were imperceptible. Similarly, for 1-bit quantized Mnist A at 15 it-
erations, on average only about 180 such images were found. Thus,
these images formed very small portion of the total adversarial
examples generated and only occurred for quantized networks.

The presence of these images when creating adversarial images
from the Boundary Attack also suggests that although networks
show near-zero resistance against the attack, quantized networks do
offer certain form of resilience because valid adversarial images that
have less distortion or are at least recognizable to humans become

9Weight quantization, on the other hand, does not contribute in poor performance of the attacks when the attacks are crafted in the same network; empirical evidence is
presented in [22].
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hard to create when networks are quantized.
Observation 2: CIFAR10 models require less distortion than

MNIST models to produce misclassification. As can be seen
from Table 6, for CIFAR10 models lower distortions are enough
for the attacks to perform well, while the MNIST models require
comparatively higher value of the attack hyperparameters.

(a)

(b)

Figure 7: Adversarial examples generated using FGSM on: (a) the FP Mnist A model
when ε = 0.1. (b) the FP Resnet20 model when ε = 0.025. The adversarial images
were generated from 10 randomly selected clean images from the corresponding
datasets.

There are two reasons for this. The first reason is that the
MNIST dataset has less intra-class differences [26] which makes
the classification problem easier to solve, and thus the network is
less sensitive to small changes or perturbations [34]. However, in
case of CIFAR10, a single class can have a large variety of objects
of different shapes, sizes, and color, and thus a small change in any
of the input features is enough to produce misclassification [34].
For instance, considering FGSM with ε = 0.1 in case of FP Mnist
A model, the average adversarial accuracy from 3 separate runs on
1,000 samples was found to be 0.831. In contrast, for FP Resnet20
model, for the same attack with ε = 0.025, the average adversarial
accuracy was found to be 0.127. Thus, comparatively, CIFAR10
trained network was more vulnerable to the resulting adversarial
samples even in relatively low distortion. In both cases, the value of
hyperparameter ε is selected such that the distortions were barely
visible, as seen in Figure 7. Similar behaviour is reported in [34]
with SVHN, an MNIST-like dataset, where SVHN models are more
robust to UAP based attacks as compared to CIFAR10 models.

Another reason why CIFAR10 models show more vulnerability
is the high-dimensionality of the CIFAR10 dataset as compared to
MNIST. For Attacks like FGSM and UAP, which add a constant
perturbation to the input in a specific direction, the same value of the
constant introduces larger change at the output in higher dimension.
This is also evident from Equation 10. Keeping ε constant and
increasing n would cause larger change in the activations.

For CW attack as well, we can see that the same value of hyper-
parameters are more effective in CIFAR10 models as compared to
MNIST models.

Observation 3: Quantized models are more robust to loss
gradient-based attacks. Quantized models have better adversarial
accuracy than their FP counterparts against loss gradient based
attacks like FGSM and UAP. Similar behaviour is observed in
[21, 22, 34]. The increased robustness can be attributed to the
gradient masking caused due to activation quantization. Gradient
masking makes the loss surface of the network hard to optimize
over10 [21, 22]. The resulting gradients no longer point to the ad-
versarial examples [22] which makes it harder for these attacks to
find useful gradients that can cause misclassification.

In the case of CW attack, high effectiveness can be observed
in CIFAR10 models even when the networks are quantized. This
is due to the optimization problem (Equation 18) solved by the
attack, which, given enough iterations and binary search steps, will
lead to misclassification. However, during attack creation, it was
harder to craft adversarial samples, especially for lower bitwidths,
as the resulting samples were more distorted and took more time
to converge. The attack tries to introduce minimal distortion while
trying to achieve misclassification (Equation 18), but due to ac-
tivation quantization, it becomes difficult to achieve this as the
network becomes insensitive to small perturbations, especially at
lower bitwidths. Hence, even when using logits, where gradients are
comparatively more expressive, the attack finds difficulty in converg-
ing. This is also evident by the significantly higher L2 distance in
the case of lower bitwidth networks (Table 6) as the attack requires
higher values of c and more binary search steps to create samples.
Moreover, the table shows that Mnist A has increased L2 and ro-
bustness when quantized, further indicating increased robustness of
quantized networks against such attacks.

Observation 4: JSMA performs poorly in quantized net-
works. The poor performance of JSMA can be explained by how
JSMA creates adversarial examples. In each iteration, the JSMA
algorithm seeks to find the input features that cause positive change
towards the target adversarial class (Equation 15) and at the same
time reduce the overall class probabilities of all other classes. When
it finds these features, it adds defined amount of distortion to those
features (for instance, θ = 1 and θ = 0.3 in Table 6) while also
restraining total distortion to a limit (γ = 10% and γ = 5%, respec-
tively). When networks are quantized, activation quantization makes
the network insensitive to small changes in input as the small noises
fail to produce any change in activations. Thus, JSMA struggles to
find features that, when distorted by the defined amount, can cause
misclassification.

This hypothesis was tested by randomly sampling 2,000 clean
samples from MNIST and CIFAR10 datasets and creating adver-
sarial examples using JSMA on Mnist A, Resnet20, and all their
quantized versions. Average L0 distance between the adversarial
samples and their corresponding benign counterparts were recorded.
Three individual runs were carried out and the average L0 distance
from those runs for each model are as shown in Table 7. As can
be seen, on average, quantized networks required more features to
be distorted than the corresponding FP model. This indicates that
JSMA was struggling to find features to build adversarial examples.

Thus, although not using loss-gradients, the activation quantiza-
tion causes JSMA to be less effective on quantized networks.

10Clipping of activations causes activations to remain in the same bucket causing no change or to switch to another bucket causing large change.
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Table 7: Average L0 distances between the clean and adversarial samples produced
using JSMA on the FP and quantized versions of Mnist A and Restnet20 models.

L0 Distance
Quantization
Level

Mnist A
(θ = 1,γ = 10%)

Resnet20
(θ = 0.3,γ = 5%)

FP 50.007 82.592
1 69.047 85.256
2 67.219 102.211
4 55.285 120.840
8 43.437 113.121
12 48.293 121.370
16 53.745 119.264

7.3. Summary

Based on the observations, the following statements can be made:

1. MNIST models are more robust to adversarial attacks than
the CIFAR10 models for some attack types. FGSM, UAP,
CW attack and JSMA were found to be more effective on
CIFAR10 models. This can be attributed to the characteristics
of the data. MNIST has less variations in a single class, while
CIFAR10 has larger variation of objects; thus the classifica-
tion problem is simpler in case of MNIST as compared to
CIFAR10. This is also reflected by the MNIST models being
able to achieve very high test accuracies while the test accura-
cies of the CIFAR10 models are comparatively low (Tables 2
and 3). Further, high dimensionality of CIFAR10 also causes
it to have less adversarial robustness.

2. Quantized networks show resistance against both gradient-
based and gradient-free attacks. Activation clipping causes
quantized networks to filter small noises at the input which
makes the network more resilient to attacks. This was already
known for attacks like FGSM and UAP from the findings in
[22] and [34], respectively. This study further demonstrates
that this also applies for attacks like JSMA that do not use
loss gradients, for search-based attacks like the Boundary
Attack, and also for the CW attack that uses logits and a
more powerful objective function. Although the Boundary
Attack and CW attack depicted very high effectiveness, even
on quantized networks, the adversarial samples were found to
be more distorted, with the Boundary Attack sometimes pro-
ducing non-recognizable samples. This can be considered as
a form of resilience against the attacks as the samples become
more detectable and harder to create. Thus, although limited,
quantization seems to provide some resistance against direct
adversarial attacks.

8. Discussion

• Attacks like FGSM and UAP, which rely on loss gradients
at the output layer to generate adversarial examples, tend to
be less effective against quantized networks due to gradient
masking [22, 34]. Interestingly, as noted in [22], CW at-
tack demonstrated higher effectiveness in quantized networks,

particularly with natural datasets. However, our analysis indi-
cates that quantized networks offer resistance during attack
creation. This resistance was also observed with attacks like
JSMA and the Boundary Attack, where activation quantiza-
tion can make networks more robust against direct attacks to
some extent.

Furthermore, the effectiveness of some attack algorithms also
depends on the characteristics of the data itself. Models
trained on natural datasets like CIFAR10 seem to be more
vulnerable to some attacks than those trained on datasets
like MNIST. Similar observation was made in [34] for UAP
attacks on SVHN and CIFAR10 datasets.

We consider five different attack algorithms. FGSM is a
single-step attack that uses loss gradients to create adversarial
examples, whereas JSMA iteratively distorts selected pix-
els without relying on loss gradient information. UAP, on
the other hand, focuses on finding a universal perturbation
that can generalize across multiple images, rather than craft-
ing unique adversarial samples for each one. CW attack, in
contrast, performs gradient descent towards misclassification.
The Boundary Attack is a gradient-free method that generates
adversarial samples without requiring access to the model’s
parameters or training data. Thus, the algorithms are concep-
tually diverse, allowing the analysis to incorporate a broader
range of attack strategies and provide a more comprehensive
view on adversarial robustness.

• Reproducibility is a significant challenge in ML. Use of a sin-
gle tool with well-documented functionality makes it easier
for other researchers to reproduce and validate experiments.
To facilitate this, we open-source our experimentation tool,
ANNT. The consistent interface provided by ANNT for vari-
ous tasks means that it is easier to standardize experiments
and switch between different configurations. Researchers can
easily share logs and configurations to replicate experiments.

The resources used in the experiments in this paper, including
trained models, adversarial images, and the experiment results
in the form of logfiles (including those from [1]) are available
at https://mega.nz/fm/public-links/ql8CwJxb. Thus, the data,
along with ANNT is sufficient to replicate the experimental
results.

9. Conclusion

In this work, we analyze the adversarial robustness of DNNs under
direct attacks. Within this premise, we evaluate multiple attack
methods on models trained on CIFAR10 and MNIST datasets and
quantized to different bitwidths. Our findings, along with those
from [1] indicate that quantization provides some protection against
both direct and transfer-based attacks.

We also present ANNT, a tool designed to facilitate the valida-
tion of our results and support further research in this area.
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