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 As society ages, the imbalance between family caregivers and elderly individuals increases, 

leading to inadequate support for seniors in many regions. This situation has ignited 

interest in automatic health monitoring systems, particularly in fall detection, due to the 

significant health risks that falls pose to older adults. This research presents a vision-based 

fall detection system that employs computer vision and deep learning to improve elderly 

care. Traditional systems often struggle to accurately detect falls from various camera 

angles, as they typically rely on static assessments of body posture. To tackle this challenge, 

we implement a feature fusion strategy within a deep learning framework to enhance 

detection accuracy across diverse perspectives. The process begins by generating a Human 

Silhouette Image (HSI) through background subtraction. By combining silhouette images 

from two consecutive frames, we create a Silhouette History Image (SHI), which captures 

the shape features of the individual. Simultaneously, Dense Optical Flow (DOF) extracts 

motion features from the same frames, allowing us to merge these with the SHI for a 

comprehensive input image. This fused representation is then processed using a pre-

trained Convolutional Neural Network (CNN) to extract deep features. A Long Short-Term 

Memory (LSTM) Recurrent Neural Network (RNN) is subsequently trained on these 

features to recognize patterns indicative of fall events. Our approach's effectiveness is 

validated through experiments on the UP-fall detection dataset, which includes 1,122 

action videos and achieves an impressive 99% accuracy in fall detection. 
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1. Introduction  

The aging population is rapidly growing worldwide, leading to 

a significant increase in the number of elderly individuals who 

require constant care and monitoring. As a result, the ratio of 

family caregivers to elderly individuals is becoming increasingly 

unbalanced, especially in countries with higher life expectancies. 

This imbalance has created a pressing need for automatic health 

monitoring systems that can provide timely and efficient care for 

the elderly. One of the most critical aspects of such health 

monitoring systems is the detection of falls, a leading cause of 

injury and hospitalization among older adults.  

 

 Falls among the elderly can occur for various reasons, 

including heart attacks, high blood pressure, and other home 

accidents. The consequences of falls can be severe, often leading 

to a decline in physical and mental health, reduced mobility, and 

increased dependence on caregivers. Therefore, accurately 

detecting falls in real-time is essential for preventing further 

injuries and ensuring prompt medical attention. Despite the 

importance of fall detection, traditional vision-based systems face 

significant challenges in achieving reliable performance across 

different environments and camera viewpoints. 

In recent years, computer vision and machine learning have 

paved the way for more sophisticated fall detection systems. 

Convolutional Neural Networks (CNNs) have shown remarkable 

success in various image processing and object recognition tasks,  
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making them suitable candidates for analyzing video data in fall 

detection applications. However, static image-based approaches 

often struggle to capture the temporal dynamics of fall events, 

which are crucial for accurate detection. This limitation can be  

addressed by integrating Recurrent Neural Networks (RNNs), 

particularly Long Short-Term Memory (LSTM) networks, which 

excel at learning temporal dependencies in sequential data. 

The proposed fall detection system leverages the strengths of 

both CNNs and LSTMs, combined with a feature fusion approach 

to enhance the accuracy and robustness of fall detection. The 

system utilizes multiple cameras to capture different viewpoints of 

the monitoring area, providing a comprehensive view of the scene. 

Human silhouette images are extracted from two consecutive 

video frames and fused into a Silhouette History Image (SHI), 

which serves as a shape feature representing the subject's posture 

over time. Additionally, Dense Optical Flow (DOF) is computed 

to capture motion features between frames, offering valuable 

information about the subject's movements. 

By fusing SHI and DOF features, the system creates a rich 

representation of both spatial and temporal aspects of the scene. 

These fused features are then fed into a pre-trained CNN to extract 

deep features, which are subsequently processed by an LSTM 

network to recognize fall events. The use of multiple cameras 

ensures that the system can detect falls from various angles, 

overcoming the limitations of single-camera setups. Furthermore, 

the feature fusion approach enables the system to capture subtle 

changes in posture and movement, improving the overall detection 

accuracy. 

To evaluate the effectiveness of the proposed system, 

experiments were conducted using the publicly available UP-Fall 

detection dataset. The results demonstrate that the proposed 

method outperforms traditional vision-based fall detection 

systems, achieving superior performance in terms of accuracy and 

robustness. This research highlights the potential of combining 

feature fusion with CNN-LSTM architectures for developing 

advanced fall detection systems that can significantly enhance the 

safety and well-being of elderly individuals.  

The primary aim of this research is to develop an advanced fall 

detection system that accurately identifies fall events in real-time, 

leveraging feature fusion and CNN-LSTM architectures within a 

multi-camera setup. The specific objectives are: 

To design a robust fall detection framework that integrates 

shape and motion features using Silhouette History Images (SHI) 

and Dense Optical Flow (DOF). 

• To employ a pre-trained CNN for deep feature extraction and 

an LSTM network for temporal sequence analysis to improve 

fall detection accuracy. 

• To validate the effectiveness of the proposed system through 

extensive experiments using a publicly available dataset, 

ensuring its practical applicability in various indoor 

environments. 

The motivation for this research stems from the growing need 

for reliable and efficient fall detection systems in elderly care. 

With the increasing elderly population, there is a heightened 

demand for solutions that can monitor and ensure the safety of 

older adults, particularly those living alone or in assisted living 

facilities. Existing fall detection systems often struggle with 

accuracy due to limitations in capturing dynamic movements and 

variations in camera viewpoints. By addressing these challenges 

through the integration of advanced machine learning techniques 

and a multi-camera approach, this research aims to provide a more 

dependable solution that enhances the quality of life for the elderly. 

Traditional vision-based fall detection systems face several 

challenges, including: 

• Inability to capture temporal dynamics of fall events, leading 

to missed detections or false alarms. 

• Limited performance due to reliance on single-camera setups, 

which cannot cover all angles and may result in occlusions. 

• Difficulty in accurately distinguishing between falls and other 

similar activities, such as sitting down abruptly. 

The proposed system combines CNN and LSTM networks to 

leverage their strengths in spatial and temporal feature extraction. 

The use of multiple cameras ensures comprehensive coverage of 

the monitored area, reducing the likelihood of occlusions and 

improving detection reliability. Feature fusion of SHI and DOF 

provides a rich representation of both posture and movement, 

enabling the system to differentiate between falls and non-fall 

activities more accurately. 

This research makes several key contributions to the field of fall 

detection: 

• Introduction of a novel feature fusion approach that combines 

SHI and DOF to capture both shape and motion characteristics 

of potential fall events. 

• Development of a hybrid CNN-LSTM architecture that 

effectively integrates spatial and temporal features for 

enhanced fall detection performance. 

• Implementation of a multi-camera system that overcomes the 

limitations of single-camera setups, providing a more robust 

and reliable solution for real-world applications. 

• Extensive experimental validation using the UP-Fall detection 

dataset, demonstrating the superior accuracy and robustness of 

the proposed method compared to traditional systems. 

By addressing the limitations of existing fall detection 

approaches and introducing innovative solutions, this research 

contributes to the advancement of health monitoring technologies, 

ultimately improving the safety and well-being of elderly 

individuals. Moreover, the proposed system can be applied to a 

smart home system to assist and provide telehealth services for the 

elderly. 

This paper is organized as follows. Section I describes the 

objectives, motivations, system problem with solution, and 

contribution of this study. The literature survey about various fall 

detections is analyzed in Section II. The system overview and the 

detailed explanation of this study are presented and the 

experimental results and comparison with the results of the other 

existing methods are presented in Section III. Some discussion 

about the pros and cons of the proposed system are discussed in 
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Section IV. Finally, the conclusion and future work are drawn in 

Section V. 

2. Related Work 

The advancement of sophisticated sensors and devices has 

captured the interest of many researchers focused on artificial 

intelligence systems. This is particularly true for applications such 

as smart home systems, patient monitoring, surveillance, and 

elderly monitoring, where various sensor-based and camera-based 

approaches have been proposed. Fall detection systems, in 

particular, can be classified into two categories based on the 

sensors used: sensor-based and camera (vision)-based. 

2.1. Sensor-based Fall detection 

Fall detection sensors typically incorporate accelerometers 

and gyroscopes to monitor the acceleration and orientation of 

elderly individuals. When attached to various body parts, 

accelerometers collect acceleration data during falls. One 

proposed system [1] employs accelerometers and gyroscopes 

mounted on the gait to assess balance, detect falls, and evaluate 

fall risk. In a different approach, Lindeman et al. integrated 

accelerometer sensors into a hearing aid positioned behind the ear 

[2]. Another fall detection system [3] identifies falls and locates 

the fallen individual. This system utilizes a sensor attached to the 

waist to detect backward and sideways falls based on the wearer’s 

final orientation.  

Additionally, the authors in [4] developed a machine learning-

based fall detection system that utilizes temporal and magnitude 

features extracted from acceleration signals. These features were 

used to train a Support Vector Machine classifier for fall 

identification. Bianchi et al. implemented a fall detection system 

using barometric pressure sensors, evaluating its performance 

against accelerometer-based systems; this system classifies falls 

based on postural orientation and altitude changes [5]. In [6], 

another system was proposed that not only detects falls but also 

assesses injury severity, employing multiple accelerometers 

attached to joints to analyze three-axis acceleration data. 

Furthermore, in [7], the authors introduced a fall detection system 

that combines accelerometer sensors with the Discrete Wavelet 

Transform (DWT) and Support Vector Machine (SVM) algorithm. 

2.2. Vision-based Fall detection 

Numerous fall detection systems have been developed in 

recent years, each utilizing different techniques to enhance 

accuracy and reliability. A notable approach employs key points 

of the human skeleton detected via OpenPose, as demonstrated in 

[8]. This system identifies falls based on the speed of descent of 

the hip joint, the centerline angle, and the body’s width-to-height 

ratio. While it achieves 98.3% sensitivity, 95% specificity, and 97% 

accuracy on a dataset of 60 falling and 40 non-falling actions, the 

system encounters challenges with partial occlusion and 

recognizing falls from multiple directions. 

Another vision-based approach for fall detection, utilizing 

multiple cameras and convolutional neural networks (CNNs), was 

proposed in [9]. This system leverages optical flow to capture 

relative motion between consecutive images and trains three CNN 

models to process visual features from different camera angles. 

The results on the UP-Fall detection dataset demonstrated 95.64% 

accuracy, 97.95% sensitivity, and 83.08% specificity. However, 

the system's performance is impacted by environmental changes 

and occlusions. In [10], the authors developed a fall detection 

system that employs features extracted by Inception v3 and a 

MobileNet model for human detection. By applying transfer 

learning, they achieved 98.5% accuracy, 97.2% specificity, and 

93.47% sensitivity on the FDD dataset, and 91.5% accuracy, 94% 

specificity, and 100% sensitivity on the URFD dataset. 

Nonetheless, managing occlusions continues to pose a significant 

challenge. 

Similarly, in [11], the authors proposed a vision-based fall 

detection method using CNNs, which involved a three-step 

training process: initial training with ImageNet, motion modeling 

with UCF101, and fine-tuning specifically for fall detection. 

Testing on the URFD, Multicam, and FDD datasets resulted in 

accuracy rates of 95%, 96%, and 97%, respectively. While the 

results are promising, the system requires improvements in 

avoiding image preprocessing issues and managing occlusions 

and multi-person detection. In [12], the authors combined 

histograms of oriented gradients (HOG), local binary patterns 

(LBP), and Caffe features for fall detection. Their system utilized 

VIBE+ for human detection and extraction, along with SVM for 

classification, achieving sensitivities of 95%, 93.3%, and 92.9%, 

and specificities of 97.5%, 92.2%, and 86.4% on the Multicam, 

Chua's dataset, and their dataset, respectively. However, handling 

occlusions remains a challenge.  

Furthermore, in [13], the authors focused on detecting fallen 

individuals using assistive robots. Their system utilized features 

such as the aspect ratio of the bounding box, normalized bounding 

box width, and bottom coordinate, employing an SVM-based 

classifier. Testing on the FPDS dataset yielded 100% precision 

and 99.74% recall. However, the system requires enhancements 

in occlusion detection and minimizing image preprocessing issues. 

These studies underscore several common challenges fall 

detection systems face, including occlusion handling, adaptability 

to diverse environmental conditions, effective feature extraction 

and fusion, thorough testing across varied datasets, and detecting 

falls in multi-person environments. The proposed advanced fall 

detection system aims to tackle these issues by integrating shape 

and motion features, utilizing a hybrid CNN-LSTM architecture, 

and employing a multi-camera setup. This approach promises to 

enhance the accuracy and reliability of fall detection, making 

significant progress toward robust and practical real-world 

applications. 

3. Material and Methods 

The purpose system flow of the block diagram illustrating the 

system flow is shown in Figure. 1 of the Advanced Fall Detection 

System Using Feature Fusion and CNN-LSTM. They are: 

• Video Input: Multiple camera feeds provide input data 

capturing the indoor environment from different viewpoints. 

• Data Preprocessing: Initial processing steps such as frame rate 

adjustment and background subtraction are performed to 

prepare the input data for feature extraction. 

• Feature Extraction: Shape and motion features are extracted 

from the preprocessed video frames, capturing relevant 

information about human postures and movements. 
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• Feature Fusion: The extracted shape features (SHI) and motion 

features (DOF) are fused into a unified feature representation, 

combining both the spatial and temporal information. 

• CNN-LSTM: The fused features are input to a hybrid CNN-

LSTM architecture, where CNN layers extract spatial features, 

and LSTM layers model temporal dependencies across frames. 

• Fall Detection: The learned features are used for fall event 

detection, where thresholding and event recognition techniques 

are applied to identify fall events within the video sequences. 

• Classification Output: The system outputs the results of fall 

event detection, indicating the presence or absence of fall 

events in the monitored environment. 

In this system, the sequential flow of data and processing steps 

in the fall detection system: In the first step, the fall detection 

system utilizes multiple camera feeds to capture the indoor 

environment from diverse viewpoints. These camera feeds serve 

as the primary input data for the system, providing comprehensive 

coverage of the monitored area. Before further processing, initial 

preprocessing steps are conducted to ensure the input data is 

suitable for feature extraction. This includes adjustments to the 

frame rate of the video streams to optimize computational 

efficiency and standard background subtraction techniques to 

segment foreground objects from the static background. 

In the second step the following preprocessing, the system 

extracts shape and motion features from the preprocessed video 

frames. Shape features are derived from human silhouette images 

obtained through background subtraction, while motion features 

are computed using dense optical flow techniques applied to 

consecutive frames. These features capture essential information 

regarding human postures and movements within the monitored 

environment, serving as discriminative cues for fall event 

detection. 

In the third step, the extracted shape and motion features are 

fused into a unified feature representation using a feature fusion 

approach. This fusion process combines spatial and temporal 

information, leveraging the complementary nature of shape and 

motion cues to enhance the discriminative power of the feature 

representation. The fused features, called Silhouette History Image 

(SHI) and Dense Optical Flow (DOF) Image, respectively, from 

the input data for subsequent processing stages. 

In the fourth step, the fused features are input to a hybrid CNN-

LSTM architecture, designed to capture spatial and temporal 

dependencies within the input data effectively. The CNN 

component of the architecture extracts spatial features from the 

fused representations, leveraging convolutional layers to learn 

hierarchical representations of the input features. These spatial 

features are then fed into LSTM layers, which model temporal 

dynamics across consecutive frames, allowing the system to 

capture the sequential nature of human actions and movements. 

In the fifth step, the learned features from the CNN-LSTM 

architecture are utilized for fall event detection within the video 

sequences. This involves applying thresholding and event 

recognition techniques to the learned representations, enabling the 

system to identify instances of fall events based on predefined 

criteria. The combination of spatial and temporal features, along 

with the robust architecture of the CNN-LSTM model, facilitates 

accurate and reliable fall detection performance. 

Finally, the system outputs the results of fall event detection, 

indicating the presence or absence of fall events in the monitored 

environment. These results provide valuable insights into the 

safety and well-being of individuals within the indoor space, 

enabling timely intervention and assistance in the event of a fall. 

 Background subtraction is a critical preprocessing step in the 

fall detection system, aimed at isolating human subjects from the 

static background in the video feeds. This process involves several 

stages to accurately detect and segment the moving foreground 

objects, which is essential for subsequent feature extraction and 

analysis.  

 

Figure 1: System flow of the advanced fall detection system using feature fusion 
and CNN-LSTM 

3.1. Preprocessing 

A) Background Creation 

The first step in background subtraction is to create a 

background frame that represents the static elements in the scene. 

This is particularly challenging in fall detection scenarios where 

the human subject is often present throughout the video. 

Traditional methods like Gaussian Mixture Models (GMM) are 

inadequate in such cases due to their inability to handle the 

continuous presence of the subject. Instead, we employ a method 

based on frame differencing and foreground replacement: 

(1) Common Background Frame (CBF) Selection: Identify a 
frame from the video sequence that does not contain any 
moving objects or humans. This frame is used as the CBF. 

(2) Foreground Replacing: For videos without a clear background 
frame, the following steps are performed: 

• Human Segmentation Mask (M): Utilize Mask-RCNN to 
generate a segmentation mask for the human subject. 

• Pixel Replacement: Replace the pixels in the mask (M) with 
the corresponding pixels from the CBF using the equation: 

𝐵𝐹(𝑥, 𝑦) = {
𝐶𝐵𝐹(𝑥, 𝑦)        𝑖𝑓 𝑀(𝑥, 𝑦)  = 0

  𝐹(𝑥, 𝑦)             𝑖𝑓 𝑀(𝑥, 𝑦) = 1
          (1)    
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• Background Frame (BF) Storage: Save the resulting frame as 
the background frame for the video sequence. 

B) Foreground Extraction 

Once the background frame (BF) is established, the next step 

is to extract the foreground objects. This involves comparing each 

frame (F) of the video to the background frame to identify moving 

objects: 

𝐹𝐺(𝑥, 𝑦) = {
 1        𝑖𝑓  𝐵𝐹(𝑥, 𝑦) − 𝐹(𝑥, 𝑦) ≥ 𝑇𝐻
 0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (2) 

The threshold (TH) is the pixel value that can differentiate the 

moving foreground and background objects. The illustration of 

the process of foreground extraction results is shown in Figure. 2.  

 
Figure 2:  Illustration of foreground extraction results from (a) camera1 and 

(b) camera2 

C) Noise Removing 

After extracting the foreground, it is essential to filter out 

noise and ensure only the relevant human subjects are 

retained: 

(1) Object Classification: Analyze the foreground mask to identify 
the human subject acting. Non-human objects are considered 
noise. 

(2) Noise Filtering: Apply size-based filtering and morphological 

operations to remove small, irrelevant objects from the 

foreground mask. This step ensures that only the significant 

moving objects (humans) are retained for further processing. 

Some more sample images of background subtraction results are 

shown in Figure. 3.  

Figure 4:  Creation of silhouette history image (SHI) (a) camera1 (b) camera2 

3.2. Feature Extraction 

A) Extraction of Shape Feature 

To extract the shape feature, the edge smoothing process 
is performed over the noise-removed human silhouette image 
(foreground results). Then the resulting human silhouette 
images of two consecutive frames are combined to create the 
Silhouette History Image (SHI) results, which are used as the 
shape features, as shown in Figure. 4. 

B) Extraction of Motion Feature 

Dense optical flow calculation [14] is used for motion feature 

extraction. Dense optical flow features are extracted from every 

two consecutive frames. Colors are then assigned to the dense 

optical flow results using the HSV color space. The orientation 

value calculated from the dense optical flow is assigned as the 

Hue value, the Saturation is set to the maximum of 255, and the 

magnitude value of the dense optical flow is assigned as the Value 

in the HSV color space. The results of motion feature extraction 

from Camera1 and Camera2 are shown in Figure. 5 (a) and (b). 

3.3. Feature Fusion 

In this part, SHI and DOF are fused into a single input data for the 

training model. SHI and DOF have the same image size, and 

feature fusion (FF) is performed using the following equation. 

The fused feature dimensions will be the same as those of the 

original input images with 320×240 image size, and the result of 

feature fusion is shown in Figure. 6. 

𝐹𝐹(𝑥, 𝑦) = {
𝑆𝐻𝐼(𝑥, 𝑦)   𝑖𝑓 𝑆𝐻𝐼(𝑥, 𝑦) = 1 , 𝐷𝑂𝐹(𝑥, 𝑦) = 0

𝐷𝑂𝐹(𝑥, 𝑦)                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (3) 

 

3.4. Train CNN-LSTM for Fall Detection 

A) Extraction of Deep Features using Convolutional Neural 

Network (CNN) 

A convolutional neural network (CNN) is an artificial neural 

Figure 3:  Background subtraction results (1st row: input frames, 2nd row: 

foreground 
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network designed  to process image data and learn to classify and 

segment various objects within images and videos. The Inception 

V3 model, known for its effectiveness in image analysis and object 

detection, is utilized in the system to extract deep features from the 

input image fusion data. Inception V3, a third edition of Google's 

Inception CNN, consists of 42 layers. The output from the average 

pooling layer, a 2048-dimensional feature vector, is used as the 

deep features for fall detection.  

 

Figure 5:  Motion feature extraction results (a) camera1 (b) camera2 

B) Training Fall Event Detection Model using Recurrent Neural 

Network (RNN) 

A Recurrent Neural Network (RNN) is designed for learning 

from sequential or time-series data, where the output depends on 

prior elements in the sequence. In this system, Long Short-Term 

Memory (LSTM), which consists of a cell, an input gate, an output 

gate, and a forget gate, is used for detecting fall events. 

As shown in Figure. 7, the fused feature outputs from two 

cameras are fed into the Inception V3 model, pre-trained on the 

large ImageNet dataset. The "avg-pool" layer of Inception V3 

produces a deep feature vector of length 2048. Deep features from 

both cameras are combined to create a feature vector of length 

4096. This feature vector sequence, comprising 18 frames 

(spanning 3 seconds), is then fed into an LSTM for training to 

detect whether the input sequences contain a fall event. The 

LSTM used for fall detection consists of 2 stacked layers with 512 

hidden units, as shown in Figure. 8. We used the ReLU activation 

function in two hidden layers and in the final output layer, softmax 

is applied for classifying the fall and not-fall events.  

 

Figure 6:  Sample results of feature fusion (1st row: input images, 2nd row: shape 

feature results, 3rd row: motion feature results, 4th row: feature fusion results) 

 

 

Figure 8:  Architecture of fall detection model using CNN-LSTM 

Figure 7:  Flow chart of fall detection using CNN-LSTM 
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4. Experimental Results 

4.1. Dataset 

The UP-Fall Detection dataset [15], provided by Universidad 

Panamericana, Mexico in April 2019, includes data from 6 infrared 

sensors, 6 accelerometers, 3 Raspberry Pi devices, 2 cameras, and 

1 brain sensor to create a multimodal dataset for fall detection. This 

research uses only data from the 2 cameras to implement vision-

based fall detection. The dataset contains 1122 videos, each 

ranging from 10 to 60 seconds in length. These videos comprise 

11 activities performed by 17 subjects, each repeated 3 times. 

Activities 1 to 5 are falls, while the remaining activities are daily 

living, as detailed in Table I. 

The UP-Fall detection dataset provides the action videos with 

a frame rate of 18 fps. We use the frame rate of 6fps because most 

fall events take around 2 or 3 secs and according to experiments, 

6fps is enough to perform the fall detection. We convert the frame 

rate of 18 fps into 6 fps by taking every 3rd frame from the image 

sequence. Then, foreground extraction is applied to 2 cameras, 3 

trials, and activity 1 to 11 of all 17 subjects. The resolution of the 

RGB image is 320×240 and the following are some results of 

foreground extraction. The experiments are performed on a 

2.2GHz Intel Core i7 CPU machine. The features extraction time 

of SHI and DOF are 0.011 s and 0.031 s respectively. The features 

fusion and fall detection time (3s video frames) are 0.016 s and 1.5 

s respectively using Python. Some test images of the results of falls 

and others are shown in Figure 9.  

 

Figure 9:  Some test image results of the UP-Fall detection dataset 

Table 1: Activities and Their Duration 

No. Activity Duration (sec) 

1 Falling forward using hands 10 

2 Falling forward using knees 10 

3 Falling backward 10 

4 Falling sideward 10 

5 Falling while attempting to sit in an empty chair 10 

6 Walking 60 

7 Standing 60 

8 Sitting 60 

9 Picking up an object 10 

10 Jumping 30 

11 Laying 60 

4.2. Participants 

In the implementation of the advanced fall detection system, 

we utilized the UP-Fall Detection Dataset [16], which includes 11 

activities and three trials per activity. Data were collected from 

over 17 participants, who were called subjects. Participants 

performed six simple human daily activities as well as five 

different types of human falls. During data collection, 17 subjects 

(9 male and 8 female) ranging from 18–24 years old, mean height 

of 1.66 m and a mean weight of 66.8 kg, were invited to perform 

11 different activities for creating a comprehensive dataset for 

training and testing the fall detection system. Each participant's 

data was recorded using multiple modalities, but for this study, we 

focused solely on the video data captured by two cameras. 

• Number of Participants: 17 

• Activities: 11 distinct activities (5 fall and 6 daily activities) 

• Trials: Each participant performed each activity three times, 
resulting in multiple video sequences for each activity. 

In this research, we train 3 classification models. The first 

model (CNN-LSTM-2-classes) can classify only two classes such 

as fall and not-fall events. The second model (CNN-LSTM-7-

classes) trained to classify 7 classes: fall events and other 

activities such as walking, standing, sitting, picking up an object, 

jumping, and laying. The third model (CNN-LSTM-11-classes) 

can classify all 11 activities as described in Table. 1. 

4.3. Performance Evaluation 

For fall detection performance evaluation, we trained and 

tested the data from the UP-Fall dataset using the same criteria as 

described in [9]. Data from trials 1 and 2 for 17 subjects were used 

as the training data, while data from trial 3 were used as the test 

data. To evaluate the performance of this work, the system uses 

the following six metrics: Accuracy, Sensitivity, Specificity, 

Precision, Recall, and F1-score, as given by (4)-(9),[17]. The 

performance evaluation of the three classification models is 

described in Table 2.  

Moreover, we compare the performance of the proposed 

system with other approaches as shown in Table 3. We obtained 

the results of the method in [9] from their paper and used the same 

evaluation method to compare the results. In Table 3, we can see 

http://www.astesj.com/
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that our proposed method produces higher accuracy than the 

method described in [9]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
  (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
   (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                  (8) 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                (9) 

5. Discussion and Limitations 

The proposed system has some limitations in the 

computational complexity of training the CNN-LSTM model. It 

needs to extract deep features using CNN and perform sequence 

classification using LSTM. But that limitation can be overcome 

by applying high-performance computing devices such as GPU- 

machines. Another limitation is the occlusion problem. This 

applied two cameras for detecting fall events. But sometimes falls 

can occur in an area which only two cameras cannot cover. 

Therefore, in the future, we plan to extend this research by 

applying more cameras and configuring the camera set to cover 

all areas of the home environment of living alone elderly. 

Table 2: Performance Evaluation of Three CNN-LSTM Models (Cam1 &Cam2) 

on UP-Fall Detection Dataset 

Models 
CNN-LSTM-2 

Classes 

CNN-LSTM-7 

Classes 

CNN-LSTM-

11 Classes 

Accuracy (%) 99 96 93 

Sensitivity (%) 98 94 79 

Specificity (%) 98 99 99 

Precision (%) 99 94 81 

Recall (%) 98 94 79 

F1-Score (%) 98 94 80 

Table 3: Comparison of Fall Detection Model (CNN-LSTM-2 Classes) 

performance evaluation on UP-Fall Detection Dataset 

Method 

Espinosa R, 

et al  [9] 

(Cam1 

&Cam2) 

Proposed 

(Cam1 

&Cam2) 

Proposed 

(Cam1) 

Proposed 

(Cam2) 

Accuracy (%) 95.64 99 99 99 

Sensitivity (%) 97.95 98 96 98 

Specificity (%) 83.08 98 96 98 

Precision (%) 96.91 99 99 97 

Recall (%) - 98 96 98 

F1-Score (%) 97.43 98 97 97 

6. Conclusion and Future Works 

In this research, a vision-based fall detection system using 

multiple cameras applying CNN-LSTM has been proposed. The 

main contribution will be taken on the “features extraction and 

features fusion from multiple cameras”, and the architecture of 

CNN-LSTM for improving fall detection rate. Based on the 

experimental results performed on the public dataset of the UP-

Fall detection dataset, the proposed system got superior 

performance over the state-of-the-art methods. This fact points 

out that the feature fusion approach for CNN-LSTM is very 

effective and promising for the accurate fall detection system. 

Limitations such as the computation complexity for training 

CNN-LSTM can be overcome by using high-performance 

computing devices. Moreover, the multi-camera approach is more 

cost-effective than the other multi-sensor approaches, and this 

research will come as applied science research which can give a 

lot of benefits to human society. In this research, the experiments 

are only performed on the UP-Fall detection, a large dataset 

containing 1122 action videos performed by 17 persons. Then, the 

proposed method got good performance results on that dataset. In 

the future, to confirm the effectiveness of this proposed method, 

we will perform more experiments on other datasets of fall 

detection. 
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