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This manuscript offers an in-depth analysis of Explainable Artificial Intelligence (XAI), em-
phasizing its crucial role in developing transparent and ethically compliant AI systems. It
traces AI’s evolution from basic algorithms to complex systems capable of autonomous de-
cisions with self-explanation. The paper distinguishes between explainability—making AI
decision processes understandable to humans—and interpretability, which provides coherent
reasons behind these decisions. We explore advanced explanation methodologies, including
feature attribution, example-based methods, and rule extraction technologies, emphasizing their
importance in high-stakes domains like healthcare and finance. The study also reviews the
current regulatory frameworks governing XAI, assessing their effectiveness in keeping pace
with AI innovation and societal expectations. For example, rule extraction from artificial neural
networks (ANNs) involves deriving explicit, human-understandable rules from complex models
to mimic explainability, thereby making the decision-making process of ANNs transparent and
accessible. Concluding, the paper forecasts future directions for XAI research and regulation,
advocating for innovative and ethically sound advancements. This work enhances the dialogue
on responsible AI and establishes a foundation for future research and policy in XAI.

1. Introduction

Artificial Intelligence (AI) has become an increasingly popular topic
in recent years. AI is defined as the capability of a machine to repli-
cate cognitive functions associated with the human mind [1]. As new
technologies like ChatGPT emerge, uncertainty about the impact
of AI technologies on the business world is steadily growing. The
complexity of these systems makes it difficult to understand how AI
arrives at its conclusions, resulting in a ”black box” scenario where
the process used to come to a system output is not fully transparent
[2]. The black box syndrome in such systems can create problems
in critical fields like finance and medical applications. These fields
require more transparency and trust when diagnosing or approving
a loan. As the use of AI grows, the demand for explainability within
knowledge-based systems increases. In the business community,
there is worry about human trust in AI recommendations, leading
to a desire for transparency in AI systems [3]. The current lack
of transparency in AI systems has led to increased focus on the
research of explainable AI. There is a clear need for explainability,
trust, and transparency in algorithms across various applications.
The concept of Explainable AI generalizes new possibilities for AI
programs.

The surge in the adoption of AI systems across various sectors
necessitates a parallel increase in explainability to ensure these sys-
tems are trustworthy, ethical, and accessible. Here are some concise
reasons:

• Regulatory Compliance: Increasing global regulations around
data privacy and AI transparency demand mechanisms for
explaining and justifying automated decisions, especially in
critical sectors like healthcare, finance, and legal.

• Ethical Considerations: As AI systems become more preva-
lent, the ethical implications of their decisions become more
significant. Explainable AI facilitates the understanding of
automated decisions, supporting ethical auditing and account-
ability.

• User Trust: Transparency in AI operations fosters user trust
and acceptance, crucial for the widespread deployment of AI
technologies in sensitive and impactful areas.

These points underscore the essential role of explainability in
the responsible scaling of AI technologies. As we delve deeper
into the nuances of AI applications, the complexity of these sys-
tems grows [4], highlighting the urgent need for advanced research
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in explainable AI. Such research not only aids in aligning AI sys-
tems with human values and norms but also opens new avenues for
innovation in AI governance and policy-making.

2. AI’s history highlights

In recent years, the explainability of systems has emerged as a sig-
nificant factor in adopting AI. It has become essential for practical,
social, and legal reasons that users are provided with an explana-
tion of how a system reaches a particular output [5]. Explanations
are necessary to understand a system’s functions and give users
insight into debugging system issues. However, experts have not
defined a reason or the qualities it must possess [5]. In early forms
of AI, explainability was not prioritized. The origin of AI can be
traced back to the 1940s. These first roots of AI were found in the
WWII code-breaking machine developed by English mathematician
Alan Turing [6]. The technology’s ability to outperform humans in
decoding caused Turing to question the system’s intelligence. In
1950, Turing released a paper discussing how to produce intelligent
systems and test their intelligence. In summary, he proposed a test
that considered a machine intelligent if a human cannot distinguish
between another human and the machine [6]. Today, the Turing Test
is still utilized as a benchmark for recognizing the intelligence of a
system.

AI foundation traces back to 1956 at Dartmouth College, which
kick-started a new era of machine learning research and devel-
opment. The first hint of explainability can be found in early
knowledge-based expert systems in the 1960s. Rule-based expert
systems utilize expert human knowledge to solve problems that
usually require human-level intelligence [7]. Using expert or do-
main knowledge, these software systems assist humans in decision-
making. Expert systems use an approach of ”if-then” statements and
have several essential parts, including a knowledge base (usually
formatted as a set of rules), an inference engine, and an interface
to convey information to a user [6, 7]. Using a top-down approach,
expert systems can quickly formalize human intelligence into logi-
cal rules that can be followed step-by-step. 1966, at MIT, Joseph
Weizenbaum created ELIZA, a natural language processing tool
capable of conversing with a human user [6]. ELIZA was one of
the first programs to pass the Turing Test. In the early 1970s, gov-
ernments began to hesitate and pull back funding for AI research,
causing a gap in the development of AI.

In the 1980s, Expert Systems, using AI-derived symbolic reason-
ing techniques to address complex problems, began demonstrating
the technology’s ability to achieve a firm’s goals [8]. However,
critics began to argue that overall, expert systems rarely achieved
their set goals and, in many cases, could not achieve expert-level
performance [8, 9]. These concerns heavily came from the finan-
cial sector, as Wall Street did not trust the technology that rarely
delivered on its promises.

Due to this suspicion, there was a significant lack of progress in
AI initially. There remained a large gap between the expectations
and reality of AI capabilities. Expert systems showed impressive
potential when attempting problems that can be seamlessly formal-
ized [10]. For example, in 1997, Deep Blue, IBM’s chess-playing
program, successfully beat Gary Kasparov, the world chess cham-
pion, utilizing a tree-search method to evaluate over 200 million

potential moves per second [6]. However, this program could not be
successfully applied to a problem that is not as quickly standardized,
such as face recognition. For a program to accomplish a task like
this, the system must correctly interpret data, learn from it, and
apply it to various tasks and goals with flexible adaptation [6].

The need for complex decision-making caused an uproar in AI
research. While a few machine learning models are labeled inter-
pretable by design - examples include decision trees, rules, and
tables- most AI models function as black boxes, meaning the sys-
tems do not reveal sufficient details regarding their internal behavior.
[5]. The nature of these opaque decision models will be further
discussed in the following section. As AI increasingly intertwines
with more human-centric applications, the focus has shifted from
accuracy to explainability [11].

In the nascent AI development stages, the primary focus was
predominantly on enhancing the accuracy and efficiency of AI mod-
els:

• Performance Metrics: Early AI research prioritized perfor-
mance metrics such as precision and recall, with less consid-
eration for how decisions were made within the model.

• Technological Limitations: Limited by the technology of their
times, early developers often had to choose between complex,
opaque models that offered better performance and simpler,
interpretable ones that did not scale.

While this approach was justified in the early days of AI, when
the goal was to establish viable, functional AI systems, today’s land-
scape demands a different paradigm [12]. As AI systems increas-
ingly interact with societal and individual decisions, transparency
becomes as critical as accuracy. This shift necessitates a robust ex-
ploration of XAI, where understanding and clarifying AI processes
are not just an academic interest but a societal imperative [13]. The
upcoming sections of this paper will delve into the methodologies
and impacts of XAI, seeking to bridge the gap between AI capabili-
ties and human-centric values.

3. What Is XAI?

The field of XAI refers to a wide variety of algorithms. These
varying algorithms can be grouped by complexity into three main
groups: white, gray, and black box models [14]. White-box models
are considered systems with full transparency that do not require ex-
tra explainability techniques, such as linear regression [14]. Systems
that achieve a more advanced performance but lack interpretabil-
ity, such as neural networks and random forests, are considered
black-box models with high accuracy yet lack transparency [11, 14].
These black boxes are considered opaque models, concealing the
methods and algorithms mapping inputs to outputs [15]. For exam-
ple, an opaque system could emerge when an organization licenses
closed-source AI to protect its intellectual property and proprietary
AI [15]. The ”how” and ”why” of the system’s process are omit-
ted from the output. Finally, gray-box models fall in between, as
they are not intrinsically explainable but can be interpretable when
explanation techniques are applied [14].

According to the National Institute of Standards and Technology
[16], for a system to be considered explainable, it must possess four
fundamental properties:
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• Explanation: A system must provide accompanying support
or evidence with each decision output.

• Meaningful: The system’s explanations are understandable to
its intended user, considering different user groups’ varying
knowledge levels and needs.

• Explanation Accuracy: The system’s explanation correctly
reflects system processes.

• Knowledge Limits: A system only functions within the range
of scenarios and conditions it has been trained for. The system
can recognize cases that fall outside its scope.

Knowing what ”explainability” means is crucial to understand-
ing the importance of explainable AI. The term does not possess
an official definition, but experts have culminated several ways to
view the concept of explainability. Explainability describes the
type of information provided to users through the user interface to
allow informed use of a system’s output or recommendation [17].
Explainability answers the simple question, ”Why did it do that?”.

3.1. Explainability, Interpretability, and Transparency

In many cases, explainability and interpretability are used synony-
mously; however, according to literature on the topic, interpretability
and explainability differ slightly. According to Johnson (2020) and
Angelov (2021), the definitions of the terms are as follows:

• Explainability: Relates to the concept of explanation as an
interface between AI and humans, including AI systems that
are comprehensive to humans through explanation [11].

• Interpretability: The ability to determine cause and effect
from a machine learning model that is intrinsically under-
standable to humans [11, 18].

There are notable qualities that explainable and interpretable
systems do and do not possess. The terms used are defined as such:

1. Transparency: The quality of AI systems being understand-
able by themselves, allowing users to comprehend how the
system works [11, 19, 20].

2. User Understanding: the ability of human users to imme-
diately make sense of a system’s reasoning and behavior
without extra explanations or clarifications [21].

3. Comprehensibility: refers to the capacity of a system or a
system’s explanations to aid a user in task completion [21].

4. Fairness: The goal that explanations should be egalitarian
[21].

Systems can be explainable without being interpretable. Ex-
plainability considers explanations of the interface between users
and an AI system [11]. Explainability is found in AI systems that
are accurate and understandable to humans [11]. In addition, ex-
plainability works to clarify its internal decision process to users. It
emphasizes the ability of parameters, often hidden in deep neural
networks, to justify the results [18, 22]. On the other hand, inter-
pretability relates to how accurately a system can link each cause

to an effect [18]. Interpretability describes the capacity of a sys-
tem to give interpretations in formats understandable to humans.
Interpretability also includes to what degree users can understand
explanations [23]. For example, deep learning models, such as
neural networks, tend to perform highly but lack interpretability
[14, 24].

In both interpretable and explainable AI systems, fairness is
not guaranteed. Although these techniques provide insight into
model behavior and reveal biases, achieving fairness requires the
consideration of factors including data bias, algorithmic fairness,
and ethical considerations [20]. A system’s explainability can be
determined by several factors, including complexity, transparency,
trust, fidelity, accuracy, and comprehensibility [5, 16, 23]. These
dimensions of explainability distinguish explainable systems from
black-box models and are critical pieces of explainable AI.

One necessary element of explainable AI is transparency. While
explainability answers the question ”Why did it do that?” trans-
parency addresses ”How does it work?” [25]. In summary, trans-
parency is found in systems that have the potential to be understand-
able by themselves, making transparent systems the opposite of
black box models [11]. Transparency helps lift the lid of black box
models. This can reveal a model’s structural attributes, evaluation
metrics, and descriptive properties from training data to users to fos-
ter an understanding of a system’s underlying logic [5, 25]. Many
machine learning models lacked transparency due to a trade-off
between explainability and performance [19]. As previous studies
focused on performance improvement, transparency was ignored
and placed on the back burner.

AI systems’ nontransparent nature began to affect human trust
and confidence negatively. More specialized knowledge became
necessary to understand AI approaches as the complexity increased.
Ordinary users with low algorithmic knowledge found it hard to trust
AI systems making crucial decisions, and the lack of transparency
hindered user understanding of the exact steps of algorithms [26].
This significantly worsened the problem, as user comprehension of
why a specific recommendation is made and how their input affects
the results is critical to user satisfaction and trust [26]. For example,
in a news recommender system, fair and personalized recommenda-
tions give users confidence, leading to trust and continued use [26].
Visible transparency improves search performance, as using expla-
nations improves users’ overall satisfaction [26]. In recommender
systems, personalization has become a determinant of satisfaction
and trust [26]. Moreover, the recommendation explanation sets a
prerequisite for a relationship of trust between humans and AI [2].
A lack of transparency in medical applications has been identified as
a barrier to AI implementation [23]. Trust in medical AI systems is
vital, as the recommendations significantly impact patients’ health
and well-being [23].

The need for transparency has led to a significant interest in
XAI. This field ensures that AI benefits rather than harms society
by introducing accountability [3]. Systems that lack transparency
don’t possess this accountability. In some cases, this is not an is-
sue. For instance, in the historic Go game between Lee Sodel, a
highly skilled Go player, and AlphaGo, a DeepMind AI system,
AlphaGo made an extremely unexpected move [2]. Experts were
unsure why the system made this gaming-altering move. In this
case, the nontransparent nature of AlphaGo did not matter, as the
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application did not drastically affect human well-being. However,
in many applications, the opposite is true.

On the other hand, IBM Watson, a supercomputer containing AI
and other analytical software, beat the top players at the game show
Jeopardy. This software was then marketed to medical facilities as a
cancer-detecting system [2]. When providing results, Watson could
not display the reasoning for its output, so patients and doctors
could not trust the system [2, 3]. IBM Watson’s lack of transparency
hindered human trust and was not seen as a successful application.
The same mindset can be applied to self-driving cars as well. These
automated systems did not react efficiently in a new or unfamil-
iar environment. In 2018, a computerized vehicle owned by Uber
crashed, and the operator was charged with negligent homicide [11].
Transparent and explainable systems are necessary, from a public
trust perspective and a legal viewpoint, to provide more reliable and
safe systems [11].

The capacity of AI-based systems to elucidate their internal
decision-making processes is an area ripe for exploration and inno-
vation:

• Model Transparency: Techniques such as model visualiza-
tion and feature importance metrics provide insights into the
working of complex models, enhancing their transparency.

• Decision Justification: Implementing methods that allow AI
systems to justify their decisions can facilitate greater under-
standing and trust among users.

As AI technologies continue to permeate various aspects of
personal and professional life, the ability of these systems to offer
clear, understandable explanations for their actions becomes crucial.
This supports the development of more robust and reliable AI and
upholds the user’s right to demand transparency [27]. The next sec-
tion of this paper will discuss methodologies for formulating these
explanations, ensuring that AI systems are effective, accountable,
and accessible to the users they serve.

4. Explanations

According to [5], explanations can be understood in two ways: as
a line of reasoning or as a problem-solving activity. Viewing ex-
planations as a line of reasoning essentially creates understanding
by following the path inference rules take to come to a particular
decision [5]. The main issue with this approach was the complexity
of explanations, as not all users possess the same knowledge to
understand the full extent of explanations thoroughly. This idea
was re-conceptualized to approach explanation in a different light:
explanations as a problem-solving activity. This altered view not
only reconstructs the system’s reasoning but also considers various
degrees of abstraction, meaning different knowledge levels were
considered [28].

Post-hoc and model-based explanations are the most prevalent
types when categorizing the explanations provided by XAI systems.
Post-hoc methods are commonly used on systems that are not in-
trinsically interpretable to boost their interpretability [29]. Post-hoc
methods do not directly reveal the internal workings of a model.
Still, they seek to explain behavior to users by studying outputs and

factors that contribute to the result [16]. In other words, explana-
tions are derived after a model makes the prediction. The system
uses the nature and attributes of results to generate explanations
[17].

On the other hand, model-based explanations focus on the me-
chanical aspect of recommendations and aim to illustrate how an
algorithm suggests a distinct output [5]. Model-based explanation
strategies use a different model to explain how the task model func-
tions. The levels of soundness and fidelity are particularly essential
for assessing model-based explanations [23]. Model-based expla-
nations are strictly based on the system’s underlying assumptions
and structure [5]. The following subsections briefly overview post-
hoc explanations, addressing different techniques and applications.
In addition, several other relevant explanation types, such as self-
interpretable models, are referenced.

4.1. Post-hoc Explanations

Post-hoc explainability can be applied in two ways: model-specific
and model-agnostic approaches. Model-specific methods produce
explanations by utilizing the particular system’s internal learning
process [30]. Since model-specific interpretability is tailored to
bring transparency to specific models, the application will not be
suitable for other model types [11, 20, 30]. In contrast, model-
agnostic methods are independent of the applied system. Model-
agnostic methods develop end-user explanations using the inputs
and predictions of the model [20, 30]. The lack of specificity of
model-agnostic methods allows for wide-scale usage. In addition,
the interpretability of post-hoc models can be further divided into
local and global methods.

4.1.1. Local Methods

Local methods obtain explainability by segmenting the solution
space and providing less intricate explanations that apply to the
entire model [29]. A per-decision or single-decision explanation is
the most dominant type of local explanation [16]. It provides insight
into the aspects that impact the algorithm’s decision for a particular
input. Local explanations allow for a local approximation of how
a black-box model functions [11]. The most well-known example
of local methods is LIME (Local Interpretable Model Agnostic Ex-
plainer) [16, 17]. LIME functions by taking a decision and creating
an interpretable model that illustrates the local decision, which is
then used to deliver per-feature explanations [16]. LIME perturbs
training data into a new dataset to form a new interpretable model
[11]. Another example of local explanations is SHAP (Shapely
Additive exPlanations), which uses a mechanism of additive feature
attributions to reveal the significance of input factors [14, 17].

4.1.2. Global Methods

Global methods employ interpretable mechanisms, such as decision
trees, to extract a simplified version of a complex black box model
to supply understandable explanations for each decision made by
the model [11]. This makes it possible to comprehend the behavior
of the black-box model and how it relates to its trained characteris-
tics [11]. Global explanations can construct post-hoc explanations
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on the whole algorithm [16]. Partial Dependence Plots (PDPs) and
Testing with Concept Activation Vectors (TCAV) are examples of
global explanations. PDPs demonstrate the modification of pre-
dicted responses about altered data components. At the same time,
TCAVs explain deep neural networks in a more user-friendly man-
ner and have been applied to image classification systems [16].In
addition, a global variant of LIME exists, SP-LIME, which uses
applicable local LIME outputs as synopsis explanations [16].

4.2. Self-Interpretable Models

Self-interpretable models are intrinsically explainable, meaning
humans can directly understand them. The models are the explana-
tion due to a transparent reasoning process [16, 31, 32]. However,
many sources claim self-interpretable models are less accurate than
post-hoc explanations due to a trade-off between accuracy and in-
terpretability [16, 33]. The most common self-interpretable models
include regression models and decision trees [16, 34].

4.3. Other Explanation Models

In addition, several other explanations exist that do not perfectly fit
into a category. The most relevant of these explanation models are
defined below.

Forms of Model Explanations:

• Introspective Methods: Explanations are formed by connect-
ing inputs to outputs in black-box models. For example,
reflective methods can be applied to image classifications
with Deep Neural Networks [5, 35, 36] and [37].

• Counterfactual Methods: Explanations provide ”what-if”
statements regarding how the outputs of a predicted model
could be affected by input changes [5, 38, 39, 40] and [41].

• Explanation by Feature Relevance: A method of post-hoc
explainability clarifies a model’s internal functioning by cal-
culating a relevance score for each variable. The comparison
of scores depicts the weight each variable holds [20, 42] and
[43].

• Explanation by Simplification: Explanations that use a trained
model to formulate a simplified representation to assemble
an easily implementable model. These models optimize simi-
larity to the original model while simultaneously decreasing
complexity [11, 29] and [44].

AI-based systems must explain their decisions, which may soon
transition from a best practice to a mandatory requirement. This
shift is driven both by evolving regulatory frameworks aimed at
safeguarding consumer rights and by ethical standards that promote
transparency and accountability [45]:

• Regulatory Compliance: Legislations such as the EU’s Gen-
eral Data Protection Regulation (GDPR) already impose obli-
gations on AI to explain decisions that affect individuals,
signaling a broader trend towards legal mandates.

• Ethical Accountability: Beyond compliance, there is a grow-
ing recognition of the ethical obligation for AI to be trans-
parent, particularly in systems that impact public welfare and
individual freedoms.

This development is poised to significantly benefit numerous
business sectors by enhancing consumer trust, facilitating more in-
formed decision-making, and improving the overall user experience
with AI technologies.

5. From ANNs (sub-symbolic) to Rules (symbolic)

Extracting rules from ANNs is crucial in demystifying these models’
”black-box” nature, making their decisions understandable and inter-
pretable to humans. This process involves translating the intricate,
non-linear relationships learned by the network into a set of rules
that humans can easily understand. To illustrate this process, we’ll
explore a detailed example of how rules can be extracted from an
ANN trained on a simplified dataset for predicting loan approval
based on applicant features.

5.1. Background

Let us use the example of a fictional financial institution that has
created an ANN to evaluate loan applications. The ANN considers
various applicant features such as Age, Income, Credit Score, and
Employment Status and provides a binary decision: Approve or
Deny. Despite the ANN’s high accuracy, the decision-making pro-
cess is not transparent. This makes it challenging for loan officers
to explain decisions to applicants or to ensure compliance with reg-
ulations. The institution aims to derive understandable rules from
the ANN to address this.

5.2. ANN Architecture

The ANN in this example is a simple feedforward network with one
hidden layer. The input layer has four neurons corresponding to the
applicant features. The hidden layer has a few neurons (say five
for simplicity) using ReLU (Rectified Linear Unit) as the activation
function [41]. The output layer has one neuron and uses a sigmoid
activation function to output a probability of loan approval.

5.3. Rule Extraction Process

The rule extraction process involves several steps designed to trans-
late the ANN’s learned weights and biases into a set of if-then rules
that replicate the network’s decision-making process as closely as
possible:

• Simplification: The first step involves simplifying the ANN
to make the rule extraction more manageable. This could
include pruning insignificant weights (shallows values) and
neurons that have little impact on the output based on sensi-
tivity analysis.

• Discretization: Since ANNs deal with continuous inputs and
hidden layer activations, a discretization process is applied to
convert these continuous values into categorical ranges. For
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instance, age might be categorized into ’Young’, ’Middle-
aged’, and ’Old’; Income into ’Low’, ’Medium’, and ’High’;
Credit Score into ’Poor’, ’Fair’, ’Good’, and ’Excellent’; and
Employment Status into ’Unemployed’ and ’Employed’.

• Activation Pattern Analysis: Next, the activation patterns of
the neurons in the hidden layer are analyzed for each input
pattern. This involves feeding various combinations of the
discretized input variables into the simplified network and
observing which neurons in the hidden layer are activated
for each combination. An activation threshold is defined to
determine whether a neuron is considered activated.

• Rule Generation: Based on the activation patterns observed,
rules are generated to replicate the ANN’s decision process.
Each rule corresponds to a path from the input layer through
the activated hidden neurons to the output decision. For ex-
ample:

– If (Age is Young) and (Income is High) and (Credit
Score is Good) and (Employment Status is Employed),
then Approve Loan.

– If (Age is Middle-aged) and (Credit Score is Poor), then
Deny Loan.

This step involves identifying which combinations of input
features and hidden neuron activations lead to loan approval
or denial, effectively translating the ANN’s complex decision
boundaries into more interpretable formats.

• Rule Refinement and Validation: The initial set of rules may
be too complex or too numerous for practical use. Rule refine-
ment techniques simplify and consolidate the rules without
significantly reducing their accuracy in replicating the ANN’s
decisions. The refined rules are then validated against a test
dataset to accurately reflect the ANN’s behavior. This may
involve adjusting the rules based on misclassifications or ap-
plying techniques to handle exceptions and edge cases.

After applying the rule extraction process to our hypothetical
ANN, we might end up with a set of simplified, human-readable
rules such as:

• Rule 1: If (Income is High) and (Credit Score is Excellent),
then Approve Loan.

• Rule 2: If (Employment Status is Unemployed) and (Credit
Score is Poor or Fair), then Deny Loan.

• Rule 3: If (Age is Old) and (Income is Low) and (Employ-
ment Status is Employed), then Deny Loan.

These rules provide clear criteria derived from the ANN’s
learned patterns, making the decision-making process transparent
and justifiable.

5.4. Advantages and Challenges

Some advantages include:

• Transparency: The extracted rules make the ANN’s decisions
transparent and understandable to humans.

• Compliance: Clear rules can help ensure compliance with
regulatory requirements for explainable AI.

• Trust: Understanding how decisions are made can increase
user trust in the AI system.

Some challenges are:

• Complexity: The rule extraction process can be complex,
especially for deep or highly non-linear networks [46].

• Approximation: The extracted rules approximate the ANN’s
decision process and may not capture all nuances.

• Scalability: Extracting rules from large, deep neural networks
with many inputs and hidden layers can be challenging and
may result in many complex rules [47].

5.5. Summary

Extracting rules from ANNs makes AI decision-making transparent,
understandable, and justifiable. Although there are challenges, espe-
cially with complex networks, this process is crucial for responsible
and ethical AI use. By making AI systems more interpretable, we
can establish trust with users, ensure compliance with regulations,
and gain valuable insights into decision-making.

6. Fuzzy Cognitive Maps

The pendulum in AI is swinging back from purely statistical ap-
proaches toward integrating structured knowledge. FCMs are pow-
erful cognitive tools for modeling and simulating complex systems.
They blend elements from artificial neural networks, graph the-
ory, and semantic nets to offer a unique approach to understanding
and predicting system behavior. FCMs incorporate the concept of
fuzziness from fuzzy logic, enabling them to handle ambiguity and
uncertainty inherent in real-world scenarios. This extensive report
delves into the origins of FCMs, provides illustrative case studies,
and discusses their advantages and disadvantages, with references to
their similarities to artificial neural networks, graphs, and semantic
nets [48].

6.1. Origins

Bart Kosko introduced the concept of FCMs in the 1980s as an ex-
tension of cognitive maps. Cognitive maps, developed by Axelrod,
were diagrams that represented beliefs and their interconnections.
Kosko’s introduction of fuzziness to these maps allowed for the
representation of causal reasoning with degrees of truth rather than
binary true/false values, thus capturing the uncertain and imprecise
nature of human knowledge and decision-making processes. FCMs
combine elements from fuzzy logic, introduced by Lotfi A. Zadeh,
with the structure of cognitive maps to model complex systems.
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6.2. Structure and Functionality

FCMs are graph-based representations where nodes represent con-
cepts or entities within a system, and directed edges depict the
causal relationships between these concepts. Each edge is assigned
a weight that indicates the relationship’s strength and direction (pos-
itive or negative). This structure closely mirrors that of artificial
neural networks, particularly in how information flows through the
network and how activation levels of concepts are updated based on
the input they receive, akin to the weighted connections between
neurons in neural networks [49].

However, unlike typical neural networks that learn from data
through backpropagation or other learning algorithms, the weights
in FCMs are often determined by experts or derived from data using
specific algorithms designed for FCMs. The concepts in FCMs can
be activated like neurons, with their states updated based on fuzzy
causal relations, allowing for dynamic modeling of system behavior
over time. Integrating structured knowledge graphs with distributed
neural network representations offers a promising path to augmented
intelligence. We get the flexible statistical power of neural networks
that predict, classify, and generate based on patterns—combined
with the formalized curated knowledge encoding facts, logic, and
semantics via knowledge graphs [50].

6.3. The Inherent Reasoning Mechanism

The primary function of the reasoning rule in FCM models is to
update the activation values of concepts iteratively, starting from
initial conditions and continuing until a stopping criterion is satis-
fied. During each iteration, the reasoning rule utilizes three primary
components to conduct these calculations: the weight matrix, which
signifies the connections between concepts; the activation values of
concepts from the previous iteration; and the activation function.

Eq. (1) shows a general rule commonly found in FCMs-related
papers:

a(t)
i = f

 N∑
j=1,i, j

a(t−1)
j w ji

 , (1)

Recently, in [51], the author proposed an updated quasi-
nonlinear reasoning rule depicted in Eq. (2):

a(t)
i = ϕ · f

 N∑
j=1

a(t−1)
j w ji

︸                  ︷︷                  ︸
nonlinear component

+ (1 − ϕ) · a(0)
i︸        ︷︷        ︸

linear component

, (2)

such that 0 ≤ ϕ ≤ 1 is the nonlinearity coefficient. When ϕ = 1,
the concept’s activation value depends on the activation values of
connected concepts in the previous iteration. When 0 < ϕ < 1, we
add a linear component to the reasoning rule devoted to preserving
the initial activation values of concepts. When ϕ = 0, the model
narrows down to a linear regression where the initial activation
values of concepts act as regressors. In their paper, Nápoles et al.
[51] used the quasi-nonlinear reasoning rule to quantify implicit
bias in pattern classification datasets. In contrast, the authors in
[41] resorted to this rule to develop a recurrence-aware FCM-based
classifier.

6.4. How Activation Functions Work

The activation function f : R → I is an essential component in
the reasoning rule of FCM-based models. This monotonically
non-decreasing function keeps the activation value of each con-
cept within the desired image set I, which can be discrete (a finite
set) or continuous (a numeric-valued interval). It should be men-
tioned that I must be bounded; otherwise, the reasoning rule could
explode due to the successive additions and multiplications when
updating concepts’ activation values during reasoning. Table ??
portrays relevant activation functions found in the literature.

6.5. Relevant Case Studies

For illustration purposes, Figure 1 shows an example of an FCM cre-
ated to model a case of autism [32]. FCMs have been applied across
various domains, demonstrating their versatility and effectiveness
as a hybrid AI tool:

• Decision Support Systems: FCMs model complex decision-
making processes, integrating expert knowledge and data-
driven insights to support decisions in healthcare, environ-
mental management, and business strategy.

• Predictive Modeling: In healthcare, FCMs model the progres-
sion of diseases or the impact of treatments, incorporating
medical expertise and patient data to predict outcomes and
support personalized medicine [52].

• System Analysis and Design: FCMs help analyze and design
complex systems, such as socio-economic systems or ecosys-
tems, by modeling the interactions between various factors
and predicting the impact of changes or interventions.

• Healthcare Management: FCMs have been employed to
model and predict patient outcomes in healthcare settings.
For example, an FCM can be developed to understand the
complex interplay between patient symptoms, treatment op-
tions, and possible outcomes, aiding medical professionals in
decision-making [53].

• Environmental and Ecological Systems: In environmental
studies, FCMs have been used to model the impact of hu-
man activities on ecosystems, allowing for the simulation of
various scenarios based on different policies or interventions.
This application showcases the strength of FCMs in handling
systems where data may be scarce or imprecise [54].

• Business and Strategic Planning: FCMs assist in strategic
planning and decision-making within business contexts by
modeling the relationships between market forces, company
policies, and financial outcomes, offering a tool for scenario
analysis and strategy development [55].
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Figure 1: Real example created with FCM Tool.

6.6. Advantages

The hybrid nature of FCMs offers several advantages:

• Interpretability and Transparency: The symbolic representa-
tion of concepts and causal relationships in FCMs provides
clarity and understandability, facilitating communication with
experts and stakeholders and supporting explainable AI.

• Flexibility and Adaptability: FCMs can be easily updated
with new knowledge or data, allowing them to adapt to chang-
ing conditions or insights. This makes them particularly
valuable in fields where knowledge evolves rapidly.

• Handling of Uncertainty: Using fuzzy values to represent
causal strengths enables FCMs to deal effectively with uncer-
tainty and ambiguity, providing more nuanced and realistic
modeling of complex systems [4].

• Integration of Expert Knowledge and Data-Driven Insights:
FCMs uniquely combine expert domain knowledge with learn-
ing from data, bridging the gap between purely knowledge-
driven and purely data-driven approaches.

• Interpretability: The graphical representation of FCMs, sim-
ilar to semantic nets, allows for straightforward interpreta-
tion and understanding of the modeled system, making it
accessible to experts and stakeholders without deep technical
knowledge of AI.

• Flexibility: FCMs can incorporate quantitative and qualita-
tive data, effectively handling uncertainty and imprecision
through fuzzy logic. This flexibility makes them suitable for
a wide range of applications.

• Dynamic Modeling Capability: FCMs can simulate the dy-
namic behavior of systems over time, providing valuable
insights into potential future states based on different inputs
or changes in the system [56].

6.7. Limitations

Despite their advantages, FCMs also face several challenges:

• Complexity with Large Maps: As the number of concepts
and relationships in an FCM increases, the map can become
complex and challenging to manage, analyze, and interpret
[57].

• Learning and Optimization: While FCMs can learn from data,
adjusting the fuzzy values of causal relationships can be com-
putationally intensive and require sophisticated optimization
techniques, especially for large and complex maps [58].

• Quantification of Expert Knowledge: Translating expert
knowledge into precise fuzzy values for causal relationships
can be challenging and may introduce subjectivity, requiring
careful validation and sensitivity analysis [59].

• Subjectivity in Model Construction: The reliance on expert
knowledge for constructing FCMs can introduce subjectivity,
especially in determining the strength and direction of causal
relationships between concepts.

• Complexity with Large Maps: As the number of concepts
increases, the FCM can become complex and challenging
to manage and interpret, potentially requiring sophisticated
computational tools for simulation and analysis.

• Limited Learning Capability: While FCMs can be adjusted or
trained based on data to some extent, they lack the deep learn-
ing capabilities of more advanced neural networks, which
can autonomously learn complex patterns from large datasets
[60].

7. Applications

Numerous potential applications exist for XAI techniques and mod-
els, including healthcare, law, data science, and business [55]. This
section explores the need for explainability in these applications,
including their current uses, limitations, and future development.

7.1. Healthcare

In healthcare, there are many applications of XAI such as diagnosis,
treatment recommendations, and surgery [23, 61, 62]. For example,
an explainable model was proposed for diagnosing skin diseases.
Using saliency maps to highlight important parts of the image cru-
cial to diagnosis, dermatologists can easily understand the model’s
arrival at a diagnosis and then provide a more in-detail diagnosis
[61]. According to a survey by [62], LIME is the most commonly
used XAI approach in medical applications.

Throughout the COVID-19 pandemic, AI has shown potential
in developing solutions to confront the difficulties presented by the
virus [61]. However, the lack of transparency in black-box models
has hindered their acceptance in clinical practice. With the develop-
ment in user trust and model performance, XAI can attempt these
problems in the future [61]. XAI techniques have been created in the
context of medical image analysis to facilitate disease detection and
diagnosis through feature visualization [61]. This allows medical
professionals and their patients to obtain a deeper insight into the
model’s process, building confidence in its accuracy. In high-stakes
applications, specifically healthcare, there is debate about whether
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explainable modeling is necessary. To some, explainability is cru-
cial. On the other hand, some say prioritizing explainability above
accuracy in healthcare systems can be unethical [23]. According to
[23], the post-hoc explanations can be delusive, but a potential so-
lution is to create post-hoc explanation models with argumentative
support.

Suppose the case of an ANN equipped with a rule extraction
method can be deployed to diagnose diseases from medical imaging
with high accuracy. The ANN processes complex imaging data to
identify patterns indicative of specific conditions, such as tumors in
MRI scans. A rule extraction technique is integrated into the system
to ensure clinicians and patients understand the diagnostic process.
This technique translates the ANN’s intricate decision-making into
simple, interpretable rules, such as the presence of specific shapes or
textures associated with malignancy. This not only aids medical pro-
fessionals in making informed treatment decisions but also enhances
patient trust by providing clear explanations for the diagnoses made
by the AI system.

7.2. Law

In the context of legal applications, XAI possesses several potential
applications. As stated by [61], XAI can be used for legal document
analysis, contract review, legal decision-making, and addressing
challenges in legal domains. AI can help analyze large volumes of
legal documents and sort significant information to facilitate a more
accurate analysis, as well as assist in recommending plea bargains
or predicting case outcomes [61, 63]. Despite the increasing em-
phasis on AI in the legal world, systems still struggle to perform
at necessary levels due to the precise nature of legal work. Such
characteristics include the exact nature of legal jargon, the high level
of expertise required, the mass amount of situational exceptions,
and the limited tolerance of mistakes [61]. The motivation for in-
terpretable, explainable, and trustworthy systems feeds the recent
upsurge of XAI research in legal applications.

In legal applications, an FCM can be a sophisticated tool for
modeling and visualizing the intricate dynamics of legal cases and
legislative processes. By capturing and representing the causal
relationships between various legal factors—such as statutes, prece-
dents, and evidentiary variables—FCMs enable legal professionals
to simulate and scrutinize the potential outcomes of different legal
strategies in a visually interpretable format. This capability goes
beyond basic explainability by showing outcomes and allowing
users to interact with the map to adjust variables and immediately
see different scenario outcomes. This interactive, interpretable vi-
sualization aids in understanding complex legal interdependencies,
facilitating more informed decision-making and strategy formula-
tion, especially in cases involving overlapping laws and diverse
outcomes.

7.3. Finance

In the financial sector, the applications of XAI can be split into
thematic categories. These clusters include financial distress and
corporate failure, algorithmic and high-frequency trading, forecast-
ing/predictive analysis, text mining and sentiment analysis, financial
fraud, pricing and valuation, scheduling, and investor behavior [64].

In addition, [61] describe the potential applications of XAI in fi-
nance as follows:

• Fraud Detection: Explain decisions by identifying the rea-
sons behind fraudulent activities and prevent future issues.

• Credit Scoring: Allows banks and their customers to under-
stand exactly why a particular credit score was calculated and
facilitates lending decisions.

• Investment Management: Increased transparency in port-
folio management can lead to better performance and more
satisfied investors.

• Compliance: XAI could assist in mitigating potential biases
and avoiding legal issues.

• Customer Service: XAI will improve customer service by,
for example, including explanations along with loan denials
to improve customer understanding and satisfaction.

According to additional literature on the topic, subjects within
the finance domain commonly discussed as potential applications
of XAI include risk management, portfolio optimization, electronic
financial transaction clarification, and anti-money laundering [64].
Due to the high level of regulations in financial domains, XAI is
necessary to augment processes to ensure trust and transparency and
mitigate risks [65].

Suppose the case of an ANN equipped with a rule extraction
method can be effectively used for credit scoring. The ANN an-
alyzes extensive data sets, including transaction history, payment
behavior, and credit utilization, to assess the creditworthiness of
applicants. By integrating a rule extraction method, the system can
transparently generate and provide clear, human-understandable
rules that explain its credit-scoring decisions. This transparency not
only aids financial analysts in understanding the model’s decision-
making process but also ensures compliance with regulatory require-
ments regarding fairness and explainability in credit assessments.

An FCM can model and visualize a client’s financial stability or
market for the same finance application. By representing elements
like market trends, economic indicators, and individual financial
behaviors as nodes and their interdependencies as edges, FCMs
allow financial analysts to simulate and interpret complex financial
scenarios. This method provides a dynamic, interpretable visual-
ization beyond mere explanation, enabling interactive exploration
of potential financial outcomes based on varying inputs. Such in-
terpretability is invaluable in strategic financial planning and risk
assessment, allowing the decision-makers to foresee and mitigate
potential financial instabilities or crises.

8. Future

As complex and human-centric systems become more prevalent,
there is a growing need for explainable AI in many applications.
Due to the rapid increase in AI, there are currently few regulations
and rules governing these systems. However, as the need for trust
and transparency continues to rise, regulations are essential to ensure
both ethical and accountable AI.
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8.1. Current Regulations

Historically, AI-based systems have operated in an environment
with minimal regulatory oversight regarding their need to explain
internal decision-making processes:

• Early AI Developments: Initially, AI technologies were de-
veloped and deployed with a focus on functionality and per-
formance, often at the expense of transparency and account-
ability [66].

• Regulatory Lag: There has been a significant lag in develop-
ing and implementing regulations that require AI systems to
be explainable, partly due to the rapid pace of technological
advancement outstripping policy development.

However, as the implications of AI technologies have become
more apparent, there is a growing consensus among government
bodies and policymakers about the necessity of regulatory frame-
works that ensure AI systems are transparent and accountable. This
shift reflects a broader awareness of AI’s potential impacts on soci-
ety and the need for appropriate safeguards.

The regulation of AI is becoming extremely important in terms
of ethics and responsible decision-making. The European Union’s
General Data Protection Regulation (GDPR) was put into effect
in 2018, and the GDPR has raised several legal and ethical ques-
tions regarding safety, responsibility, malfunction liability, and the
overall trade-offs associated with AI decisions [67]. The GDPR
gives citizens a ”right to explanation” in algorithmic choices that
significantly affect them [68, 69]. Regulations like the GDPR make
it nearly impossible to use black-box models in various sectors,
emphasizing the growing need for explainability and transparency
[70, 71]. Additionally, the EU’s intense regulatory actions involving
digital markets, including the AI domain, strive to provide an ethi-
cal approach to AI applications [72]. Additionally, Hacker (2023)
highlights the transformative prospects as well as risks associated
with large generative AI models (LGAIMs), such as ChatGPT, and
how current regulations are not suited to manage this class of AI
[73].

In April 2021, the European Commission proposed a ground-
breaking proposal for the first-ever EU regulatory framework for
AI. This framework consists of a risk-based classification technique
in which the level of risk specifies the regulation applied to a sys-
tem [74]. The AI Act manages the opacity of particular systems,
emphasizing systems classified as high-risk through a focus on
transparency [75]. If implemented, the AI Act will represent the
world’s baseline rules for overseeing AI. Furthermore, generative
AI systems such as ChatGPT must follow transparency conditions,
such as publishing data synopses for training the system [74].

In summary, AI regulations are developing to address ethical
considerations, transparency, and the responsible use of AI across di-
verse sectors. The GDPR and corresponding endeavors emphasize
the demand for transparency and accountability in AI decision-
making. At the same time, ongoing discussions in the EU seek to
shape AI development in a human-centric and ethical fashion.

8.2. The Future of XAI

The future of XAI holds tremendous promise and challenges. In an
increasingly AI-driven world, the possible applications are exten-
sive; however, awareness of the fragile nature and potential biases
within AI systems is expanding. As stated previously, global or-
ganizations are attempting to craft standards for responsible AI to
mitigate concerns. These regulations strive to make AI systems ex-
emplify more transparency and accountability, making the demand
for explainable systems higher than ever.

As different organizations and governments pass regulations,
the dilemma now shifts: Is regulating the AI available to specific
users and not others ethical? When tackling this issue, enforcing
rules on AI is essential. Without universal regulations, organizations
may pass conflicting laws, which could immensely harm companies
attempting to operate systems globally. For example, with search
engines experimenting with generative AI systems, such as Google’s
Bard or Gemini, non-universal regulations would require several
system versions to adhere to local regulations, causing unneces-
sary complexities. Moreover, universal regulations would provide
businesses with legal certainty. Ethically, universal regulations will
form a standard for ethical AI, assisting in eliminating biased and
discriminatory systems. This will also allow users to feel more trust
in consistently observed systems, leading to increased adoption of
systems.

In conclusion, from a business perspective, the universal en-
forcement of AI regulations provides many advantages. Companies
should prioritize accountable AI and support coordinated regula-
tions to develop ethical, transparent, and innovative AI technologies.
Explainable systems are the key to the future of Responsible AI.
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using fuzzy cognitive maps: a survey,” Artificial Intelligence Review, 56,
7733–7794, 2023, doi:10.1007/s10462-022-10319-w.

[55] M. Leon, “Business Technology and Innovation Through Problem-Based
Learning,” in Canada International Conference on Education (CICE-2023)
and World Congress on Education (WCE-2023), Infonomics Society, 2023,
doi:10.20533/cice.2023.0034.

[56] E. Jiya, O. Georgina, A. O., “A Review of Fuzzy Cognitive Maps Extensions
and Learning,” Journal of Information Systems and Informatics, 5(1), 300–323,
2023, doi:10.51519/journalisi.v5i1.447.

[57] R. Schuerkamp, P. J. Giabbanelli, “Extensions of Fuzzy Cognitive Maps:
A Systematic Review,” ACM Comput. Surv., 56(2), 53:1–53:36, 2023,
doi:10.1145/3610771.

[58] S. Yang, J. Liu, “Time-Series Forecasting Based on High-Order Fuzzy Cog-
nitive Maps and Wavelet Transform,” IEEE Transactions on Fuzzy Systems,
26(6), 3391–3402, 2018, doi:10.1109/TFUZZ.2018.2831640.

[59] T. Koutsellis, G. Xexakis, K. Koasidis, N. Frilingou, A. Karamaneas, A. Nikas,
H. Doukas, “In-Cognitive: A web-based Python application for fuzzy cognitive
map design, simulation, and uncertainty analysis based on the Monte Carlo
method,” SoftwareX, 23, 2023, doi:10.1016/j.softx.2023.101513.

[60] D. Qin, Z. Peng, L. Wu, “Deep attention fuzzy cognitive maps for interpretable
multivariate time series prediction,” Knowledge-Based Systems, 275, 110700,
2023, doi:10.1016/j.knosys.2023.110700.

[61] G. P. Reddy, Y. P. Kumar, “Explainable AI (XAI): Explained,” in 2023 IEEE
Open Conference of Electrical, Electronic and Information Sciences (eStream),
1–6, IEEE, 2023, doi:10.1109/eStream.2023.00001.

[62] Y. Zhang, Y. Weng, J. Lund, “Applications of explainable artificial
intelligence in diagnosis and surgery,” Diagnostics, 12(2), 237, 2022,
doi:10.3390/diagnostics12020237.

[63] A. Nielsen, S. Skylaki, M. Norkute, A. Stremitzer, “Effects of XAI on Legal
Process,” ICAIL ’23: Proceedings of the Nineteenth International Conference
on Artificial Intelligence and Law, 2023, doi:10.1145/3593013.3594067.

[64] P. Weber, K. V. Carl, O. Hinz, “Applications of Explainable Artificial Intelli-
gence in Finance—a systematic review of Finance, Information Systems, and
Computer Science literature,” Management Review Quarterly, 74, 867–907,
2023, doi:10.1007/s11301-023-00320-0.

[65] H. DeSimone, M. Leon, “Explainable AI: The Quest for Transparency
in Business and Beyond,” in 2024 7th International Conference on
Information and Computer Technologies (ICICT), 1–6, IEEE, 2024,
doi:10.1109/icict62343.2024.00093.
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